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Abstract

Embedding Calculus, as described by Weiss, is a calculus of functors,
suitable for studying contravariant functors from the poset of open subsets
of a smooth manifold M, denoted O(M), to a category of topological spaces
(of which the functor Emb(−, N) for some fixed manifold N is a prime exam-
ple). Polynomial functors of degree k can be characterized by their restriction
to Ok(M), the full subposet of O(M) consisting of open sets which are a dis-
joint union of at most k components, each diffeomorphic to the open unit
ball. In this work, we replace Ok(M) by more general subposets and see that
we still recover the same notion of polynomial cofunctor.

1 Introduction

In [8], Weiss develops manifold calculus, a variation on Goodwillie’s calculus of
homotopy functors in [4]. Manifold calculus studies contravariant topological
space-valued functors on the poset of open subsets of a manifold M. Manifold
calculus is especially good for studying spaces of smooth embeddings of one
manifold into another by looking at the functor Emb(−, N) for a fixed manifold
N, which is the apparent motivation behind [8]. The main goal of this work is to
generalize Weiss’ characterization of polynomial cofunctors.

Being a calculus of functors, manifold calculus has a notion of polynomial
cofunctor. These are the cofunctors which satisfy an appropriate higher-order ex-
cision property, similar to the case of [4]. Weiss is able to characterize
degree k polynomial cofunctors as follows. Let O be the poset of open sets of a
d-dimensional manifold M, and let Ok be the full subposet of O whose objects are
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disjoint unions of at most k components, each diffeomorphic to R
d. Weiss calls ob-

jects of Ok special open sets. Then a degree k polynomial cofunctor F : O → Top
is determined (up to equivalence) by its restriction to Ok. The main result in this
paper (Theorem 6.12) is a statement that generalizes this characterization of a
k-polynomial cofunctor by its restriction to a subposet Bk of Ok. The objects of
Bk are simply disjoint unions of the objects of B1. As long as the objects of B1,
form a basis for the topology of M, then no homotopy theoretic information is
lost when forming the polynomial approximation to a cofunctor using Bk instead
of Ok (Corollary 6.3 and Corollary 6.13).

We now give a brief outline of this work. In Section 2, we quickly go over
some of the conventions and basic notions from homotopy theory that we will
need. Then, in Section 3 and Section 4, we briefly introduce Manifold Calculus,
summarizing some of the main results of Weiss. We define Ok(M), the special
open sets of Weiss mentioned earlier. We recall Weiss’ construction of polynomial
cofunctors as suitable extensions of cofunctors defined only on Ok(M).

In Section 5, we recall and prove some fairly general results about functors
from any category C to Top. Then, in Section 6, we generalize the notion of special
open set as mentioned earlier. Namely, we let Bk(M) be full subposets of Ok(M)
which still contain enough open sets so that we lose no information when we
develop the analogous theory. The primary example of interest here occurs when
M is a smooth codimension zero submanifold of R

d, and Bk(M) contains all open
sets which are disjoint unions of at most k open balls (in the euclidean metric
sense).

We prove the analogs of several results of Weiss in this more general setting,
adding in a few details as well. Most proofs go through with very little change,
but one notable exception is Theorem 4.1, where having all of Ok as special open
sets is crucial to his proof. Then we prove the main result (Theorem 6.12) that any
valid choice (as described above) of special open sets yields equivalent notions of
polynomial cofunctors and polynomial approximation by polynomial cofunctors.

Acknowledgements. This work comes from part of my doctoral thesis, which
was written at the University of Virginia under the supervision of Gregory Arone,
to whom I am very grateful for his continued encouragement and advice. Addi-
tional work was done while at the Université Catholique de Louvain.

2 Conventions

In this section, we introduce some conventions and recall some basic notions from
homotopy theory. We work in the category of weak Hausdorff compactly gener-
ated topological spaces, which we denote Top. For topological spaces X and Y,
we let Map(X, Y) denote the space of maps (continuous functions) from X to Y,
with the compact-open topology.

If p : E → B is a map of (unbased) topological spaces, its mapping path space,
mps(p), is defined to be the subspace

mps(p) = {(e, ϕ) ∈ E × Map(I, B) | ϕ(0) = p(e)}
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of E × Map(I, B). Any such map can be factored as

E → mps(p) → B.

The lefthand map sends a point e ∈ E to the point (e, constp(e)), where constp(e)

denotes the constant path at p(e); this map is a homotopy equivalence. The right-
hand map sends a point (e, ϕ) ∈ mps(p) to the point ϕ(1) ∈ B; this map is a
fibration.

Let C be a small category, and suppose F : C → Top is a functor. Along the
lines of [1], we write srep(F) to denote the simplicial replacement of F, a simpli-
cial space whose geometric realization gives the homotopy colimit of F. Dually,
we let crep(F) be the cosimplicial replacement of F, a cosimplicial space whose
totalization gives the homotopy limit of F. In this work, geometric realization and
totalization will mean homotopy invariant geometric realization and totalization.

3 Manifold Calculus Preliminaries

Let M be a d-dimensional smooth manifold without boundary. Define
O = O(M) to be the poset of open subsets of M, considered as a category.
If V is an open subset of M, let O(V) be the full subposet of O whose objects
are contained in V. Equivalently, we can think of O(V) as the comma category
(O(M) ↓ V).

Definition 3.1. A cofunctor F from a subcategory of O to Top will be called
an isotopy cofunctor if F takes all inclusions which are isotopy equivalences to
homotopy equivalences. A cofunctor F : O → Top will be called good if it satis-
fies the following conditions:

(a) F is an isotopy cofunctor.

(b) If V0 → V1 → · · · is a string of inclusions in O, then the natural map

F

(
∞⋃

i=0

Vi

)
→ holim

i
F(Vi)

is a homotopy equivalence.

Example 3.2. For a fixed manifold N, Proposition 1.4 in [8] shows that the
cofunctors Emb(−, N) and Imm(−, N) are good, where Emb and Imm denote
the spaces of smooth embeddings and immersions, respectively.

Let V be an open subset of M, and let C0, . . . , Ck be pairwise disjoint closed
subsets of V. For S ⊆ {0, . . . , k}, let

VS = V \
⋃

i∈S

Ci =
⋂

i∈S

(V \ Ci) .

We thus have a (k + 1)-cube of spaces S 7→ F(VS). We say that this cube is homo-
topy cartesian if the natural map

F(V) → holim
S 6=∅

F(VS)
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is a homotopy equivalence. For example, if k = 1 this becomes the requirement
that

F(V = V∅) //

��

F(V{0})

��
F(V{1}) // F(V{0,1})

is a homotopy pullback square. See [3] for more background on cubical diagrams
of spaces.

Definition 3.3. A good cofunctor F is polynomial of degree ≤ k if for any choices
of V and C0, . . . , Ck, the (k + 1)-cube S 7→ F(VS) is homotopy cartesian.

Example 3.4. Example 2.3 in [8] shows that Imm(−, N) is linear (polynomial of
degree ≤ 1) if dim M < dim N, or if dim M = dim N and M has no compact
components.

4 Polynomial Cofunctors and the Taylor Tower

Let Ok be the full subposet of O consisting of those open sets which are diffeo-
morphic to a disjoint union of at most k copies of R

d. Weiss calls these special
open sets and shows [8] that k-polynomial cofunctors are determined by their
restriction to Ok. More precisely, we have the following.

Theorem 4.1 ([8], 5.1). If F, G : O → Top are polynomial cofunctors of degree ≤ k,
and γ : F → G is a natural transformation such that γV : F(V) → G(V) is a homotopy
equivalence for all V ∈ Ok, then γV is a homotopy equivalence for all V ∈ O.

Moreover, Weiss shows [8] that any (isotopy) cofunctor Ok → Top has a
canonical extension to a k-polynomial cofunctor O → Top. We introduce some
notation and then give the result.

Notation 4.2. Let N be a subposet of O. If F is a cofunctor from N → Top, then
define F! : O → Top to be the homotopy right Kan extension of F along the
inclusion functor N → O. An explicit formula given on objects is:

F!(V) = holim
U∈N (V)

F(U).

Theorem 4.3 ([8], 3.8 and 4.1). If F : Ok → Top is an isotopy cofunctor, then
F! : O → Top is (good and) polynomial of degree ≤ k.

Combining these two results leads to the notion of the polynomial approxi-
mation of a cofunctor. Specifically, for F : O(M) → Top a good cofunctor, Weiss
defines the degree k polynomial approximation to F, written TkF, by the formula
TkF = (F|Ok

)!. That is, TkF is obtained by first restricting F to Ok(M), then by
extending it back to all of O(M). Thus, Tk is an endofunctor on the category of
good cofunctors O(M) → Top.
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The polynomial approximations to F fit into a tower:

...

��
T2F

��
T1F

��
F

GG
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

// T0F

called the Taylor tower of F. The vertical maps TkF → Tk−1F come from applying
Tk to the natural map F → Tk−1F and then observing that TkTk−1 is naturally
equivalent to Tk−1.

5 Categorical Lemmas

Definition 5.1. A map p : E → B is a quasifibration if for all e ∈ E, the canonical
inclusion of the fiber of p over p(e) into the homotopy fiber of p over p(e) is a
weak homotopy equivalence.

Notation 5.2. If C is a category, then we write |C| for the classifying space of C,
that is, for the geometric realization of the nerve of C.

Theorem 5.3 (Quillen-Dwyer Theorem). Let C be a small category, and let F : C →
Top be a functor which sends all morphisms to homotopy equivalences. Then the projec-
tion p : hocolim F → |C| is a quasifibration. Moreover, if p′ : mps(p) → |C| is the
associated fibration, then holim F is equivalent to the space of sections of p′.

The quasifibration statement of this result is due to Quillen in [5], and the
identification of the homotopy limit of F with the space of sections of the associ-
ated fibration is due to Dwyer in [2].

Lemma 5.4. Let D be a small category, and let C be a subcategory of D. Let F : D →
Top be a functor taking all morphisms to homotopy equivalences. If the inclusion |C| →֒
|D| is a homotopy equivalence, then so is the map

holim
D

F → holim
C

F|C .

Proof. Let p : hocolimC F|C → |C| and q : hocolimD F → |D| be the projections.



94 D. Pryor

Consider the diagram

hocolim
C

F|C
≃ //

��

mps(p)
p′

//

��

|C|

��
hocolim

D
F ≃ // mps(q)

q′
// |D| .

By Theorem 5.3, p and q are quasifibrations, and in this diagram, we have (func-
torially) factored these maps through their mapping path spaces as homotopy
equivalences followed by fibrations. The map of homotopy limits will be a ho-
motopy equivalence if the associated map of section spaces, Γq′ → Γp′ is also.
This will be the case if both of the right two vertical maps are homotopy equiv-
alences. The righthand one is by hypothesis, and the middle one will be if the
lefthand one is.

Choose a basepoint in |C|, a 0-simplex corresponding to some object c. Then
the fiber of the map

p : hocolim
C

F|C → |C| ≃ hocolim
C

∗

can be taken to be just F(c). See this by looking at the induced map of simplicial
replacements, then observing that we get the constant simplicial space F(c) as the
fiber. So now we have a map of quasifibration sequences

F(c) //

��

hocolim
C

F|C
p

//

��

|C|

��
F(c) // hocolim

D
F

q
// |D|

Again, the righthand map is a homotopy equivalence, and the lefthand map can
be assumed to be the identity (again looking at simplicial replacements). The
choice of basepoint was arbitrary (arbitrary enough, as we have at least one for
each path component of |C|), so the middle map is also a homotopy equivalence,
and the lemma is proved.

Lemma 5.5. Let C0 →֒ C1 →֒ C2 →֒ · · · be an increasing inclusion of small categories,
and call their union C. Let F : C → Top be a functor and denote its restriction to Ci by
Fi . Then the natural map

holim
C

F → holim
i

holim
Ci

Fi,

is a homotopy equivalence.
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Proof. We can view this as a map of totalizations of cosimplicial spaces:

Tot(crep F) → holim
i

Tot(crep Fi).

But totalization commutes with homotopy limits (since for example, Tot X ≃
holim∆ X by [1]). So this becomes the map

Tot(crep F) → Tot(holim
i

crep Fi).

On the righthand side, crep Fi is the diagram

crep(F0)
0 +3 crep(F0)

1 ❴*4
oo · · ·ks

crep(F1)
0 +3

OO

crep(F1)
1 ❴*4

oo

OO

· · ·ks

· · ·

OO

· · ·

OO

So, after interchanging the totalization with the homotopy limit, we are now
taking homotopy limits in the vertical direction first, then the totalization of the
resulting cosimplicial space second. But the vertical maps are all fibrations (pro-
jections onto subproducts in fact), so we can just take ordinary limits. But note
that in codegree q, this limit is just crep(F)q.

Let C be a small category, and let F : C → Cat be a functor. The Grothendieck
construction is a new category C

∫
F (alternatively F ⋊ C) whose objects are pairs

(c, x) where c is an object of C, and x is an object of F(c). A morphism (c, x) →
(c′, x′) is a pair ( f , g), where f : c → c′ is a morphism in C, and g : F( f )(x) → x′

is a morphism in F(c′). If ( f , g) : (c, x) → (c′, x′) and ( f ′, g′) : (c′, x′) → (c′′, x′′)
are morphisms, the composite ( f ′, g′) ◦ ( f , g) is defined to be

( f ′, g′) ◦ ( f , g) = ( f ′ ◦ f , g′ ◦ F( f ′)(g)) : (c, x) → (c′′, x′′).

Example 5.6. If C is a group G (as a category with one object), and F takes the
object of C to another group H in Cat, then we can consider F as a group homo-
morphism ϕ : G → Aut(H). In this case, the Grothendieck construction recovers
the usual semidirect product H ⋊ϕ G.

Thomason [7] proves the following.

Theorem 5.7 (Thomason’s homotopy colimit theorem). For C and F as above, there
is a natural homotopy equivalence

∣∣∣∣C
∫

F

∣∣∣∣ ≃ hocolim
c∈C

|F(c)|
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6 Special Open Sets

We are now ready to tackle our main goal. Namely, we would like to characterize
k-polynomial cofunctors by their restriction to some smaller class of special open
sets than all of Ok. We can do this provided that we leave enough special open
sets in place. More precisely, for each k ≥ 0, let Bk be a full subposet of Ok

satisfying each of the following conditions:

(a) The objects of B1 form a basis for the topology of M.

(b) The objects of Bk are exactly those which are a union of at most k pairwise
disjoint objects of B1.

Note that the second condition implies that each Bk contains the empty set as one
of its objects. Also note that once B1 is chosen, the rest of the Bk are determined
automatically. Now let Ak be the wide subposet (same objects, but possibly fewer
morphisms) of Bk with the weaker order where U ≤ V if the inclusion of U into
V is an isotopy equivalence.

Example 6.1. One possible choice for Bk is Ok itself. This is the case that Weiss
considers in [8], where he uses the notation Ok instead. In this example, our Ak

is exactly Weiss’ Ik.

Example 6.2. If M is given as a smooth codimension zero submanifold of R
d,

then we can take Bk to be the subsets of M which are unions of at most k pairwise
disjoint open balls (with respect to the euclidean metric), or cubes, simplices, or
convex d-bodies more generally.

First, we can very easily strengthen Weiss’ characterization of polynomial
cofunctors by considering their restriction to Bk as follows.

Corollary 6.3. Let F1 and F2 be good cofunctors from O → Top, both polynomial of
degree ≤ k. If γ : F1 → F2 is a natural map such that γV : F1(V) → F2(V) is a
homotopy equivalence for all V ∈ Bk, then it is a homotopy equivalence for all V ∈ O.

Proof. Let V ∈ Ok. Then there is a U ∈ Bk such that the inclusion of U into V is
an isotopy equivalence. We get a commutative square,

F1(V) //

γV

��

F1(U)

γU

��
F2(V) // F2(U).

The top and bottom maps are induced by isotopy equivalences, so are themselves
homotopy equivalences since F1 and F2 are good. And γU is a homotopy equiv-
alence by assumption, so therefore γV is a homotopy equivalence as well. Then
Theorem 4.1 implies that γV is in fact a homotopy equivalence for all V ∈ O.
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Remark 6.4. The rest of the development of this section mimics that of Weiss, but
in slightly more generality. Still, this development is logically independent from
[8]. However, the previous characterization of polynomial cofunctors appealed
directly to Weiss’ result. His proof (Theorem 5.1 in [8]) relied on using all of Ok in
a critical way; it does not seem that the argument can be made valid when using
some arbitrary choice for Bk.

Notation 6.5. Let X be a topological space. Let C(X, k) denote the (ordered) con-
figuration space of k points in X. That is,

C(X, k) =
{
(x1, . . . , xk) ∈ Xk | xi 6= xj for i 6= j

}
,

with the subspace topology. Let (X
k ) denote the unordered configuration space of

k points in X. That is, the quotient of C(X, k) by the (free) action of the symmetric
group Σk which permutes coordinates.

The following result is the analog of Lemma 3.5 in [8]. This proof is based on
that of Weiss, but treats the case for general j all at once.

Proposition 6.6.

|Ak(M)| ≃
k

∐
j=0

(
M

j

)
.

Proof. First, note that Ak is a disjoint union

Ak =
k

∐
j=0

A(j),

where A(j) is the full subposet of Aj consisting of the objects with exactly j com-

ponents. Thus it suffices to show that
∣∣∣A(k)

∣∣∣ ≃ (M
k ). For k = 0, this is trivial; now

let k be a positive integer.

Define the space W to be the subspace of
∣∣∣A(k)

∣∣∣× (M
k ) consisting of all points

(x, y) where x is in the interior of a nondegenerate r-simplex corresponding to
the string V0 → · · · → Vr, and each component of Vr contains exactly one point
of y. We claim W is an open set. To see this, fix a point (x, y) as above, and let

A be the subset of
∣∣∣A(k)

∣∣∣ consisting of all interiors of simplices which correspond

to nondegenerate strings U0 → · · · → Us which contain V0 → · · · → Vr as
a substring. Note that A is an open set since it is a union of open cells, and
whenever an s-cell is in A, then every (s + 1)-cell having it as a face is also in A.
And now (x, y) ∈ A × Vr ⊆ W, so W is open.

Since W is open, it follows that the projections from W to each factor are almost
locally trivial in the sense of [6]. By a theorem of Segal [6], if each fiber of an al-
most locally trivial map is contractible, then the map is a homotopy
equivalence. So if we can show each fiber of each projection is contractible, then
we have proved the lemma.
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First, the fiber over any point of
∣∣∣A(k)

∣∣∣ will be diffeomorphic to R
kd. Second,

fix a y ∈ (M
k ), and let Wy be the fiber of the projection at y, considered as a sub-

space of
∣∣∣A(k)

∣∣∣. Thus Wy is the union of the interiors of simplices corresponding

to nondegenerate strings V0 → · · · → Vr, where each component of Vr contains
exactly one point from y. Consider the subspace W ′

y of Wy to be the union of the
interiors of only those simplices for which each component of V0 contains exactly
one point from y.

Note that W ′
y is homeomorphic to the classifying space of the full subposet of

A(k) consisting of all objects which contain exactly one point of y in each compo-
nent. Since the objects of A1 form a basis for the topology of M, this subposet is
codirected, and hence its classifying space is contractible by [5]. Thus W ′

y ≃ ∗,

and we finish the proof of the lemma by showing that W ′
y is a deformation retract

of Wy.
Consider a nondegenerate string V0 → · · · → Vr with each component of Vr

containing one point of y. Let q be the smallest index such that each component

of Vq contains one point of y. Let ∆ be the r-simplex in
∣∣∣A(k)

∣∣∣ corresponding to

V0 → · · · → Vr. Note that a point x ∈ ∆ with barycentric coordinates (x0, . . . , xr)
is in Wy iff xq, . . . , xr are not all 0. For each such x ∈ ∆ ∩ Wy, let x be the point in
∆ ∩ W ′

y with coordinates

(0, . . . , 0, xq, . . . , xr)

xq + · · ·+ xr
.

We now define a homotopy H : Wy × I → Wy piecewise on (the appropriate part
of) each simplex ∆ by the formula H(x, t) = (1 − t)x + tx.

This is tentatively a deformation retraction of Wy onto W ′
y, but we must still

verify that H is well-defined; the given formula must agree on the intersection of
simplices in Wy. So, suppose x ∈ ∆ has coordinates (x0, . . . , xr) and corresponds
to the string V0 → · · · → Vr, and x′ ∈ ∆′ has coordinates (x′0, . . . , x′r′) and cor-
responds to the string V ′

0 → · · · → V ′
r′ . Suppose further that x and x′ represent

the same point in Wy. That is, their corresponding strings share a (necessarily
nonempty) maximal substring

Vi0 → · · · → Vis
= V ′

i′0
→ · · · → V ′

i′s
.

Furthermore, the only nonzero entries of (x0, . . . , xr) are xi0 , . . . , xis
, the only

nonzero entries of (x′0, . . . , x′r′) are x′
i′0

, . . . , x′
i′s

, and xij
= xi′j

for all 0 ≤ j ≤ s.

Note that when defining the formula for x, we could have equivalently chosen q
to be the smallest index for which y ∈ Vq and xq 6= 0. With this in mind, we see
that x and x′ represent the same point, and so we are done.

Notation 6.7. For p ≥ 0, let Ak(Bk)p = Ak(Bk)p(M) be the category whose
objects are strings of p composable morphisms in Bk, V0 → · · · → Vp, and
whose morphisms are natural transformations of such diagrams whose compo-
nent maps all lie in Ak.

The next result is the analog of 3.6 and 3.7 in [8].
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Lemma 6.8. The homotopy fiber (over some 0-simplex W) of the map
∣∣Ak(Bk)p(M)

∣∣ → |Ak(M)|

induced by the functor sending (V0 → · · · → Vp) 7→ Vp is
∣∣Ak(Bk)p−1(W)

∣∣.
Furthermore, the functor

∣∣Ak(Bk)p(−)
∣∣ : O(M) → Top takes isotopy equivalences

to homotopy equivalences.

Proof. The proof is by induction on p. First consider the case p = 0. Note that
|Ak(Bk)0(U)| is just |Ak(U)|, which by Proposition 6.6 is homotopy equivalent

to ∐
k
0 (

U
j ). Thus if U → U′ is an isotopy equivalence in O(M), then the induced

map (U
j ) → (U′

j ) is a homotopy equivalence for each j.

Now for p > 0, the Grothendieck construction gives us an isomorphism of
categories

Ak(Bk)p(M) ∼= Ak(M)
∫

Ak(Bk)p−1(−)

V0 → · · · → Vp ↔ (Vp, V0 → · · · → Vp−1).

Combining this with Thomason’s homotopy colimit theorem (Theorem 5.7), we
get a homotopy equivalence

hocolim
V∈Ak(M)

∣∣Ak(Bk)p−1(V)
∣∣ ≃

∣∣Ak(Bk)p(M)
∣∣ .

The map in question then corresponds to the usual projection of the homo-
topy colimit (which we take to be the usual representation as the realization of
the appropriate simplicial replacement) to the nerve of the indexing category.
By the induction hypothesis and Theorem 5.3, this map is a quasifibration, so
the homotopy fiber we are interested in has the same homotopy type as the ac-
tual fiber of this map. By the proof of Lemma 5.4, this fiber can be taken to be∣∣Ak(Bk)p−1(W)

∣∣, as we needed to show.
For the second part of the lemma, let V → V ′ be an isotopy equivalence in

O(M). We have a map of quasifibration sequences

∣∣Ak(Bk)p−1(W)
∣∣ //

��

∣∣Ak(Bk)p(V)
∣∣ //

��

|Ak(V)|

��∣∣Ak(Bk)p−1(W)
∣∣ //

∣∣Ak(Bk)p(V
′)
∣∣ //

∣∣Ak(V
′)
∣∣

The lefthand vertical map can be taken to be the identity, and the righthand
vertical map is a homotopy equivalence as mentioned above. Therefore, so is
the middle vertical map.

Let F : Bk → Top be an isotopy cofunctor. Define Fp : Ak(Bk)p → Top by

Fp(U0 → · · · → Up) = Fp(U0). Define F!
p : O → Top as:

F!
p(V) = holim

Ak(Bk)p(V)
Fp.
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Lemma 6.9. F!
p is a good cofunctor.

Proof. For part (a) of goodness, let V → V ′ be an isotopy equivalence in O. Since
Fp takes all morphisms to homotopy equivalences, then by Lemma 5.4 it suffices
to show that the inclusion

∣∣Ak(Bk)p(V)
∣∣ →֒

∣∣Ak(Bk)p(V ′)
∣∣ is a homotopy equiv-

alence, and it is by Lemma 6.8.
For part (b) of goodness, let V0 → V1 → · · · be a string in O. We need to show

that the map

F!
p

(
⋃

i

Vi

)
→ holim

i
F!

p(Vi)

is a homotopy equivalence. Rewrite and factor this as

holim
Ak(Bk)p(

⋃
Vi)

Fp → holim⋃
Ak(Bk)p(Vi)

Fp → holim
i

holim
Ak(Bk)p(Vi)

Fp.

The right map is a homotopy equivalence by Lemma 5.5. Furthermore, if we can
show that the inclusion

∣∣∣∣∣
⋃

i

Ak(Bk)p(Vi)

∣∣∣∣∣ →֒
∣∣∣∣∣Ak(Bk)p

(
⋃

i

Vi

)∣∣∣∣∣

is a homotopy equivalence, then Lemma 5.4 would imply that the left map is a
homotopy equivalence as well.

Note that the nerve of a union is the same as the union of nerves. First, if
p = 0, we have the inclusion

⋃

i

|Ak(Vi)| →֒

∣∣∣∣∣Ak

(
⋃

i

Vi

)∣∣∣∣∣ ,

which by Proposition 6.6 is the same as the map

⋃

i

k

∐
j=0

(
Vi

j

)
→֒

k

∐
j=0

(⋃
i Vi

j

)
.

This is actually a homeomorphism since the union and coproduct commute, and
since the configuration spaces in question are selecting only a finite number of
points. For the p > 0 case, consider the inclusion of homotopy fibration
sequences over some base point W in some Ak(Vi).

∣∣Ak(Bk)p−1(W)
∣∣ //

⋃

i

∣∣Ak(Bk)p(Vi)
∣∣ //

��

⋃

i

|Ak(Vi)|

��

∣∣Ak(Bk)p−1(W)
∣∣ //

∣∣∣∣∣Ak(Bk)p

(
⋃

i

Vi

)∣∣∣∣∣
//

∣∣∣∣∣Ak

(
⋃

i

Vi

)∣∣∣∣∣

The righthand map is a homotopy equivalence by the p = 0 case above, so the
middle map is as well.
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Lemma 6.10. For any V ∈ O, the projection

Tot(p 7→ F!
p(V)) → F!(V)

is a homotopy equivalence.

Proof. Let (Ak)qBk = (Ak)qBk(M) be the category whose objects are strings of
q composable morphisms in Ak, and whose morphisms are natural transforma-
tions of such diagrams with component maps in Bk. Now, the domain of the
projection can be thought of as a totalization of a totalization (of the cosimplicial
replacement of Fp). We can switch the order of the totalizations and rewrite the

domain as Tot(q 7→ F̂!
q(V)), where F̂q : (Ak)qBk(V) → Top is the functor send-

ing U0 → · · · → Uq 7→ F(U0). Thus, if the map F̂!
q(V) → F!(V) is a homotopy

equivalence for each q, then so will the original map be.
We can write this map as the map

holim
(Ak)qBk(V)

F̂q → holim
Bk(V)

F

which is induced by the inclusion functor J : Bk(V) → (Ak)qBk(V) sending
U 7→ U → · · · → U. We claim that J is homotopy terminal. That is, for any
U0 → · · · → Uq ∈ (Ak)qBk(V), the comma category (U0 → · · · → Uq ↓ J) is
nonempty and contractible. This follows since the comma category has an intial
object, namely Uq → · · · → Uq. Therefore, the induced map of homotopy limits
is a homotopy equivalence, and this proves the lemma.

Theorem 6.11. F! is a good cofunctor.

Proof. Let V → V ′ be an isotopy equivalence in O. By the previous lemma, the
horizontal maps in the square

Tot(p 7→ F!
p(V)) ≃ // F!(V)

Tot(p 7→ F!
p(V

′)) ≃ //

OO

F!(V ′)

OO

are homotopy equivalences, so showing the righthand map is a homotopy equiv-
alence for part (a) of goodness is equivalent to showing so for for the lefthand
map. In codegree p, the lefthand map is just the map F!

p(V
′) → F!

p(V), which

is a homotopy equivalence since F!
p is good. So the overall map of totalizations

is a homotopy equivalence since the underlying map of cosimplicial spaces is a
homotopy equivalence in each codegree.

For part (b) of goodness, let V0 → V1 → · · · be a string in O. Similarly, to
show that the map

F!

(
⋃

i

Vi

)
→ holim

i
F!(Vi)
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is a homotopy equivalence, it suffices to show that the map

Tot

[
p 7→ F!

p

(
⋃

i

Vi

)]
→ holim

i
Tot
[

p 7→ F!
p(Vi)

]

is one. But the homotopy limit and totalization commute, so this is really a map
of totalizations of cosimplicial spaces which in codegree p is the map

F!
p

(
⋃

i

Vi

)
→ holim

i
F!

p(Vi).

And again, this is a homotopy equivalence since F!
p is good.

We come to our main result.

Theorem 6.12. Suppose {Bk} and
{
B′

k

}
are two choices of special open sets with B′

1 ⊆
B1 (which implies that B′

k ⊆ Bk as well). Let F : Bk → Top be an isotopy cofunctor,

and let G denote its restriction to B′
k. Then the map F!(V) → G!(V) is a homotopy

equivalence for all V ∈ O.

Proof. Let V ∈ O. By a similar argument as before, it suffices to check that the
map F!

p(V) → G!
p(V) is a homotopy equivalence for all p. And by Lemma 5.4, it is

enough to check that the inclusion
∣∣A′

k(B
′
k)p(V)

∣∣ →֒
∣∣Ak(Bk)p(V)

∣∣ is a homotopy
equivalence. Note that if p = 0, then this is really the inclusion

∣∣A′
k(V)

∣∣ →֒
|Ak(V)|, and this is a homotopy equivalence by Proposition 6.6. If p > 0, choose
a basepoint W ∈

∣∣A′
k(V)

∣∣ and use Lemma 6.8 to get a diagram of homotopy
fibration sequences

∣∣A′
k(B

′
k)p−1(W)

∣∣ //

��

∣∣A′
k(B

′
k)p(V)

∣∣ //

��

∣∣A′
k(V)

∣∣

��∣∣Ak(Bk)p−1(W)
∣∣ //

∣∣Ak(Bk)p(V)
∣∣ // |Ak(V)|

The righthand vertical map is again the p = 0 case, so is a homotopy equivalence.
The lefthand vertical map can be assumed to be a homotopy equivalence by
induction on p. Therefore, the middle vertical map is a homotopy equivalence
as well, as we needed to show.

As an immediate corollary, we get a strengthening of Weiss’ construction of
polynomial cofunctors (Theorem 4.3).

Corollary 6.13. Let F be an isotopy cofunctor from Bk → Top. Then F! is polynomial
of degree ≤ k.

Proof. This follows from Theorem 4.3 and Theorem 6.12.
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[3] Thomas G. Goodwillie. Calculus. II. Analytic functors. K-Theory, 5(4):295–332,
1991/92.

[4] Thomas G. Goodwillie. Calculus. III. Taylor series. Geom. Topol., 7:645–711
(electronic), 2003.

[5] Daniel Quillen. Higher algebraic K-theory. In Proceedings of the Interna-
tional Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, pages 171–176.
Canad. Math. Congress, Montreal, Que., 1975.

[6] Graeme Segal. Classifying spaces related to foliations. Topology, 17(4):367–
382, 1978.

[7] R. W. Thomason. Homotopy colimits in the category of small categories.
Math. Proc. Cambridge Philos. Soc., 85(1):91–109, 1979.

[8] Michael Weiss. Embeddings from the point of view of immersion theory. I.
Geom. Topol., 3:67–101 (electronic), 1999.
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