Constructible characters and b-invariant

Cédric Bonnafé*

Abstract

If W is a finite Coxeter group and φ is a weight function, Lusztig has defined φ -constructible characters of W, as well as a partition of the set of irreducible characters of W into Lusztig φ -families. We prove that every Lusztig φ -family contains a unique character with minimal b-invariant, and that every φ -constructible character has a unique irreducible constituent with minimal b-invariant. This generalizes Lusztig's result about *special characters* to the case where φ is not constant. This is compatible with some conjectures of Rouquier and the author about *Calogero-Moser families* and *Calogero-Moser cellular characters*.

Let (W,S) be a finite Coxeter system and let $\varphi:S\to\mathbb{R}_{>0}$ be a weight function that is, a map such that $\varphi(s)=\varphi(t)$ whenever s and t are conjugate in W. Associated with this datum, G. Lusztig has defined [Lu3, §22] a notion of constructible characters of W: it is conjectured that a character is constructible if and only if it is the character afforded by a Kazhdan-Lusztig left cell (defined using the weight function φ). These constructible characters depend heavily on φ so we will call them the φ -constructible characters of W: the set of φ -constructible characters will be denoted by $\mathrm{Cons}_{\varphi}^{\mathrm{Lus}}(W)$. We will also define a graph $\mathcal{G}_{W,\varphi}^{\mathrm{Lus}}$ as follows: the vertices of $\mathcal{G}_{W,\varphi}^{\mathrm{Lus}}$ are the irreducible characters and two irreducible characters χ and χ' are joined in this graph if there exists a φ -constructible character γ of W such that χ and χ' both occur as constituents of γ . The connected components of $\mathcal{G}_{W,\varphi}^{\mathrm{Lus}}$ (viewed as subsets of $\mathrm{Irr}(W)$) will be called the $\mathrm{Lusztig} \ \varphi$ -families: the set of Lusztig φ -families will be denoted by $\mathrm{Fam}_{\varphi}^{\mathrm{Lus}}(W)$. If $\mathcal{F} \in \mathrm{Fam}_{\varphi}^{\mathrm{Lus}}(W)$, we denote

Communicated by M. Van den Bergh.

2010 Mathematics Subject Classification: 20F55; 20C08.

Key words and phrases : Coxeter groups, *b*-invariant, families, cellular characters.

^{*}The author is partly supported by the ANR (Project No ANR-12-JS01-0003-01 ACORT) Received by the editors in December 2013.

by $Cons_{\varphi}^{Lus}(\mathcal{F})$ the set of φ -constructible characters of W all of whose irreducible components belong to \mathcal{F} .

On the other hand, using the theory of rational Cherednik algebras at t=0 and the geometry of the Calogero-Moser space associated with (W,φ) , R. Rouquier and the author (see [BoRo1] and [BoRo2]) have defined a notion of *Calogero-Moser \varphi-cells* of W, a notion of *Calogero-Moser \varphi-cellular characters* of W (whose set is denoted by $\operatorname{Cell}_{\varphi}^{\operatorname{CM}}(W)$) and a notion of *Calogero-Moser \varphi-families* (whose set is denoted by $\operatorname{Fam}_{\varphi}^{\operatorname{CM}}(W)$).

Conjecture (see [BoRo1], [BoRo2] and [GoMa]). With the above notation,

$$\operatorname{Cons}_{\varphi}^{\operatorname{Lus}}(W) = \operatorname{Cell}_{\varphi}^{\operatorname{CM}}(W) \quad \textit{and} \quad \operatorname{Fam}_{\varphi}^{\operatorname{Lus}}(W) = \operatorname{Fam}_{\varphi}^{\operatorname{CM}}(W)$$

for every weight function $\varphi: S \to \mathbb{R}_{>0}$.

The statement about families in this conjecture holds for classical Weyl groups thanks to a case-by-case analysis relying on [Lu3, §22] (for the computation of Lusztig φ -families), [GoMa] (for the computation of Calogero-Moser φ -families in type A and B) and [Be2] (for the computation of the Calogero-Moser φ -families in type D). It also holds whenever |S|=2 (see [Lu3, §17 and Lemma 22.2] and [Be1, §6.10]).

The statement about constructible characters is much more difficult to establish, as the computation of Calogero-Moser φ -cellular characters is at that time out of reach. It has been proved whenever the Caloger-Moser space associated with (W, S, φ) is smooth [BoRo2, Theorem 14.4.1] (this includes the cases where (W, S) is of type A, or of type B for a large family of weight functions: in all these cases, the φ -constructible characters are the irreducible ones). It has also been checked by the author whenever |S| = 2 or (W, S) is of type B_3 (unpublished).

Our aim in this paper is to show that this conjecture is compatible with properties of the *b*-invariant (as defined below). With each irreducible character χ of W is associated its *fake degree* $f_{\chi}(\mathbf{t})$, using the invariant theory of W (see for instance [BoRo2, Definition 1.5.7]). Let us denote by b_{χ} the valuation of $f_{\chi}(\mathbf{t})$: b_{χ} is called the *b-invariant* of χ . Let r_{χ} denote the coefficient of $\mathbf{t}^{b_{\chi}}$ in $f_{\chi}(\mathbf{t})$. In other words,

$$r_{\chi} \in \mathbb{N}^*$$
 and $f_{\chi}(\mathbf{t}) \equiv r_{\chi} \mathbf{t}^{b_{\chi}} \mod \mathbf{t}^{b_{\chi}+1}$.

For instance, $b_1 = 0$ and b_{ε} is the number of reflections of W (here, $\varepsilon : W \to \{1, -1\}$ denotes the sign character). Also, $b_{\chi} = 1$ if and only if χ is an irreducible constituent of the canonical reflection representation of W. The following result is proved in [BoRo2, Theorems 9.6.1 and 12.3.14]:

Theorem CM. Let $\varphi: S \to \mathbb{R}_{>0}$ be a weight function. Then:

(a) If $\mathcal{F} \in \operatorname{Fam}_{\varphi}^{\operatorname{CM}}(W)$, then there exists a unique $\chi_{\mathcal{F}} \in \mathcal{F}$ with minimal b-invariant. Moreover, $r_{\chi_{\mathcal{F}}} = 1$.

(b) If $\gamma \in \operatorname{Cell}_{\varphi}^{\operatorname{CM}}(W)$, then there exists a unique irreducible constituent χ_{γ} of γ with minimal b-invariant. Moreover, $r_{\chi_{\gamma}} = 1$.

The next theorem is proved in [Lu2, Theorem 5.25 and its proof] (see also [Lu1] for the first occurrence of the *special* representations):

Theorem (Lusztig). *Assume that* φ *is constant. Then:*

- (a) If $\mathcal{F} \in \operatorname{Fam}_{\varphi}^{\operatorname{Lus}}(W)$, then there exists a unique $\chi_{\mathcal{F}} \in \mathcal{F}$ with minimal b-invariant $(\chi_{\mathcal{F}} \text{ is called the } \operatorname{special } \operatorname{character } \operatorname{of } \mathcal{F})$. Moreover, $r_{\chi_{\mathcal{F}}} = 1$.
- (b) If $\gamma \in \mathsf{Cons}^{\mathsf{Lus}}_{\varphi}(\mathcal{F})$, then $\chi_{\mathcal{F}}$ is an irreducible constituent of γ (and, of course, among the irreducible constituents of γ , $\chi_{\mathcal{F}}$ is the unique one with minimal b-invariant). Moreover, $\langle \gamma, \chi_{\mathcal{F}} \rangle = 1$.

It turns out that, for general φ , there might exist Lusztig φ -families \mathcal{F} such that no element of \mathcal{F} occurs as an irreducible constituent of *all* the φ -constructible characters in $\operatorname{Cons}_{\varphi}^{\operatorname{Lus}}(\mathcal{F})$ (this already occurs in type B_3 , and the reader can also check this fact in type F_4 , using the tables given by Geck [Ge, Table 2]). Nevertheless, we will prove in this paper the following result, which is compatible with the above conjecture and the above theorems:

Theorem L. Let $\varphi: S \to \mathbb{R}_{>0}$ be a weight function. Then:

- (a) If $\mathcal{F} \in \operatorname{Fam}_{\varphi}^{\operatorname{Lus}}(W)$, then there exists a unique $\chi_{\mathcal{F}} \in \mathcal{F}$ with minimal b-invariant. Moreover, $r_{\chi_{\mathcal{F}}} = 1$.
- (b) If $\gamma \in \mathsf{Cons}^{\mathsf{Lus}}_{\varphi}(W)$, then there exists a unique irreducible constituent χ_{γ} of γ with minimal b-invariant. Moreover, $r_{\chi_{\gamma}} = 1$ and $\langle \gamma, \chi \rangle = 1$.

The proof of Theorem CM is general and conceptual, while our proof of Theorem L goes through a case-by-case analysis, based on Lusztig's description of φ -constructible characters and Lusztig φ -families [Lu3, §22].

REMARK 0 - As the only irreducible Coxeter systems affording possibly unequal parameters are of type $I_2(2m)$, F_4 or B_n , and as $r_\chi=1$ for any character χ in these groups, the statement " $r_\chi=1$ " in Theorem L(a) and (b) follows immediately from Lusztig's Theorem. Therefore, we will prove only the statements about the minimality of the b-invariant and the scalar product.

Acknowledgements. We wish to thank N. Jacon for pointing out a mistake in a preliminary version of this work.

1 Proof of Theorem L

1.A Reduction

It is easily seen that the proof of Theorem L may be reduced to the case where (W, S) is irreducible. If W is of type A_n , D_n , E_6 , E_7 , E_8 , H_3 or H_4 , then φ is necessarily constant and Theorem L follows immediately from Lusztig's Theorem. If W is dihedral, then Theorem L is easily checked using [Lu3, §17 and Lemma 22.2]. If W is of type F_4 , then Theorem L follows from inspection of [Ge, Table 2]. Therefore, this shows that we may, and we will, assume that W is of type B_n , with $n \ge 2$. Write $S = \{t, s_1, s_2, \ldots, s_{n-1}\}$ in such a way that the Dynkin diagram of (W, S) is

Write $b = \varphi(t)$ and $a = \varphi(s_1) = \varphi(s_2) = \cdots = \varphi(s_{n-1})$. If $b \notin a\mathbb{N}^*$, then $\operatorname{Cons}_{\varphi}^{\operatorname{Lus}}(W) = \operatorname{Irr}(W)$ (see [Lu3, Proposition 22.25]) and Theorem L becomes obvious. So we may assume that b = ra with $r \in \mathbb{N}^*$, and since the notions are unchanged by multiplying φ by a positive real number, we may also assume that a = 1. Therefore:

Hypothesis and notation. From now on, and until the end of this section, we assume that the Coxeter system (W,S) is of type B_n , with $n \ge 2$, that $S = \{t, s_1, s_2, \ldots, s_{n-1}\}$ is such that the Dynkin diagram of (W,S) is given by (#) and that $\varphi(t) = r\varphi(s_1) = r\varphi(s_2) = \cdots = r\varphi(s_{n-1}) = r$ with $r \in \mathbb{N}^*$.

We will now review the combinatorics introduced by Lusztig (symbols, admissible involutions,...) in order to compute families and constructible characters in type B_n (see [Lu3, §22] for further details).

1.B Admissible involutions

Let $l \ge 0$ and let Z be a totally ordered set of size 2l + r. We will define by induction on l what is an r-admissible involution of Z. Let $\iota : Z \to Z$ be an involution. Then ι is said r-admissible if it has r fixed points and, if $l \ge 1$, there exist two consecutive elements b and c of Z such that $\iota(b) = c$ and the restriction of ι to $Z \setminus \{b,c\}$ is r-admissible.

Note that, if ι is an r-admissible involution and if $\iota(b) = c > b$ and $\iota(z) = z$, then z < b or z > c (this is easily proved by induction on |Z|).

1.C Symbols

We will denote by $\operatorname{Sym}_k(r)$ the set of *symbols* $\Lambda = \begin{pmatrix} \beta \\ \gamma \end{pmatrix}$ where $\beta = (\beta_1 < \beta_2 < \cdots < \beta_{k+r})$ and $\gamma = (\gamma_1 < \gamma_2 < \cdots < \gamma_k)$ are increasing sequences of *non-zero* natural numbers. We set

$$|\Lambda| = \sum_{i=1}^{k+r} (\beta_i - i) + \sum_{j=1}^{k} (\gamma_j - j)$$

and
$$\mathbf{b}(\Lambda) = \sum_{i=1}^{k+r} (2k + 2r - 2i)(\beta_i - i) + \sum_{j=1}^{k} (2k + 1 - 2j)(\gamma_j - j).$$

The number $\mathbf{b}(\Lambda)$ will be called the \mathbf{b} -invariant of Λ . For simplifying our arguments, we will define

$$\nabla_{k,r} = \sum_{i=1}^{k+r} (2k + 2r - 2i)i + \sum_{j=1}^{k} (2k + 1 - 2j)j$$

so that

$$\mathbf{b}(\Lambda) = \sum_{i=1}^{k+r} (2k + 2r - 2i)\beta_i + \sum_{j=1}^{k} (2k + 1 - 2j)\gamma_j - \nabla_{k,r}.$$

By abuse of notation, we denote by $\beta \cap \gamma$ the set $\{\beta_1, \beta_2, \dots, \beta_{k+r}\} \cap \{\gamma_1, \gamma_2, \dots, \gamma_k\}$ and by $\beta \cup \gamma$ the set $\{\beta_1, \beta_2, \dots, \beta_{k+r}\} \cup \{\gamma_1, \gamma_2, \dots, \gamma_k\}$. We also set $\beta \dotplus \gamma = (\beta \cup \gamma) \setminus (\beta \cap \gamma)$.

We now define

$$\mathbf{z}'(\Lambda) = (\beta_1, \beta_2, \dots, \beta_r, \gamma_1, \beta_{r+1}, \gamma_2, \beta_{r+2}, \dots, \gamma_k, \beta_{r+k})$$

and we will write

$$\mathbf{z}'(\Lambda) = (z_1'(\Lambda), z_2'(\Lambda), \cdots, z_{2k+r}'(\Lambda)),$$

so that

$$\mathbf{b}(\Lambda) = \sum_{i=1}^{r} (2k + 2r - 2i) z_i'(\Lambda) + \sum_{i=r+1}^{2k+r} (2k + r - i) z_i'(\Lambda) - \nabla_{k,r}$$

$$= \sum_{i=1}^{r} (r - i) z_i'(\Lambda) + \sum_{i=1}^{2k+r} (2k + r - i) z_i'(\Lambda) - \nabla_{k,r}$$

$$= \sum_{i=1}^{r-1} \left(\sum_{j=1}^{i} z_j'(\Lambda)\right) + \sum_{i=1}^{2k+r-1} \left(\sum_{j=1}^{i} z_j'(\Lambda)\right) - \nabla_{k,r}.$$

1.D Families of symbols

We denote by $\mathbf{z}(\Lambda)$ the sequence $z_1 \leqslant z_2 \leqslant \cdots \leqslant z_{2k+r}$ obtained after rewriting the sequence $(\beta_1, \beta_2, \dots, \beta_{k+r}, \gamma_1, \gamma_2, \dots, \gamma_k)$ in non-decreasing order.

REMARK 1 - Note that the sequence $\mathbf{z}'(\Lambda)$ determines the symbol Λ , contrarily to the sequence $\mathbf{z}(\Lambda)$. However, $\mathbf{z}(\Lambda)$ determines completely $|\Lambda|$ thanks to the formula $|\Lambda| = \sum_{z \in \mathbf{z}(\Lambda)} z - r(r+1)/2 - (k+r)(k+r+1)/2$.

We say that two symbols $\Lambda = \begin{pmatrix} \beta \\ \gamma \end{pmatrix}$ and $\Lambda' = \begin{pmatrix} \beta' \\ \gamma' \end{pmatrix}$ in $\mathbf{Sym}_k(r)$ are in the same family if $\mathbf{z}(\Lambda) = \mathbf{z}(\Lambda')$. Note that this is equivalent to say that $\beta \cap \gamma = \beta' \cap \gamma'$ and $\beta \cup \gamma = \beta' \cup \gamma'$. If \mathcal{F} is the family of Λ , we set $X_{\mathcal{F}} = \beta \cap \gamma$ and $Z_{\mathcal{F}} = \beta \dotplus \gamma$: note that $X_{\mathcal{F}}$ and $Z_{\mathcal{F}}$ depend only on \mathcal{F} (and not on the particular choice of $\Lambda \in \mathcal{F}$).

If ι is an r-admissible involution of $Z_{\mathcal{F}}$, we denote by \mathcal{F}_{ι} the set of symbols $\Lambda = \begin{pmatrix} \beta \\ \gamma \end{pmatrix}$ in \mathcal{F} such that $|\beta \cap \omega| = 1$ for all ι -orbits ω .

1.E Lusztig families, constructible characters

Let $\Lambda \in \mathbf{Sym}_k(r)$ be such that $|\Lambda| = n$. Let $\mathrm{Bip}(n)$ be the set of bipartitions of n. We set

$$\lambda_1(\Lambda) = (\beta_{k+r} - (k+r) \geqslant \cdots \geqslant \beta_2 - 2 \geqslant \beta_1 - 1),$$

$$\lambda_2(\Lambda) = (\gamma_k - k \geqslant \cdots \geqslant \gamma_2 - 2 \geqslant \gamma_1 - 1)$$

and

$$\lambda(\Lambda) = (\lambda_1(\Lambda), \lambda_2(\Lambda)).$$

Then $\lambda(\Lambda)$ is a bipartition of n. We denote by χ_{Λ} the irreducible character of W denoted by $\chi_{\lambda(\Lambda)}$ in [Lu3, §22] or in [GePf, §5.5.3]. Then [GePf, §5.5.3]

$$(\diamondsuit)$$
 $b_{\chi_{\Lambda}} = \mathbf{b}(\Lambda).$

With these notations, Lusztig described the φ -constructible characters in [Lu3, Proposition 22.24], from which the description of Lusztig φ -families follows by using [Lu3, Lemma 22.22]:

Theorem 2 (Lusztig). Let \mathcal{F}_{Lus} be a Lusztig φ -family and let $\gamma \in Cons_{\varphi}^{Lus}(\mathcal{F}_{Lus})$. If we choose k sufficiently large, then:

(a) There exists a family \mathcal{F} of symbols in $\mathbf{Sym}_k(r)$ such that

$$\mathcal{F}_{Lus} = \{ \chi_{\Lambda} \mid \Lambda \in \mathcal{F} \}.$$

(b) There exists an r-admissible involution ι of $Z_{\mathcal{F}}$ such that

$$\gamma = \sum_{\Lambda \in \mathcal{F}_i} \chi_{\Lambda}.$$

If
$$\Lambda = \begin{pmatrix} \beta \\ \gamma \end{pmatrix}$$
, we set $\Lambda^{\#} = \begin{pmatrix} \beta \setminus (\beta \cap \gamma) \\ \gamma \setminus (\beta \cap \gamma) \end{pmatrix}$.

Definition 3. The symbol Λ is said special if $\mathbf{z}(\Lambda^{\#}) = \mathbf{z}'(\Lambda^{\#})$.

REMARK 4 - According to Remark 1, there is a unique special symbol in each family. It will be denoted by $\Lambda_{\mathcal{F}}$. Note also that, if Λ , Λ' belong to the same family, then $|\Lambda| = |\Lambda'|$.

Now, Theorem L follows from Theorem 2, Formula (\diamondsuit) and the following next Theorem:

Theorem 5. Let \mathcal{F} be a family of symbols in $\mathbf{Sym}_k(r)$, let ι be an r-admissible involution of $Z_{\mathcal{F}}$ and let $\Lambda \in \mathcal{F}$. Then:

- (a) $\mathbf{b}(\Lambda) \geqslant \mathbf{b}(\Lambda_{\mathcal{F}})$ with equality if and only if $\Lambda = \Lambda_{\mathcal{F}}$.
- (b) There is a unique symbol $\Lambda_{\mathcal{F},\iota}$ in \mathcal{F}_{ι} such that, if $\Lambda \in \mathcal{F}_{\iota}$, then $\mathbf{b}(\Lambda) \geqslant \mathbf{b}(\Lambda_{\mathcal{F},\iota})$, with equality if and only if $\Lambda = \Lambda_{\mathcal{F},\iota}$.

The rest of this section is devoted to the proof of Theorem 5.

1.F First reduction

First, assume that $X_{\mathcal{F}} \neq \emptyset$. Let $b \in X_{\mathcal{F}}$ and let $\Lambda = \binom{\beta}{\gamma} \in \mathcal{F}$. Then $b \in \beta \cap \gamma = X_{\mathcal{F}}$ and we denote by $\beta[b]$ the sequence obtained by removing b to β . Similarly, let $\Lambda[b] = \binom{\beta[b]}{\gamma[b]}$. Then $\Lambda[b] \in \mathbf{Sym}_{k-1}(r)$ and

$$(\heartsuit) \quad \mathbf{b}(\Lambda) = \mathbf{b}(\Lambda[b]) + \nabla_{k,r} - \nabla_{k-1,r} + b\Big(4k + 2r + 1 - \sum_{\substack{z \in \mathbf{z}(\Lambda) \\ z \leqslant b}} 2\Big) + 2\sum_{\substack{z \in \mathbf{z}(\Lambda) \\ z < b}} z.$$

Proof of (\heartsuit) . Let i_0 and j_0 be such that $\beta_{i_0} = b$ and $\gamma_{j_0} = b$. Then

$$\mathbf{b}(\Lambda) - \mathbf{b}(\Lambda[b]) = \nabla_{k,r} - \nabla_{k-1,r} + (2k + 2r - 2i_0)b + \sum_{i=1}^{i_0-1} 2\beta_i + (2k + 1 - 2j_0)b + \sum_{i=1}^{j_0-1} 2\gamma_j.$$

But the numbers β_1 , β_2 ,..., β_{i_0} , γ_1 , γ_2 ,..., γ_{j_0} are exactly the elements of the sequence $\mathbf{z}(\Lambda)$ which are $\leq b$. So

$$i_0 + j_0 = \sum_{\substack{z \in \mathbf{z}(\Lambda) \\ z \leqslant b}} 1$$

and

$$\sum_{i=1}^{i_0-1} \beta_i + \sum_{j=1}^{j_0-1} \gamma_j = \sum_{\substack{z \in \mathbf{z}(\Lambda) \\ z < b}} z.$$

This shows (\heartsuit) .

Now, the family of $\Lambda[b]$ depends only on the family of Λ (and not on Λ itself): indeed, $\mathbf{z}(\Lambda[b])$ is obtained from $\mathbf{z}(\Lambda)$ by removing the two entries equal to b. We will denote by $\mathcal{F}[b]$ the family of $\Lambda[b]$. Moreover, $Z_{\mathcal{F}[b]} = Z_{\mathcal{F}}$ and the map $\Lambda \mapsto \Lambda[b]$ induces a bijection between \mathcal{F} and $\mathcal{F}[b]$, and also induces a bijection between \mathcal{F}_t and $\mathcal{F}[b]_t$.

On the other hand, the formula (\heartsuit) shows that the difference between $\mathbf{b}(\Lambda)$ and $\mathbf{b}(\Lambda[b])$ depends only on b and \mathcal{F} , so proving Theorem 5 for the pair (\mathcal{F},ι) is equivalent to proving Theorem 5 for the pair $(\mathcal{F}[b],\iota)$. By applying several times this principle if necessary, this means that we may, and we will, assume that

$$X_{\mathcal{F}} = \emptyset$$
.

1.G Proof of Theorem 5(a)

First, note that $\mathbf{z}(\Lambda) = \mathbf{z}(\Lambda_{\mathcal{F}}) = \mathbf{z}'(\Lambda_{\mathcal{F}})$ (the last equality follows from the fact that $\Lambda_{\mathcal{F}}$ is special and $X_{\mathcal{F}} = \emptyset$). As $\mathbf{z}'(\Lambda)$ is a permutation of the non-decreasing sequence $\mathbf{z}'(\Lambda_{\mathcal{F}})$, we have

$$\sum_{j=1}^{i} z_{j}'(\Lambda) \geqslant \sum_{j=1}^{i} z_{j}'(\Lambda_{\mathcal{F}})$$

for all $i \in \{1, 2, \dots, 2k + r\}$. So, it follows from (\clubsuit) that

$$\mathbf{b}(\Lambda) - \mathbf{b}(\Lambda_{\mathcal{F}}) = \sum_{i=1}^{r-1} \left(\sum_{j=1}^{i} \left(z_j'(\Lambda) - z_j'(\Lambda_{\mathcal{F}}) \right) \right) + \sum_{i=1}^{2k+r-1} \left(\sum_{j=1}^{i} \left(z_j'(\Lambda) - z_j'(\Lambda_{\mathcal{F}}) \right) \right).$$

So $\mathbf{b}(\Lambda) \geqslant \mathbf{b}(\Lambda_{\mathcal{F}})$ with equality only whenever $\sum_{j=1}^{i} z_{j}'(\Lambda) = \sum_{j=1}^{i} z_{j}'(\Lambda_{\mathcal{F}})$ for all $i \in \{1, 2, ..., 2k + r\}$. The proof of Theorem 5(a) is complete.

1.H Proof of Theorem 5(b)

We denote by $f_r < \cdots < f_1$ the elements of $Z_{\mathcal{F}}$ which are fixed by ι . We also set $f_{r+1} = 0$ and $f_0 = \infty$. As ι is r-admissible, the set $Z_{\mathcal{F}}^{(d)} = \{z \in Z_{\mathcal{F}} \mid f_{d+1} < z < f_d\}$ is ι -stable and contains no ι -fixed point (for $d \in \{0, 1, \ldots, r\}$). Let $k_d = |Z_{\mathcal{F}}^{(d)}|/2$ and let ι_d be the restriction of ι to $Z_{\mathcal{F}}^{(d)}$. Then ι_d is a 0-admissible involution of $Z_{\mathcal{F}}^{(d)}$.

and let
$$\iota_d$$
 be the restriction of ι to $Z_{\mathcal{F}}^{(d)}$. Then ι_d is a 0-admissible involution of $Z_{\mathcal{F}}^{(d)}$. If $\Lambda = \begin{pmatrix} \beta \\ \gamma \end{pmatrix} \in \mathcal{F}_{\iota}$, we set $\beta^{(d)} = \beta \cap Z_{\mathcal{F}}^{(d)}$, $\gamma^{(d)} = \gamma \cap Z_{\mathcal{F}}^{(d)}$ and $\Lambda^{(d)} = \begin{pmatrix} \beta^{(d)} \\ \gamma^{(d)} \end{pmatrix}$.

Then $\Lambda^{(d)} \in \mathbf{Sym}_{k_d}(0)$ and, if $\mathcal{F}^{(d)}$ denotes the family of $\Lambda^{(d)}$, then $\Lambda^{(d)} \in \mathcal{F}^{(d)}_{l_d}$.

Now, if
$$\Lambda' = \begin{pmatrix} \beta' \\ \gamma' \end{pmatrix} \in \mathbf{Sym}_{k'}(0)$$
, we set

$$\mathbf{b}_d(\Lambda') = \sum_{i=1}^{k'} (2k' + 2d - 2i)\beta_i' + \sum_{j=1}^{k'} (2k' + 1 - 2j)\gamma_j'.$$

The number $\mathbf{b}_d(\Lambda')$ is called the \mathbf{b}_d -invariant of Λ' . It then follows from the definition of \mathbf{b} and $\nabla_{k,r}$ that

$$(\spadesuit) \quad \mathbf{b}(\Lambda) = \sum_{d=0}^{r} \mathbf{b}_{d}(\Lambda^{(d)}) - \nabla_{k,r} + \sum_{d=1}^{r} 2(k_{0} + k_{1} + \dots + k_{d-1}) \Big(f_{d} + \sum_{z \in Z^{(d)}} z \Big).$$

Since the map

$$\begin{array}{ccc}
\mathcal{F}_{\iota} & \longrightarrow & \prod_{d=0}^{r} \mathcal{F}_{\iota_{d}}^{(d)} \\
\Lambda & \longmapsto & (\Lambda^{(0)}, \Lambda^{(1)}, \dots, \Lambda^{(d)})
\end{array}$$

is bijective and since $\mathbf{b}(\Lambda) - \sum_{d=0}^{r} \mathbf{b}_{d}(\Lambda^{(d)})$ depends only on (\mathcal{F}, ι) and not on Λ (as shown by the formula (\spadesuit)), Theorem 5(b) will follow from the following lemma :

Lemma 6. There exists a unique symbol in $\mathcal{F}_{l_d}^{(d)}$ with minimal \mathbf{b}_d -invariant.

The proof of Lemma 6 will be given in the next section.

2 Minimal b_d -invariant

For simplifying notation, we set $Z = Z_{\mathcal{F}}^{(d)}$, $l = k_d$, $\mathcal{G} = \mathcal{F}^{(d)}$ and $j = \iota_d$. Let us write $Z = \{z_1, z_2, \ldots, z_{2l}\}$ with $z_1 < z_2 < \cdots < z_{2l}$. Recall from the previous section that j is a 0-admissible involution of Z.

2.A Construction

We will define by induction on $l \ge 0$ a symbol $\Lambda_j^{(d)}(Z) \in \mathcal{G}_j$. If l = 0, then $\Lambda_j^{(d)}(Z)$ is obviously empty. So assume now that, for any set of non-zero integers Z' of order 2(l-1), for any 0-admissible involution j' of Z' and any $d' \ge 0$, we have

defined a symbol $\Lambda_{j'}^{(d')}(Z')$. Then $\Lambda_{j}^{(d)}(Z) = \begin{pmatrix} \beta_{j}^{(d)}(Z) \\ \gamma_{j}^{(d)}(Z) \end{pmatrix}$ is defined as follows: let $Z' = Z \setminus \{z_1, \iota(z_1)\}, j'$ the restriction of j to Z' and let

$$d' = \begin{cases} d - 1 & \text{if } d \geqslant 1, \\ 1 & \text{if } d = 0. \end{cases}$$

Then |Z'|=2(l-1) and j' is 0-admissible. So $\Lambda_{j'}^{(d')}(Z')=\begin{pmatrix} \beta_{j'}^{(d')}(Z')\\ \gamma_{j'}^{(d')}(Z') \end{pmatrix}$ is well-defined by the induction hypothesis. We then set

$$\beta_{J}^{(d)}(Z) = \begin{cases} \beta_{J'}^{(d')}(Z') \cup \{z_1\} & \text{if } d \geq 1, \\ \beta_{J'}^{(d')}(Z') \cup \{J(z_1)\} & \text{if } d = 0, \end{cases}$$

and

$$\gamma_{j}^{(d)}(Z) = \begin{cases} \gamma_{j'}^{(d')}(Z') \cup \{j(z_{1})\} & \text{if } d \geqslant 1, \\ \gamma_{j'}^{(d')}(Z') \cup \{z_{1}\} & \text{if } d = 0. \end{cases}$$

Then Lemma 6 is implied by the next lemma:

Lemma 6⁺. Let $\Lambda \in \mathcal{G}_{J}$. Then $\mathbf{b}_{d}(\Lambda) \geqslant \mathbf{b}_{d}(\Lambda_{J}^{(d)}(Z))$ with equality if and only if $\Lambda = \Lambda_{J}^{(d)}(Z)$.

The rest of this section is devoted to the proof of Lemma 6^+ . We will first prove Lemma 6^+ whenever $d \in \{0,1\}$ using Lusztig's Theorem. We will then turn to the general case, which will be handled by induction on l = |Z|/2. We fix $\Lambda = {\beta \choose \gamma} \in \mathcal{G}_l$.

2.B Proof of Lemma 6^+ whenever d=1

Let z be a natural number strictly bigger than all the elements of Z. Let $\tilde{\Lambda} = \begin{pmatrix} \beta \cup \{z\} \\ \gamma \end{pmatrix} \in \operatorname{Sym}_k(1)$. Then $\mathbf{b}_1(\Lambda) = \mathbf{b}(\tilde{\Lambda}) + C$, where C depends only on Z. Let $\tilde{\Lambda}_0 = \begin{pmatrix} z_1, z_3, \dots, z_{2l-1}, z \\ z_2, \dots, z_{2l} \end{pmatrix}$. Since j is 0-admissible, it is easily seen that, if $j(z_i) = z_j$, then j - i is odd. So $\tilde{\Lambda}_0 \in \mathcal{G}_j$. But, by [Lu1, §5], $\mathbf{b}(\tilde{\Lambda}) \geqslant \mathbf{b}(\tilde{\Lambda}_0)$ with equality if and only if $\tilde{\Lambda} = \tilde{\Lambda}_0$. So it is sufficient to notice that $\Lambda_j^{(1)}(Z) = \tilde{\Lambda}_0$, which is easily checked.

2.C Proof of Lemma 6^+ whenever d=0

Assume in this subsection, and only in this subsection, that d=0 or 1. We denote by $\Lambda^{\mathrm{op}}=\begin{pmatrix} \gamma \\ \beta \end{pmatrix} \in \mathcal{G}_J$. It is readily seen from the construction that $\Lambda_J^{(0)}(Z)^{\mathrm{op}}=\Lambda_J^{(1)}(Z)$ and that

$$\mathbf{b}_1(\Lambda) = \mathbf{b}_0(\Lambda^{\mathrm{op}}) + \sum_{z \in \mathcal{I}} z.$$

So Lemma 6^+ for d = 0 follows from Lemma 6^+ for d = 1.

2.D Proof of Lemma 6^+ whenever $d \ge 2$

Assume now, and until the end of this section, that $d \ge 2$. We will prove Lemma 6^+ by induction on l = |Z|/2. The result is obvious if l = 0, as well as if l = 1. So we assume that $l \ge 2$ and that Lemma 6^+ holds for $l' \le l - 1$. Write $j(z_1) = z_{2m}$, where $m \le l$ (note that $j(z_1) \notin \{z_1, z_3, z_5, \dots, z_{2l-1}\}$ since j is 0-admissible).

Assume first that m < l. Then Z can we written as the union $Z = Z^+ \cup Z^-$, where $Z^+ = \{z_1, z_2, \ldots, z_{2m}\}$ and $Z^- = \{z_{2m+1}, z_{2m+2}, \ldots, z_{2l}\}$ are \jmath -stable (since \jmath is 0-admissible). If $\varepsilon \in \{+, -\}$, let \jmath^ε denote the restriction of \jmath to Z^ε , let $\beta^\varepsilon = \beta \cap Z^\varepsilon$, $\gamma^\varepsilon = \gamma \cap Z^\varepsilon$ and $\Lambda^\varepsilon = \begin{pmatrix} \beta^\varepsilon \\ \gamma^\varepsilon \end{pmatrix}$, and let \mathcal{G}^ε denote the family of Λ^ε . Then it is easily seen that $\Lambda^\varepsilon \in \mathcal{G}^\varepsilon_{\jmath^\varepsilon}$, that $\mathbf{b}_d(\Lambda) - (\mathbf{b}_d(\Lambda^+) + \mathbf{b}_d(\Lambda^-))$ depends only on (\mathcal{G}, \jmath) and that $\Lambda^{(d)}_{\jmath}(Z)^\varepsilon = \Lambda^{(d)}_{\jmath^\varepsilon}(Z^\varepsilon)$. By the induction hypothesis, $\mathbf{b}_d(\Lambda^\varepsilon) \geqslant \mathbf{b}_d(\Lambda^{(d)}_{\jmath^\varepsilon}(Z^\varepsilon))$ with equality if and only if $\Lambda^\varepsilon = \Lambda^{(d)}_{\jmath^\varepsilon}(Z^\varepsilon)$. So the result follows in this case. This means that we may, and we will, work under the following hypothesis:

Hypothesis. From now on, and until the end of this section, we assume that $j(z_1) = z_{2l}$.

As in the construction of $\Lambda_j^{(d)}(Z)$, let $Z' = Z \setminus \{z_1, z_{2l}\} = \{z_2, z_3, \dots, z_{2l-1}\}$, let j' denote the restriction of j to Z' and let

$$d' = \begin{cases} d - 1 & \text{if } d \geqslant 1, \\ 1 & \text{if } d = 0. \end{cases}$$

Then |Z'|=2(l-1) and j' is 0-admissible. Let $\Lambda'=\binom{\beta'}{\gamma'}$ where $\beta'=\beta\setminus\{z_1,z_{2l}\}$ and $\gamma'=\gamma\setminus\{z_1,z_{2l}\}$. Since $d\geqslant 2$, we have $z_1\in\beta_j^{(d)}(Z)$ and $z_{2l}\in\gamma_j^{(d)}(Z)$. This implies that

$$(\bigstar) \qquad \mathbf{b}_{d}(\Lambda_{j}^{(d)}(Z)) = \mathbf{b}_{d-1}(\Lambda_{j'}^{(d-1)}(Z')) + z_{2l} + 2(l+d)z_{1} + 2\sum_{z \in Z'} z.$$

If $z_1 \in \beta$, then $\Lambda = \Lambda_j^{(d)}(Z)$ if and only if $\Lambda' = \Lambda_{j'}^{(d')}(Z')$ and again

$$\mathbf{b}_d(\Lambda) = \mathbf{b}_{d-1}(\Lambda') + z_{2l} + 2(l+d)z_1 + 2\sum_{z \in Z'} z.$$

So the result follows from (\bigstar) and from the induction hypothesis. This means that we may, and we will, assume that $z_1 \in \gamma$. In this case,

$$\mathbf{b}_d(\Lambda) = \mathbf{b}_{d+1}(\Lambda') + 2dz_{2l} + (2l+1)z_1.$$

Then it follows from (\bigstar) that

$$\mathbf{b}_{d}(\Lambda) - \mathbf{b}_{d}(\Lambda_{j}^{(d)}(Z)) = \\ \mathbf{b}_{d+1}(\Lambda') - \mathbf{b}_{d-1}(\Lambda_{j'}^{(d-1)}(Z')) + (2d-1)(z_{2l} - z_{1}) - 2\sum_{z \in Z'} z.$$

So, by the induction hypothesis,

$$\mathbf{b}_{d}(\Lambda) - \mathbf{b}_{d}(\Lambda_{j}^{(d)}(Z)) \geqslant \mathbf{b}_{d+1}(\Lambda_{j'}^{(d+1)}(Z')) - \mathbf{b}_{d-1}(\Lambda_{j'}^{(d-1)}(Z')) + (2d-1)(z_{2l}-z_{1}) - 2\sum_{z \in Z'} z.$$

Since $z_{2l} - z_1 > z_{2l-1} - z_2$, it is sufficient to show that

$$(?) \quad \mathbf{b}_{d+1}(\Lambda_{j'}^{(d+1)}(Z')) - \mathbf{b}_{d-1}(\Lambda_{j'}^{(d-1)}(Z')) \geqslant -(2d-1)(z_{2l-1}-z_2) + 2\sum_{z \in Z'} z.$$

This will be proved by induction on the size of Z'. First, if $j(z_2) < z_{2l-1}$, then we can separate Z' into two j'-stable subsets and a similar argument as before allows to conclude thanks to the induction hypothesis.

So we assume that $j'(z_2) = z_{2l-1}$. Let $Z'' = Z' \setminus \{z_2, z_{2l-1}\}$ and let j'' denote the restriction of j' to Z''. Since $z_2 \in \beta_{j'}^{(d+1)}(Z')$, we can apply (\bigstar) one step further to get

$$\begin{split} \mathbf{b}_{d+1}(\Lambda_{j'}^{(d+1)}(Z')) - \mathbf{b}_{d-1}(\Lambda_{j'}^{(d-1)}(Z')) \\ &= \mathbf{b}_{d}(\Lambda_{j''}^{(d)}(Z'') + z_{2l-1} + 2(l+d)z_{2} + 2\sum_{z \in Z''} z \\ &- (\mathbf{b}_{d-2}(\Lambda_{j''}^{(d-2)}(Z'')) + z_{2l-1} + 2(l+d-2)z_{2} + 2\sum_{z \in Z''} z) \\ &= \mathbf{b}_{d}(\Lambda_{j''}^{(d)}(Z'')) - \mathbf{b}_{d-2}(\Lambda_{j''}^{(d-2)}(Z'')) + 4z_{2}. \end{split}$$

So, by the induction hypothesis,

$$\mathbf{b}_{d+1}(\Lambda_{j'}^{(d+1)}(Z')) - \mathbf{b}_{d-1}(\Lambda_{j'}^{(d-1)}(Z'))$$

$$\geqslant -(2d-3)(z_{2l-2} - z_3) + 2\sum_{z \in Z''} z + 4z_2$$

$$\geqslant -(2d-3)(z_{2l-1} - z_2) + 2\sum_{z \in Z'} z + 2z_2 - 2z_{2l-1}$$

$$= -(2d-1)(z_{2l-1} - z_2) + 2\sum_{z \in Z'} z,$$

as desired. This shows (?) and completes the proof of Lemma 6^+ .

3 Complex reflection groups

If W is a complex reflection group, then R. Rouquier and the author have also defined *Calogero-Moser cellular characters* and *Calogero-Moser families* (see [BoRo1] or [BoRo2]). If W is of type G(l,1,n) (in Shephard-Todd classification), then Leclerc and Miyachi [LeMi, §6.3] proposed, in link with canonical bases of $U_v(\mathfrak{sl}_\infty)$ -modules, a family of characters that could be a good analogue of constructible characters: let us call them the *Leclerc-Miyachi constructible characters* of G(l,1,n). If l=2, then they coincide with constructible characters [LeMi, Theorem 10].

Of course, it would be interesting to know if Calogero-Moser cellular characters coincide with the Leclerc-Miyachi ones: this seems rather complicated but it should be at least possible to check if the Leclerc-Miyachi constructible characters satisfy the analogous properties with respect to the *b*-invariant.

Références

- [Be1] G. Bellamy, Generalized Calogero-Moser spaces and rational Cherednik algebras, PhD thesis, University of Edinburgh (2010).
- [Be2] G. Bellamy, The Calogero-Moser partition for G(m,d,n), Nagoya Math. J. **207** (2012), 47-77.
- [BoRo1] C. Bonnafé & R. Rouquier, Calogero-Moser versus Kazhdan-Lusztig cells, *Pacific J. Math.* **261** (2013), 45-51.
- [BoRo2] C. BONNAFÉ & R. ROUQUIER, Cellules de Calogero-Moser, preprint (2013), arXiv:1302.2720.
- [Ge] M. GECK, Computing Kazhdan-Lusztig cells for unequal parameters *J. Algebra* **281** (2004) 342-365.
- [GePf] M. GECK & G. PFEIFFER, *Characters of finite Coxeter groups and Iwahori-Hecke algebras*, London Mathematical Society Monographs, New Series **21**, The Clarendon Press, Oxford University Press, New York, 2000, xvi+446 pp.
- [GoMa] I. G. GORDON & M. MARTINO, Calogero-Moser space, restricted rational Cherednik algebras and two-sided cells, *Math. Res. Lett.* **16** (2009), 255-262.
- [LeMi] B. LECLERC & H. MIYACHI, Constructible characters and canonical bases, *J. Algebra* **277** (2004), 298-317.
- [Lu1] G. Lusztig, A class of irreducible representations of a Weyl group, *Indag. Math.* **41** (1979), 323-335.
- [Lu2] G. Lusztig, *Characters of reductive groups over a finite field*, Annals of Mathematical Studies, **107**. Princeton University Press, Princeton, NJ, 1984, xxi+384 pp.

[Lu3] G. Lusztig, *Hecke algebras with unequal parameters*, CRM Monograph Series **18**, American Mathematical Society, Providence, RI (2003), 136 pp.

Institut Montpelliérain Alexander Grothendieck (CNRS: UMR 5149), Université Montpellier 2, Case Courrier 051, Place Eugène Bataillon, 34095 MONTPELLIER Cedex, FRANCE email:cedric.bonnafe@umontpellier.fr