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Abstract

If W is a finite Coxeter group and ϕ is a weight function, Lusztig has
defined ϕ-constructible characters of W, as well as a partition of the set of irre-
ducible characters of W into Lusztig ϕ-families. We prove that every Lusztig
ϕ-family contains a unique character with minimal b-invariant, and that ev-
ery ϕ-constructible character has a unique irreducible constituent with min-
imal b-invariant. This generalizes Lusztig’s result about special characters to
the case where ϕ is not constant. This is compatible with some conjectures
of Rouquier and the author about Calogero-Moser families and Calogero-Moser
cellular characters.

Let (W, S) be a finite Coxeter system and let ϕ : S → R>0 be a weight function
that is, a map such that ϕ(s) = ϕ(t) whenever s and t are conjugate in W. Asso-
ciated with this datum, G. Lusztig has defined [Lu3, §22] a notion of constructible
characters of W: it is conjectured that a character is constructible if and only if it
is the character afforded by a Kazhdan-Lusztig left cell (defined using the weight
function ϕ). These constructible characters depend heavily on ϕ so we will call
them the ϕ-constructible characters of W: the set of ϕ-constructible characters will
be denoted by ConsLus

ϕ (W). We will also define a graph GLus
W,ϕ as follows: the

vertices of GLus
W,ϕ are the irreducible characters and two irreducible characters χ

and χ′ are joined in this graph if there exists a ϕ-constructible character γ of W
such that χ and χ′ both occur as constituents of γ. The connected components of
GLus

W,ϕ (viewed as subsets of Irr(W)) will be called the Lusztig ϕ-families: the set of

Lusztig ϕ-families will be denoted by FamLus
ϕ (W). If F ∈ FamLus

ϕ (W), we denote
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by ConsLus
ϕ (F ) the set of ϕ-constructible characters of W all of whose irreducible

components belong to F .
On the other hand, using the theory of rational Cherednik algebras at t = 0

and the geometry of the Calogero-Moser space associated with (W, ϕ), R. Rou-
quier and the author (see [BoRo1] and [BoRo2]) have defined a notion of Calogero-
Moser ϕ-cells of W, a notion of Calogero-Moser ϕ-cellular characters of W (whose set
is denoted by CellCM

ϕ (W)) and a notion of Calogero-Moser ϕ-families (whose set is
denoted by FamCM

ϕ (W)).

Conjecture (see [BoRo1], [BoRo2] and [GoMa]). With the above nota-
tion,

ConsLus
ϕ (W) = CellCM

ϕ (W) and FamLus
ϕ (W) = FamCM

ϕ (W)

for every weight function ϕ : S → R>0.

The statement about families in this conjecture holds for classical Weyl groups
thanks to a case-by-case analysis relying on [Lu3, §22] (for the computation of
Lusztig ϕ-families), [GoMa] (for the computation of Calogero-Moser ϕ-families in
type A and B) and [Be2] (for the computation of the Calogero-Moser ϕ-families in
type D). It also holds whenever |S| = 2 (see [Lu3, §17 and Lemma 22.2] and [Be1,
§6.10]).

The statement about constructible characters is much more difficult to estab-
lish, as the computation of Calogero-Moser ϕ-cellular characters is at that time
out of reach. It has been proved whenever the Caloger-Moser space associated
with (W, S, ϕ) is smooth [BoRo2, Theorem 14.4.1] (this includes the cases where
(W, S) is of type A, or of type B for a large family of weight functions: in all these
cases, the ϕ-constructible characters are the irreducible ones). It has also been
checked by the author whenever |S| = 2 or (W, S) is of type B3 (unpublished).

Our aim in this paper is to show that this conjecture is compatible with prop-
erties of the b-invariant (as defined below). With each irreducible character χ of
W is associated its fake degree fχ(t), using the invariant theory of W (see for in-
stance [BoRo2, Definition 1.5.7]). Let us denote by bχ the valuation of fχ(t): bχ

is called the b-invariant of χ. Let rχ denote the coefficient of tbχ in fχ(t). In other
words,

rχ ∈ N
∗ and fχ(t) ≡ rχtbχ mod tbχ+1.

For instance, b1 = 0 and bε is the number of reflections of W (here, ε : W →
{1,−1} denotes the sign character). Also, bχ = 1 if and only if χ is an irreducible
constituent of the canonical reflection representation of W. The following result
is proved in [BoRo2, Theorems 9.6.1 and 12.3.14]:

Theorem CM. Let ϕ : S → R>0 be a weight function. Then:

(a) If F ∈ FamCM
ϕ (W), then there exists a unique χF ∈ F with minimal b-invariant.

Moreover, rχF
= 1.
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(b) If γ ∈ CellCM
ϕ (W), then there exists a unique irreducible constituent χγ of γ with

minimal b-invariant. Moreover, rχγ = 1.

The next theorem is proved in [Lu2, Theorem 5.25 and its proof] (see also [Lu1]
for the first occurrence of the special representations):

Theorem (Lusztig). Assume that ϕ is constant. Then:

(a) If F ∈ FamLus
ϕ (W), then there exists a unique χF ∈ F with minimal b-invariant

(χF is called the special character of F ). Moreover, rχF = 1.

(b) If γ ∈ ConsLus
ϕ (F ), then χF is an irreducible constituent of γ (and, of course,

among the irreducible constituents of γ, χF is the unique one with minimal
b-invariant). Moreover, 〈γ, χF 〉 = 1.

It turns out that, for general ϕ, there might exist Lusztig ϕ-families F such
that no element of F occurs as an irreducible constituent of all the ϕ-constructible
characters in ConsLus

ϕ (F ) (this already occurs in type B3, and the reader can also
check this fact in type F4, using the tables given by Geck [Ge, Table 2]). Neverthe-
less, we will prove in this paper the following result, which is compatible with
the above conjecture and the above theorems:

Theorem L. Let ϕ : S → R>0 be a weight function. Then:

(a) If F ∈ FamLus
ϕ (W), then there exists a unique χF ∈ F with minimal b-invariant.

Moreover, rχF = 1.

(b) If γ ∈ ConsLus
ϕ (W), then there exists a unique irreducible constituent χγ of γ

with minimal b-invariant. Moreover, rχγ = 1 and 〈γ, χ〉 = 1.

The proof of Theorem CM is general and conceptual, while our proof of
Theorem L goes through a case-by-case analysis, based on Lusztig’s description
of ϕ-constructible characters and Lusztig ϕ-families [Lu3, §22].

REMARK 0 - As the only irreducible Coxeter systems affording possibly unequal
parameters are of type I2(2m), F4 or Bn, and as rχ = 1 for any character χ in these
groups, the statement “rχ = 1” in Theorem L(a) and (b) follows immediately
from Lusztig’s Theorem. Therefore, we will prove only the statements about the
minimality of the b-invariant and the scalar product.

Acknowledgements. We wish to thank N. Jacon for pointing out a mistake in a
preliminary version of this work.



380 C. Bonnafé

1 Proof of Theorem L

1.A Reduction

It is easily seen that the proof of Theorem L may be reduced to the case where
(W, S) is irreducible. If W is of type An, Dn, E6, E7, E8, H3 or H4, then ϕ is neces-
sarily constant and Theorem L follows immediately from Lusztig’s Theorem. If
W is dihedral, then Theorem L is easily checked using [Lu3, §17 and Lemma 22.2].
If W is of type F4, then Theorem L follows from inspection of [Ge, Table 2]. There-
fore, this shows that we may, and we will, assume that W is of type Bn, with
n > 2. Write S = {t, s1, s2, . . . , sn−1} in such a way that the Dynkin diagram of
(W, S) is

(#) ✐ ✐ ✐ · · · ✐
t s1 s2 sn−1

Write b = ϕ(t) and a = ϕ(s1) = ϕ(s2) = · · · = ϕ(sn−1). If b 6∈ aN
∗, then

ConsLus
ϕ (W) = Irr(W) (see [Lu3, Proposition 22.25]) and Theorem L becomes

obvious. So we may assume that b = ra with r ∈ N
∗, and since the notions are

unchanged by multiplying ϕ by a positive real number, we may also assume that
a = 1. Therefore:

Hypothesis and notation. From now on, and until the end of this section,
we assume that the Coxeter system (W, S) is of type Bn, with n > 2, that
S = {t, s1, s2, . . . , sn−1} is such that the Dynkin diagram of (W, S) is given
by (#) and that ϕ(t) = rϕ(s1) = rϕ(s2) = · · · = rϕ(sn−1) = r with
r ∈ N

∗.

We will now review the combinatorics introduced by Lusztig (symbols,
admissible involutions,...) in order to compute families and constructible char-
acters in type Bn (see [Lu3, §22] for further details).

1.B Admissible involutions

Let l > 0 and let Z be a totally ordered set of size 2l + r. We will define by induc-
tion on l what is an r-admissible involution of Z. Let ι : Z → Z be an involution.
Then ι is said r-admissible if it has r fixed points and, if l > 1, there exist two
consecutive elements b and c of Z such that ι(b) = c and the restriction of ι to
Z \ {b, c} is r-admissible.

Note that, if ι is an r-admissible involution and if ι(b) = c > b and ι(z) = z,
then z < b or z > c (this is easily proved by induction on |Z|).
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1.C Symbols

We will denote by Symk(r) the set of symbols Λ =

(

β

γ

)

where β = (β1 < β2 <

· · · < βk+r) and γ = (γ1 < γ2 < · · · < γk) are increasing sequences of non-zero
natural numbers. We set

|Λ| =
k+r

∑
i=1

(βi − i) +
k

∑
j=1

(γj − j)

and b(Λ) =
k+r

∑
i=1

(2k + 2r − 2i)(βi − i) +
k

∑
j=1

(2k + 1 − 2j)(γj − j).

The number b(Λ) will be called the b-invariant of Λ. For simplifying our argu-
ments, we will define

∇k,r =
k+r

∑
i=1

(2k + 2r − 2i)i +
k

∑
j=1

(2k + 1 − 2j)j

so that

b(Λ) =
k+r

∑
i=1

(2k + 2r − 2i)βi +
k

∑
j=1

(2k + 1 − 2j)γj −∇k,r.

By abuse of notation, we denote by β∩γ the set {β1, β2, . . . , βk+r}∩{γ1, γ2, . . . , γk}
and by β ∪ γ the set {β1, β2, . . . , βk+r} ∪ {γ1, γ2, . . . , γk}. We also set β ∔ γ =
(β ∪ γ) \ (β ∩ γ).

We now define

z′(Λ) = (β1, β2, . . . , βr, γ1, βr+1, γ2, βr+2, . . . , γk, βr+k)

and we will write

z′(Λ) = (z′1(Λ), z′2(Λ), · · · , z′2k+r(Λ)),

so that

(♣)

b(Λ) =
r

∑
i=1

(2k + 2r − 2i)z′i(Λ) +
2k+r

∑
i=r+1

(2k + r − i)z′i(Λ)−∇k,r

=
r

∑
i=1

(r − i)z′i(Λ) +
2k+r

∑
i=1

(2k + r − i)z′i(Λ)−∇k,r

=
r−1

∑
i=1

( i

∑
j=1

z′j(Λ)
)

+
2k+r−1

∑
i=1

( i

∑
j=1

z′j(Λ)
)

−∇k,r.
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1.D Families of symbols

We denote by z(Λ) the sequence z1 6 z2 6 · · · 6 z2k+r obtained after rewriting
the sequence (β1, β2, . . . , βk+r, γ1, γ2, . . . , γk) in non-decreasing order.

REMARK 1 - Note that the sequence z′(Λ) determines the symbol Λ, contrarily
to the sequence z(Λ). However, z(Λ) determines completely |Λ| thanks to the
formula |Λ| = ∑z∈z(Λ) z − r(r + 1)/2 − (k + r)(k + r + 1)/2.

We say that two symbols Λ =

(

β

γ

)

and Λ′ =

(

β′

γ′

)

in Symk(r) are in the same

family if z(Λ) = z(Λ′). Note that this is equivalent to say that β ∩ γ = β′ ∩ γ′ and
β ∪ γ = β′ ∪ γ′. If F is the family of Λ, we set XF = β ∩ γ and ZF = β+̇γ: note
that XF and ZF depend only on F (and not on the particular choice of Λ ∈ F ).

If ι is an r-admissible involution of ZF , we denote by Fι the set of symbols

Λ =

(

β

γ

)

in F such that |β ∩ ω| = 1 for all ι-orbits ω.

1.E Lusztig families, constructible characters

Let Λ ∈ Symk(r) be such that |Λ| = n. Let Bip(n) be the set of bipartitions of n.
We set

λ1(Λ) = (βk+r − (k + r) > · · · > β2 − 2 > β1 − 1),

λ2(Λ) = (γk − k > · · · > γ2 − 2 > γ1 − 1)

and λ(Λ) = (λ1(Λ), λ2(Λ)).

Then λ(Λ) is a bipartition of n. We denote by χΛ the irreducible character of W
denoted by χλ(Λ) in [Lu3, §22] or in [GePf, §5.5.3]. Then [GePf, §5.5.3]

(♦) bχΛ
= b(Λ).

With these notations, Lusztig described the ϕ-constructible characters in [Lu3,
Proposition 22.24], from which the description of Lusztig ϕ-families follows by
using [Lu3, Lemma 22.22]:

Theorem 2 (Lusztig). Let FLus be a Lusztig ϕ-family and let γ ∈ ConsLus
ϕ (FLus).

If we choose k sufficiently large, then:

(a) There exists a family F of symbols in Symk(r) such that

FLus = {χΛ | Λ ∈ F}.

(b) There exists an r-admissible involution ι of ZF such that

γ = ∑
Λ∈Fι

χΛ.
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If Λ =

(

β

γ

)

, we set Λ# =

(

β \ (β ∩ γ)

γ \ (β ∩ γ)

)

.

Definition 3. The symbol Λ is said special if z(Λ#) = z′(Λ#).

REMARK 4 - According to Remark 1, there is a unique special symbol in each
family. It will be denoted by ΛF . Note also that, if Λ, Λ′ belong to the same
family, then |Λ| = |Λ′|.

Now, Theorem L follows from Theorem 2, Formula (♦) and the following
next Theorem:

Theorem 5. Let F be a family of symbols in Symk(r), let ι be an r-admissible involution
of ZF and let Λ ∈ F . Then:

(a) b(Λ) > b(ΛF ) with equality if and only if Λ = ΛF .

(b) There is a unique symbol ΛF ,ι in Fι such that, if Λ ∈ Fι, then b(Λ) > b(ΛF ,ι),
with equality if and only if Λ = ΛF ,ι.

The rest of this section is devoted to the proof of Theorem 5.

1.F First reduction

First, assume that XF 6= ∅. Let b ∈ XF and let Λ =

(

β

γ

)

∈ F . Then b ∈ β ∩ γ =

XF and we denote by β[b] the sequence obtained by removing b to β. Similarly,

let Λ[b] =

(

β[b]

γ[b]

)

.

Then Λ[b] ∈ Symk−1(r) and

(♥) b(Λ) = b(Λ[b]) +∇k,r −∇k−1,r + b
(

4k + 2r + 1 − ∑
z∈z(Λ)

z 6 b

2
)

+ 2 ∑
z∈z(Λ)

z<b

z.

Proof of (♥). Let i0 and j0 be such that βi0 = b and γj0 = b. Then

b(Λ)− b(Λ[b]) = ∇k,r −∇k−1,r+(2k + 2r − 2i0)b+

i0−1

∑
i=1

2βi + (2k + 1 − 2j0)b +
j0−1

∑
j=1

2γj.

But the numbers β1, β2,. . . , βi0 , γ1, γ2,. . . , γj0 are exactly the elements of the
sequence z(Λ) which are 6 b. So

i0 + j0 = ∑
z∈z(Λ)

z 6 b

1
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and
i0−1

∑
i=1

βi +
j0−1

∑
j=1

γj = ∑
z∈z(Λ)

z<b

z.

This shows (♥).

Now, the family of Λ[b] depends only on the family of Λ (and not on Λ itself):
indeed, z(Λ[b]) is obtained from z(Λ) by removing the two entries equal to b.
We will denote by F [b] the family of Λ[b]. Moreover, ZF [b] = ZF and the map
Λ 7→ Λ[b] induces a bijection between F and F [b], and also induces a bijection
between Fι and F [b]ι.

On the other hand, the formula (♥) shows that the difference between b(Λ)
and b(Λ[b]) depends only on b and F , so proving Theorem 5 for the pair (F , ι) is
equivalent to proving Theorem 5 for the pair (F [b], ι). By applying several times
this principle if necessary, this means that we may, and we will, assume that

XF = ∅.

1.G Proof of Theorem 5(a)

First, note that z(Λ) = z(ΛF ) = z′(ΛF ) (the last equality follows from the fact
that ΛF is special and XF = ∅). As z′(Λ) is a permutation of the non-decreasing
sequence z′(ΛF ), we have

i

∑
j=1

z′j(Λ) >
i

∑
j=1

z′j(ΛF )

for all i ∈ {1, 2, · · · , 2k + r}. So, it follows from (♣) that

b(Λ)− b(ΛF ) =
r−1

∑
i=1

( i

∑
j=1

(

z′j(Λ)− z′j(ΛF )
)

)

+
2k+r−1

∑
i=1

( i

∑
j=1

(

z′j(Λ)− z′j(ΛF )
)

)

.

So b(Λ) > b(ΛF ) with equality only whenever ∑
i
j=1 z′j(Λ) = ∑

i
j=1 z′j(ΛF ) for all

i ∈ {1, 2, . . . , 2k + r}. The proof of Theorem 5(a) is complete.

1.H Proof of Theorem 5(b)

We denote by fr < · · · < f1 the elements of ZF which are fixed by ι. We also set

fr+1 = 0 and f0 = ∞. As ι is r-admissible, the set Z
(d)
F = {z ∈ ZF | fd+1 < z < fd}

is ι-stable and contains no ι-fixed point (for d ∈ {0, 1, . . . , r}). Let kd = |Z
(d)
F |/2

and let ιd be the restriction of ι to Z
(d)
F . Then ιd is a 0-admissible involution of Z

(d)
F .

If Λ =

(

β

γ

)

∈ Fι, we set β(d) = β ∩ Z
(d)
F , γ(d) = γ ∩ Z

(d)
F and Λ(d) =

(

β(d)

γ(d)

)

.

Then Λ(d) ∈ Symkd
(0) and, if F (d) denotes the family of Λ(d), then Λ(d) ∈ F

(d)
ιd

.
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Now, if Λ′ =

(

β′

γ′

)

∈ Symk′(0), we set

bd(Λ
′) =

k′

∑
i=1

(2k′ + 2d − 2i)β′
i +

k′

∑
j=1

(2k′ + 1 − 2j)γ′
j.

The number bd(Λ
′) is called the bd-invariant of Λ′. It then follows from the defi-

nition of b and ∇k,r that

(♠) b(Λ) =
r

∑
d=0

bd(Λ
(d))−∇k,r +

r

∑
d=1

2
(

k0 + k1 + · · ·+ kd−1
)

(

fd + ∑
z∈Z(d)

z
)

.

Since the map

Fι −→ ∏
r
d=0 F

(d)
ιd

Λ 7−→ (Λ(0), Λ(1), . . . , Λ(d))

is bijective and since b(Λ) − ∑
r
d=0 bd(Λ

(d)) depends only on (F , ι) and not on
Λ (as shown by the formula (♠)), Theorem 5(b) will follow from the following
lemma :

Lemma 6. There exists a unique symbol in F
(d)
ιd

with minimal bd-invariant.

The proof of Lemma 6 will be given in the next section.

2 Minimal bd-invariant

For simplifying notation, we set Z = Z
(d)
F , l = kd, G = F (d) and  = ιd. Let us

write Z = {z1, z2, . . . , z2l} with z1 < z2 < · · · < z2l . Recall from the previous
section that  is a 0-admissible involution of Z.

2.A Construction

We will define by induction on l > 0 a symbol Λ
(d)
 (Z) ∈ G. If l = 0, then Λ

(d)
 (Z)

is obviously empty. So assume now that, for any set of non-zero integers Z′ of
order 2(l − 1), for any 0-admissible involution ′ of Z′ and any d′ > 0, we have

defined a symbol Λ
(d′)
′

(Z′). Then Λ
(d)
 (Z) =

(

β
(d)
 (Z)

γ
(d)
 (Z)

)

is defined as follows: let

Z′ = Z \ {z1, ι(z1)}, ′ the restriction of  to Z′ and let

d′ =

{

d − 1 if d > 1,
1 if d = 0.



386 C. Bonnafé

Then |Z′| = 2(l − 1) and ′ is 0-admissible. So Λ
(d′)
′

(Z′) =

(β
(d′)
′

(Z′)

γ
(d′)
′

(Z′)

)

is well-

defined by the induction hypothesis. We then set

β
(d)
 (Z) =







β
(d′)
′

(Z′) ∪ {z1} if d > 1,

β
(d′)
′

(Z′) ∪ {(z1)} if d = 0,

and γ
(d)
 (Z) =







γ
(d′)
′

(Z′) ∪ {(z1)} if d > 1,

γ
(d′)
′

(Z′) ∪ {z1} if d = 0.

Then Lemma 6 is implied by the next lemma :

Lemma 6+. Let Λ ∈ G. Then bd(Λ) > bd(Λ
(d)
 (Z)) with equality if and only if

Λ = Λ
(d)
 (Z).

The rest of this section is devoted to the proof of Lemma 6+. We will first
prove Lemma 6+ whenever d ∈ {0, 1} using Lusztig’s Theorem. We will then
turn to the general case, which will be handled by induction on l = |Z|/2. We fix

Λ =

(

β

γ

)

∈ Gι.

2.B Proof of Lemma 6+ whenever d = 1

Let z be a natural number strictly bigger than all the elements of Z. Let Λ̃ =
(

β ∪ {z}

γ

)

∈ Symk(1). Then b1(Λ) = b(Λ̃) + C, where C depends only on Z.

Let Λ̃0 =

(

z1, z3, . . . , z2l−1, z

z2, . . . , z2l

)

. Since  is 0-admissible, it is easily seen that, if

(zi) = zj, then j − i is odd. So Λ̃0 ∈ G. But, by [Lu1, §5], b(Λ̃) > b(Λ̃0) with

equality if and only if Λ̃ = Λ̃0. So it is sufficient to notice that
˜

Λ
(1)
 (Z) = Λ̃0,

which is easily checked.

2.C Proof of Lemma 6+ whenever d = 0

Assume in this subsection, and only in this subsection, that d = 0 or 1. We denote

by Λop =

(

γ

β

)

∈ G. It is readily seen from the construction that Λ
(0)
 (Z)op =

Λ
(1)
 (Z) and that

b1(Λ) = b0(Λ
op) + ∑

z∈Z

z.

So Lemma 6+ for d = 0 follows from Lemma 6+ for d = 1.
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2.D Proof of Lemma 6+ whenever d > 2

Assume now, and until the end of this section, that d > 2. We will prove Lemma 6+

by induction on l = |Z|/2. The result is obvious if l = 0, as well as if l = 1. So
we assume that l > 2 and that Lemma 6+ holds for l′ 6 l − 1. Write (z1) = z2m,
where m 6 l (note that (z1) 6∈ {z1, z3, z5, . . . , z2l−1} since  is 0-admissible).

Assume first that m < l. Then Z can we written as the union Z = Z+ ∪̇ Z−,
where Z+ = {z1, z2, . . . , z2m} and Z− = {z2m+1, z2m+2, . . . , z2l} are -stable
(since  is 0-admissible). If ε ∈ {+,−}, let ε denote the restriction of  to Zε,

let βε = β ∩ Zε, γε = γ ∩ Zε and Λε =

(

βε

γε

)

, and let Gε denote the family

of Λε. Then it is easily seen that Λε ∈ Gε
ε , that bd(Λ) −

(

bd(Λ
+) + bd(Λ

−)
)

depends only on (G, ) and that Λ
(d)
 (Z)ε = Λ

(d)
ε (Zε). By the induction hypoth-

esis, bd(Λ
ε) > bd(Λ

(d)
ε (Zε)) with equality if and only if Λε = Λ

(d)
ε (Zε). So the

result follows in this case. This means that we may, and we will, work under the
following hypothesis:

Hypothesis. From now on, and until the end of this section, we
assume that (z1) = z2l .

As in the construction of Λ
(d)
 (Z), let Z′ = Z \ {z1, z2l} = {z2, z3, . . . , z2l−1},

let ′ denote the restriction of  to Z′ and let

d′ =

{

d − 1 if d > 1,
1 if d = 0.

Then |Z′| = 2(l − 1) and ′ is 0-admissible. Let Λ′ =

(

β′

γ′

)

where β′ = β \ {z1 , z2l}

and γ′ = γ \ {z1, z2l}. Since d > 2, we have z1 ∈ β
(d)
 (Z) and z2l ∈ γ

(d)
 (Z). This

implies that

(⋆) bd(Λ
(d)
 (Z)) = bd−1(Λ

(d−1)
′

(Z′)) + z2l + 2(l + d)z1 + 2 ∑
z∈Z′

z.

If z1 ∈ β, then Λ = Λ
(d)
 (Z) if and only if Λ′ = Λ

(d′)
′ (Z′) and again

bd(Λ) = bd−1(Λ
′) + z2l + 2(l + d)z1 + 2 ∑

z∈Z′

z.

So the result follows from (⋆) and from the induction hypothesis.
This means that we may, and we will, assume that z1 ∈ γ. In this case,

bd(Λ) = bd+1(Λ
′) + 2dz2l + (2l + 1)z1.
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Then it follows from (⋆) that

bd(Λ)− bd(Λ
(d)
 (Z)) =

bd+1(Λ
′)− bd−1(Λ

(d−1)
′ (Z′)) + (2d − 1)(z2l − z1)− 2 ∑

z∈Z′

z.

So, by the induction hypothesis,

bd(Λ)− bd(Λ
(d)
 (Z)) > bd+1(Λ

(d+1)
′

(Z′))− bd−1(Λ
(d−1)
′

(Z′))+

(2d − 1)(z2l − z1)− 2 ∑
z∈Z′

z.

Since z2l − z1 > z2l−1 − z2, it is sufficient to show that

(?) bd+1(Λ
(d+1)
′

(Z′))− bd−1(Λ
(d−1)
′

(Z′)) > −(2d − 1)(z2l−1 − z2) + 2 ∑
z∈Z′

z.

This will be proved by induction on the size of Z′. First, if (z2) < z2l−1, then we
can separate Z′ into two ′-stable subsets and a similar argument as before allows
to conclude thanks to the induction hypothesis.

So we assume that ′(z2) = z2l−1. Let Z′′ = Z′ \ {z2, z2l−1} and let ′′ denote
the restriction of ′ to Z′′. Since z2 ∈ β

(d+1)
′

(Z′), we can apply (⋆) one step
further to get

bd+1(Λ
(d+1)
′

(Z′))− bd−1(Λ
(d−1)
′

(Z′))

= bd(Λ
(d)
′′

(Z′′) + z2l−1 + 2(l + d)z2 + 2 ∑
z∈Z′′

z

−
(

bd−2(Λ
(d−2)
′′ (Z′′)) + z2l−1 + 2(l + d − 2)z2 + 2 ∑

z∈Z′′

z
)

= bd(Λ
(d)
′′

(Z′′))− bd−2(Λ
(d−2)
′′

(Z′′)) + 4z2.

So, by the induction hypothesis,

bd+1(Λ
(d+1)
′ (Z′))− bd−1(Λ

(d−1)
′ (Z′))

> −(2d − 3)(z2l−2 − z3) + 2 ∑
z∈Z′′

z + 4z2

> −(2d − 3)(z2l−1 − z2) + 2 ∑
z∈Z′

z + 2z2 − 2z2l−1

= −(2d − 1)(z2l−1 − z2) + 2 ∑
z∈Z′

z,

as desired. This shows (?) and completes the proof of Lemma 6+.
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3 Complex reflection groups

If W is a complex reflection group, then R. Rouquier and the author have also
defined Calogero-Moser cellular characters and Calogero-Moser families (see [BoRo1]
or [BoRo2]). If W is of type G(l, 1, n) (in Shephard-Todd classification), then
Leclerc and Miyachi [LeMi, §6.3] proposed, in link with canonical bases of
Uv(sl∞)-modules, a family of characters that could be a good analogue of con-
structible characters: let us call them the Leclerc-Miyachi constructible characters of
G(l, 1, n). If l = 2, then they coincide with constructible characters [LeMi, Theo-
rem 10].

Of course, it would be interesting to know if Calogero-Moser cellular charac-
ters coincide with the Leclerc-Miyachi ones: this seems rather complicated but it
should be at least possible to check if the Leclerc-Miyachi constructible characters
satisfy the analogous properties with respect to the b-invariant.
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