Constructible characters and b-invariant

Cédric Bonnafé*

Abstract

If W is a finite Coxeter group and ¢ is a weight function, Lusztig has
defined @-constructible characters of W, as well as a partition of the set of irre-
ducible characters of W into Lusztig ¢-families. We prove that every Lusztig
@-family contains a unique character with minimal b-invariant, and that ev-
ery @-constructible character has a unique irreducible constituent with min-
imal b-invariant. This generalizes Lusztig’s result about special characters to
the case where ¢ is not constant. This is compatible with some conjectures
of Rouquier and the author about Calogero-Moser families and Calogero-Moser
cellular characters.

Let (W, S) be a finite Coxeter system and let ¢ : S — R~ be a weight function
that is, a map such that ¢(s) = ¢(t) whenever s and t are conjugate in W. Asso-
ciated with this datum, G. Lusztig has defined [Lu3, §22] a notion of constructible
characters of W: it is conjectured that a character is constructible if and only if it
is the character afforded by a Kazhdan-Lusztig left cell (defined using the weight
function ¢). These constructible characters depend heavily on ¢ so we will call
them the ¢-constructible characters of W: the set of ¢-constructible characters will
be denoted by Cons;“s(W). We will also define a graph Q%;;lfp as follows: the

vertices of Q]V“\}lfp are the irreducible characters and two irreducible characters

and )’ are joined in this graph if there exists a ¢-constructible character y of W
such that y and x’ both occur as constituents of y. The connected components of
QI‘;\}‘; (viewed as subsets of Irr(W)) will be called the Lusztig ¢-families: the set of

Lusztig ¢-families will be denoted by Fam](;)us(W). If F € Famlq;“s(W), we denote
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Lus

by Cons " (F) the set of ¢-constructible characters of W all of whose irreducible
components belong to F.

On the other hand, using the theory of rational Cherednik algebras at t = 0
and the geometry of the Calogero-Moser space associated with (W, ¢), R. Rou-
quier and the author (see [BoRo1] and [BoRo2]) have defined a notion of Calogero-
Moser ¢-cells of W, a notion of Calogero-Moser ¢-cellular characters of W (whose set

is denoted by CellgM(W)) and a notion of Calogero-Moser ¢-families (whose set is
denoted by FamgM (W)).

Conjecture (see [BoRo1], [BoRo2] and [GoMal). With the above nota-
tion,

Cons;us(W) = CellgM(W) and Fam;us(W) = FamgM(W)

for every weight function ¢ : S — Rx.

The statement about families in this conjecture holds for classical Weyl groups
thanks to a case-by-case analysis relying on [Lu3, §22] (for the computation of
Lusztig ¢-families), [GoMa] (for the computation of Calogero-Moser ¢-families in
type A and B) and [Be2] (for the computation of the Calogero-Moser ¢-families in
type D). It also holds whenever |S| = 2 (see [Lu3, §17 and Lemma 22.2] and [Bel,
§6.10]).

The statement about constructible characters is much more difficult to estab-
lish, as the computation of Calogero-Moser ¢-cellular characters is at that time
out of reach. It has been proved whenever the Caloger-Moser space associated
with (W, S, ¢) is smooth [BoRo2, Theorem 14.4.1] (this includes the cases where
(W, S) is of type A, or of type B for a large family of weight functions: in all these
cases, the ¢-constructible characters are the irreducible ones). It has also been
checked by the author whenever |S| =2 or (W, S) is of type B3 (unpublished).

Our aim in this paper is to show that this conjecture is compatible with prop-
erties of the b-invariant (as defined below). With each irreducible character x of
W is associated its fake degree f,(t), using the invariant theory of W (see for in-
stance [BoRo2, Definition 1.5.7]). Let us denote by b, the valuation of f,(t): by
is called the b-invariant of x. Let r, denote the coefficient of tx in fy(t). In other
words,

rne € N* and  fy(t) = 5t% mod oL,

For instance, by = 0 and b, is the number of reflections of W (here, ¢ : W —
{1, —1} denotes the sign character). Also, b, = 1 if and only if x is an irreducible
constituent of the canonical reflection representation of W. The following result
is proved in [BoRo2, Theorems 9.6.1 and 12.3.14]:

Theorem CM. Let ¢ : S — R~ be a weight function. Then:

(a) If F € FamgM(W), then there exists a unique x r € JF with minimal b-invariant.
Moreover, ry . = 1.
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(b) Ify € CellgM(W), then there exists a unique irreducible constituent x., of v with
minimal b-invariant. Moreover, Ty = 1.

The next theorem is proved in [Lu2, Theorem 5.25 and its proof] (see also [Lul]
for the first occurrence of the special representations):

Theorem (Lusztig). Assume that ¢ is constant. Then:

(a) If F € Fam](;,us(W), then there exists a unique x r € F with minimal b-invariant
(xr is called the special character of F). Moreover, ry, = 1.

(b) Ify € Cons](;,us(}' ), then x x is an irreducible constituent of <y (and, of course,
among the irreducible constituents of vy, xr is the unique one with minimal
b-invariant). Moreover, (v, xr) = 1.

It turns out that, for general ¢, there might exist Lusztig ¢-families F such
that no element of F occurs as an irreducible constituent of all the ¢-constructible
characters in Consi;us(f ) (this already occurs in type B3, and the reader can also
check this fact in type F;, using the tables given by Geck [Ge, Table 2]). Neverthe-
less, we will prove in this paper the following result, which is compatible with
the above conjecture and the above theorems:

Theorem L. Let ¢ : S — R~ be a weight function. Then:

(a) If F € Fam;us(W), then there exists a unique x r € JF with minimal b-invariant.
Moreover, ry . = 1.

(b) If v € ConsqL[,us(W), then there exists a unique irreducible constituent x., of 7y

with minimal b-invariant. Moreover, vy, = land (v, x) = 1.

The proof of Theorem CM is general and conceptual, while our proof of
Theorem L goes through a case-by-case analysis, based on Lusztig’s description
of ¢-constructible characters and Lusztig ¢-families [Lu3, §22].

REMARK 0 - As the only irreducible Coxeter systems affording possibly unequal
parameters are of type I>(2m), F; or B,, and as r,, = 1 for any character x in these
groups, the statement “r, = 1” in Theorem L(a) and (b) follows immediately
from Lusztig’s Theorem. Therefore, we will prove only the statements about the
minimality of the b-invariant and the scalar product. m

Acknowledgements. We wish to thank N. Jacon for pointing out a mistake in a
preliminary version of this work.
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1 Proof of Theorem L

1.A Reduction

It is easily seen that the proof of Theorem L may be reduced to the case where
(W, S) is irreducible. If W is of type Ay, Dy, E, E7, Es, H3 or Hy, then ¢ is neces-
sarily constant and Theorem L follows immediately from Lusztig’s Theorem. If
W is dihedral, then Theorem L is easily checked using [Lu3, §17 and Lemma 22.2].
If W is of type F4, then Theorem L follows from inspection of [Ge, Table 2]. There-
fore, this shows that we may, and we will, assume that W is of type B, with
n>2. Write S = {t,51,52,...,5,—1} in such a way that the Dynkin diagram of
(W,S) is

t S1 So Sp—1
(#) oO——O— - - - _Cn)
Write b = ¢(t) and a = @(s1) = ¢(s2) = -+ = @(sp-1). If b ¢ alN*, then
Cons]q;us(W) = Irr(W) (see [Lu3, Proposition 22.25]) and Theorem L becomes

obvious. So we may assume that b = ra with r € IN¥, and since the notions are
unchanged by multiplying ¢ by a positive real number, we may also assume that
a = 1. Therefore:

Hypothesis and notation. From now on, and until the end of this section,
we assume that the Coxeter system (W, S) is of type By, with n > 2, that
S ={t,s1,52,...,5,_1} is such that the Dynkin diagram of (W, S) is given
by (#) and that ¢(t) = re(s1) = re(sy) = -+ = re(s,—1) = r with
r e IN*.

We will now review the combinatorics introduced by Lusztig (symbols,
admissible involutions,...) in order to compute families and constructible char-
acters in type By, (see [Lu3, §22] for further details).

1.B Admissible involutions

Let ! > 0 and let Z be a totally ordered set of size 2/ + r. We will define by induc-
tion on / what is an r-admissible involution of Z. Let 1 : Z — Z be an involution.
Then ! is said r-admissible if it has r fixed points and, if [ > 1, there exist two
consecutive elements b and ¢ of Z such that ((b) = ¢ and the restriction of ¢ to
Z\ {b,c} is r-admissible.

Note that, if ¢ is an r-admissible involution and if (b) = ¢ > b and ((z) = z,
then z < b or z > c (this is easily proved by induction on |Z|).
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1.C Symbols
We will denote by Sym, (r) the set of symbols A = (i) where f = (B1 < B2 <

- < Bray)and ¥ = (71 < 72 < - -+ < Y¢) are increasing sequences of non-zero
natural numbers. We set

k+r k
(A=Y (Bi—i)+ ) (vi—])
i=1 j=1
k+r k
and b(A) =Y (2k+2r —2i)(Bi — i) + Y_(2k +1—27) (y; — J).
i=1 j=1

The number b(A) will be called the b-invariant of A. For simplifying our argu-
ments, we will define

k+r k
Vi =Y (2k + 2r — 2i)i 22k+1—2]
i=1 j=1

so that
k+r
b(A) =) (2k+2r —2i)B; + Z (2k +1—2j)7y; — Vi,
i=1 j=1

By abuse of notation, we denote by Ny the set {1, B2, - - -, Brer } NV {Y1, Y2, -, Vi)
and by B U v the set {B1,B2,---, Brart U{r1, 72, -+, vk} We also set B+ =
BUNN\(ENY).

We now define

Z/ (A) = (,Bll ,BZ/ ey ,Br/ Y1, ,Br+1/ Y2, ,Br+2/ coor Yo ,Br+k)

and we will write

so that
r 2k-+r
b(A) = Y (2k+2r—2i)zj(A)+ Y (2k+r—1i)zi(A) — Vi,
i=1 i=r+1
r 2k-+r
(%) = Y- D2(A) + Y @kt —DZ(A) - Vi,
lrill Zlk—i-lr—l i

- B B () -

~
Il
—_
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1.0 Families of symbols

We denote by z(A) the sequence z; < zp < - -+ < zp4, obtained after rewriting
the sequence (B1, B2, - -+, Bktrr Y1, Y2, - - - » Vi) in non-decreasing order.

REMARK 1 - Note that the sequence z'(A) determines the symbol A, contrarily
to the sequence z(A). However, z(A) determines completely |A| thanks to the
formula [A| =Y c a2 —r(r+1)/2 = (k+7)(k+7r+1)/2. ]

/

We say that two symbols A = ("[i) and A’ = (i/

family if z(A) = z(A’). Note that this is equivalent to say that BNy = p' N~/ and

BUvy = B Uy If F is the family of A, we set Xy = BNy and Zr = p+7: note
that Xr and Zr depend only on F (and not on the particular choice of A € F).

If 1 is an r-admissible involution of Zz, we denote by F, the set of symbols

A= (i) in F such that | Nw| = 1 for all t-orbits w.

) in Sym, (r) are in the same

1.E Lusztig families, constructible characters

Let A € Sym, (r) be such that |[A| = n. Let Bip(n) be the set of bipartitions of n.
We set

MA) = Ber —(k+r) = 2P =221 - 1),
MAN)=—k=Z2mn—-227-1)
and A(A) = (M(A), A2(A)).

Then A(A) is a bipartition of n. We denote by x the irreducible character of W
denoted by Xa(a) In [Lu3, §22] or in [GePf, §5.5.3]. Then [GePf, §5.5.3]

() by, = b(A).

With these notations, Lusztig described the ¢-constructible characters in [Lu3,
Proposition 22.24], from which the description of Lusztig ¢-families follows by
using [Lu3, Lemma 22.22]:

Theorem 2 (Lusztig). Let Fis be a Lusztig o-family and let v € Cons;“s(]-"Lus).
If we choose k sufficiently large, then:

(a) There exists a family F of symbols in Sym,(r) such that

FLus:{XA|Ae'F}'

(b) There exists an r-admissible involution 1 of Z  such that

T = ZXA-

AEF,
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i

Definition 3. The symbol A is said special if z( A*) = 2/ (A¥).

REMARK 4 - According to Remark 1, there is a unique special symbol in each
family. It will be denoted by Ar. Note also that, if A, A’ belong to the same
family, then |A| = |A/]. ]

Now, Theorem L follows from Theorem 2, Formula (<{>) and the following
next Theorem:

Theorem 5. Let F be a family of symbols in Sym,(r), let 1 be an r-admissible involution
of Zy and let A € F. Then:

(a) b(A) = b(Ar) with equality if and only if A = Ar.

(b) There is a unique symbol A r , in F, such that, if A € F, then b(A) > b(Afr,),
with equality if and only if A = Af .

The rest of this section is devoted to the proof of Theorem 5.

1.F First reduction

First, assume that Xr #= &. Letb € Xr and let A = <€) € F.Thenbe pNy =
X7 and we denote by B[b] the sequence obtained by removing b to f. Similarly,

let A[b] = (fiﬁ)
Then AJb] € Sym;_(r) and

(V) b(A) =b(A[D]) + Vi, — Vi1, + b<4k—|—2r +1- ) 2) +2 ) =z
z€z(A) z€z(A)
z<b z<b

Proof of (V). Let ig and jo be such that B;, = b and <}, = b. Then

b(A) —b(A[b]) = Vi, — Vi_1,+ 2k + 2r — 2ip) b+

ip—1 jo—1
Y 2B+ (2k+1-2jo)b+ ) 27;.
i=1 j=1

But the numbers B1, B2,..., Biy, Y1, Y25+, Yj, are exactly the elements of the
sequence z(A) which are < b. So

o+jo= ) 1
z€z(A)
z<b
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and
ip—1 jo—1
LBt )Y = L =
i=1 j=1 zez(A)
z<b
This shows (©). u

Now;, the family of A[b] depends only on the family of A (and not on A itself):
indeed, z(A[b]) is obtained from z(A) by removing the two entries equal to b.
We will denote by F[b] the family of A[b]. Moreover, Zz(;) = Zr and the map
A — A[b] induces a bijection between F and F[b], and also induces a bijection
between F, and F[b],.

On the other hand, the formula (©) shows that the difference between b(A)
and b(A[b]) depends only on b and F, so proving Theorem 5 for the pair (F, ) is
equivalent to proving Theorem 5 for the pair (F[b], ). By applying several times
this principle if necessary, this means that we may, and we will, assume that

X]::@

1.G Proof of Theorem 5(a)

First, note that z(A) = z(Ar) = z/(AF) (the last equality follows from the fact
that A r is special and X = @). As z/(A) is a permutation of the non-decreasing
sequence z' (A r), we have

i

Y (A > Y2 (AR)
j=1 j=1
foralli € {1,2,---,2k+r}. So, it follows from (&) that
_ i 2k+r—1 , i
b(A) — b(A 2(2 ) —Z(AF)) + 21 (Z‘i(z;-(/\)—z;(/\f)))
i=1 : 1= j=

So b(A) > b(Ax) with equality only whenever Z§:1 z} (A) =
i€{1,2,...,2k+r}. The proof of Theorem 5(a) is complete.

i1 ](A]:) for all

1.H Proof of Theorem 5(b)

We denote by f, < --- < f the elements of Zx which are fixed by 1. We also set
fr+1 = 0and fy = oo. Asis r-admissible, the set Z(}(fl) ={z€Zr| f1s1<z<fs}
is t-stable and contains no -fixed point (for d € {0,1,...,r}). Letk; = |Z§f) |/2
(d) (d)

and let ¢; be the restriction of 1 to Z . Then ¢, is a 0-admissible involution of Z -

_ (B e @) o) _ (BY
IfA = (’y e}"l,weset[%(d) =BpNZr ,’y(d) =yNZy and A1) = 'y(d) .

Then A4 ¢ Sym, (0) and, if (@) denotes the family of A(@), then A ¢ flgd).
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!/
Now, if A’ = <§,) € Sym, (0), we set
K K

by(A') = Y (2K +2d = 2i)Bi + ) (2K + 1 = 2j)7.
i=1 j=1

The number b;(A’) is called the by-invariant of A’. It then follows from the defi-
nition of b and V, that

(M) B(A) = Y bs(AD) = V4 Y 2k + k44 k) (fu+ X 2).
d=0 d=1

= zeZ)

Since the map

N §
A — (AO,AD, Al

is bijective and since b(A) — Y/,_,by(A@)) depends only on (F,:) and not on
A (as shown by the formula (#)), Theorem 5(b) will follow from the following
lemma :

Lemma 6. There exists a unique symbol in }“lgd) with minimal b -invariant.

The proof of Lemma 6 will be given in the next section.

2 Minimal b,-invariant

For simplifying notation, we set Z = ngf), Il =ky;, G =F (@) and ] = 14. Let us

write Z = {z1,20,...,291} with z;1 < zp < -+ < zy. Recall from the previous
section that j is a 0-admissible involution of Z.

2.A Construction

We will define by induction on/ > 0 a symbol A](d) (Z) € G,. If] = 0, then A](d) (2)
is obviously empty. So assume now that, for any set of non-zero integers Z' of
order 2(I — 1), for any 0-admissible involution ;' of Z" and any d’ > 0, we have
(d)
/ Z

defined a symbol Al )(Z’). Then A(d)(Z) = fr (2)

] : 77(2)
Z' =7\ {z1,1(z1)}, ] the restriction of j to Z' and let

) is defined as follows: let

g Ja-1 ifd>n,
1 ifd = 0.
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Then |Z'| = 2(I — 1) and ' is 0-admissible. So A(,d/)(Z’) = < )
] 7 (2)
J
defined by the induction hypothesis. We then set

) is well-

(@) (70 .

@ _ ) By (Z")U{z1} ifd>1,

h) {ﬁ}f’kzvu{](zl)} ifd =0,

nd @ (7) 72Uz} ifd =1,
T W@ utmy =0

Then Lemma 6 is implied by the next lemma :

Lemma 6T. Let A € G,. Then by(A) > by (A](d) (Z)) with equality if and only if
A=AY(2).

The rest of this section is devoted to the proof of Lemma 6. We will first
prove Lemma 6% whenever d € {0,1} using Lusztig’s Theorem. We will then
turn to the general case, which will be handled by induction on ! = |Z|/2. We fix

e

2.B Proof of Lemma 61 whenever d = 1

Let z be a natural number strictly bigger than all the elements of Z. Let A =
(‘B UW{Z}) € Sym,(1). Then b;(A) = b(A) + C, where C depends only on Z.

x Z V4 Z 7y Z — 17 Z . . . . . . . .
Let Ay = < ! 23 221 ! ) Since j is 0-admissible, it is easily seen that, if
YRRyl

j(zi) = zj, then j —iis odd. So Ag € G,. But, by [Lul, §5], b(A) > b(Ag) with

equality if and only if A = Ay. So it is sufficient to notice that A](l) (Z) = Ao,
which is easily checked.

2.C Proof of Lemma 61 whenever d = 0

Assume in this subsection, and only in this subsection, that 4 = 0 or 1. We denote

by AP = (g) € §,. It is readily seen from the construction that A](O) (Z2)°P =

Aj(l)(Z) and that
bl(A) = bo(AOp) + Z Z.

ze”Z

So Lemma 61 for d = 0 follows from Lemma 6% for d = 1.
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2.D Proof of Lemma 6™ whenever d > 2

Assume now, and until the end of this section, thatd > 2. We will prove Lemma 6"
by induction on I = |Z|/2. The result is obvious if | = 0, as well as if | = 1. So
we assume that | > 2 and that Lemma 6™ holds for I’ <1 — 1. Write j(z1) = zap,
where m < I (note that j(z1) & {z1,23,25,...,2y_1} since j is 0-admissible).

Assume first that m < I. Then Z can we written as the union Z = ZT U Z~,
where Z* = {z1,22,...,220m} and Z= = {zam+1,Zom+2,---,20} are j-stable
(since j is 0-admissible). If ¢ € {4, —}, let j* denote the restriction of ; to Z¢,

s
let B = BNZE v = yNZf and A® = (is), and let G° denote the family
of A®. Then it is easily seen that A® € G, that by(A) — (ba(AT) + bs(A7))
depends only on (G, ) and that A](d) (Z2)f = Aj(gd ) (Z¢). By the induction hypoth-

esis, by(A®) > bd(A](gd)(Zs)) with equality if and only if A® = A](gd) (Z°). So the
result follows in this case. This means that we may, and we will, work under the
following hypothesis:

Hypothesis. From now on, and until the end of this section, we
assume that 1(z1) = zp;.

As in the construction of A](d)(Z), let Z/ = Z\{z1,201} = {z2,23,...,201_1},
let j/ denote the restriction of j to Z’ and let

g Ja-1 ifd>n,
1 ifd = 0.

/
Then |Z'| = 2(I — 1) and ;' is 0-admissible. Let A’ = (l’BY ) where B’ = B\ {z1, 22}

/

and 7' = ¢\ {z1, 2y }. Since d > 2, we have z; € ,Bgd) (Z) and zy; € 'y](d) (Z). This
implies that

(%) ba(A(2) = by (A2 + 2y +20+ D +2 ) 2
zeZ!

Ifzy € B, then A = A](d)(Z) if and only if A’ = A](,d/) (Z') and again

bi(A) =by 1 (A) + 2y +2(I+d)z1+2 ) =z
zeZ’

So the result follows from (%) and from the induction hypothesis.
This means that we may, and we will, assume that z; € 7. In this case,

bs(A) = bai1(A) +2dzy + (21 +1)z1.
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Then it follows from (%) that

ba(A) — ba(A(2)) =
by1(A) - bd—l(A](/d_l)(Z/)> +(2d —1)(zy —21) =2 ) =

zeZ!

So, by the induction hypothesis,

ba(A) = ba(A[(2)) > bay1 (AT (2))) = b1 (AVV(2))+

(Zd 1) 2] —21 -2 Z Z.
zeZ!

Since zp; — z1 > zy;_1 — 2, it is sufficient to show that

(?) baa(A(Z) = by (AT(Z) > —(d — 1)(z —2) +2 ) =
zeZ’

This will be proved by induction on the size of Z'. First, if j(zp) < zp;_1, then we
can separate Z' into two j’-stable subsets and a similar argument as before allows
to conclude thanks to the induction hypothesis.

So we assume that] (z2) = zp1. Let Z" = Z''\ {22,251} and let j” denote
the restriction of ;/ to Z”. Since z; € B, dH)(Z’ ), we can apply (%) one step
further to get

baa () (Z)) — by (A} (2))

— bd(A(,‘f) (Z") +zo 1 +2(l+d)zp+2 ) z

zeZ
—(baa (AP (Z") + 2y +20+d -2z +2 ) 2
zeZ"
= ba(AW(Z") = bya(A} D (Z")) + 422,
So, by the induction hypothesis,
d d—
ba1 (A T(Z) — by (AT (21)
> —(2d—3)(zy-2—2z3)+2 Y z+42
zeZ!"
> —(2d —3)(zg-1—22) +2 ), 2+ 2z — 22y 4
zeZ!
= —(2d-1)(zg-1-2)+2 ) 2
zeZ!

as desired. This shows (?) and completes the proof of Lemma 6.
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3 Complex reflection groups

If WV is a complex reflection group, then R. Rouquier and the author have also
defined Calogero-Moser cellular characters and Calogero-Moser families (see [BoRo1]
or [BoRo2]). If W is of type G(I,1,n) (in Shephard-Todd classification), then
Leclerc and Miyachi [LeMi, §6.3] proposed, in link with canonical bases of
Uy (sle )-modules, a family of characters that could be a good analogue of con-
structible characters: let us call them the Leclerc-Miyachi constructible characters of
G(l,1,n). If I = 2, then they coincide with constructible characters [LeMi, Theo-
rem 10].

Of course, it would be interesting to know if Calogero-Moser cellular charac-
ters coincide with the Leclerc-Miyachi ones: this seems rather complicated but it
should be at least possible to check if the Leclerc-Miyachi constructible characters
satisfy the analogous properties with respect to the b-invariant.
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