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Abstract

This is a synthetic presentation of several barrelledness notions, in locally
convex algebras. These are characterized, as in locally convex spaces, via
(algebra) seminorms. This approach reveals a new notion of barrelledness.
The latter shows to be what is needed to have meaningful statements in
locally uniformly convex algebras.

1 Introduction

Besides the very classical barrelledness in locally convex algebras, as locally con-
vex spaces, several notions of a specific kind of barrelledness, pertaining to the al-
gebra structure, have been introduced, according to the context someone is work-
ing in. The aim of this paper is to give an idea of all of them. We, in particular,
provide characterizations and proceed to a complete comparison. The charac-
terizations are, naturally, given in terms of (algebra) seminorms, which are the
respective ones of vector space seminorms in locally convex spaces. All vector
spaces and algebras, considered here, are over the field C of complexes, while the
algebras are unital.

In Section 3, definitions are given by using a notation, which is helpful in
comparisons. In particular, we encounter the very classical barrelledness, the
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m-barrelledness (i-barrelledness of S. Warner), the infrabarrelledness of A.K. Chi-
lana and S. Sharma and a different one but under the same name according to
A. Mallios.

Section 4 deals with characterizations of these kinds of barrelledness. As in
locally convex spaces, the notions are naturally characterized via (algebra) semi-
norms (Propositions 4.1, 4.2 and 4.3). This leads to structural results. Thus, a
unital locally uniformly convex algebra being moreover, (B, mB)-barrelled is in
fact normable (Proposition 6.10).

Various examples are given in Section 5 to distinguish the different notions of
barrelledness. They are of different nature.

The (B, mB)-barrelledness seems to be new. We have never met it. It turns out
that it is the adequate tool in locally uniformly convex algebras (Proposition 6.9).
In the Mackey complete case, (B, mB)-barrelledness is sufficient (cf. Proposition
4.5).

2 Preliminaries

Let (E, τ) be a locally convex space. The bounded structure (bornology) of (E, τ),
denoted by Bτ, is the collection of all subsets B of E which are bounded in the
sense of Kolmogorov-von Neumann, namely B is absorbed by every neighbor-
hood of zero. We say that a locally convex space (E, τ) is Mackey complete
(M-complete) if its bounded structure Bτ admits a fundamental system B of Ba-
nach discs (“completent” discs) that is, for every B in B, the vector space gener-
ated by B is a Banach space when endowed with the gauge ‖.‖B of B (see [7, p. 95]
and [2, p. 402]).

For a reference to the bornological notions, we refer to [11]. We remind that
a locally convex space E is called barrelled, if every barrel in E (viz. absorbing,
balanced, convex and closed subset of E) is a neighborhood of zero (see e.g.
[12, p. 212, Definition 1] and [15, p. 9]). An m-barrel U of an algebra is a mul-
tiplicative (viz. UU ⊆ U ) barrel. The term idempotent barrel is also used instead of
m-barrel.

A topological algebra is an algebra E endowed with a topological vector space
topology τ for which multiplication is separately continuous. Let (E, τ) be a lo-
cally convex algebra with separately continuous multiplication, whose topology
τ is given by a family (pλ)λ∈Λ of seminorms; we use the notation (E, (pλ)λ∈Λ).
The algebra (E, τ) is said to be locally A-convex (see [6, p. 18, Definition 2.5]; see
also [4], [5]) if, for every x and every λ, there is M(x, λ) > 0 such that

max [pλ(xy), pλ(yx)] ≤ M(x, λ)pλ(y); for all y ∈ E.

If M(x, λ) = M(x) depends only on x, we say that (E, τ) is a locally uniformly
A-convex algebra [5, p. 477, Definition 3.1]. If

pλ(xy) ≤ pλ(x)pλ(y); for all x, y ∈ E, and all λ ∈ Λ,

then (E, τ) is called a locally m-convex algebra ([16], see also [15]). Recall that a
locally convex algebra has a continuous multiplication if, for every λ, there is a
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λ
′
such that

pλ(xy) ≤ p
λ
′ (x)p

λ
′ (y); for all x, y ∈ E.

If (E, (pλ)λ∈Λ) is a unital locally-A-convex algebra, then it can be endowed with a
stronger m-convex topology M(τ), where τ is the topology of E. The latter topology is
determined by the family (qλ)λ∈Λ of seminorms given by

qλ(x) = sup{pλ(xu) : pλ(u) ≤ 1}. (2.1)

If (E, (pλ)λ∈Λ) is not unital, consider its topological unitization E1 and then take
the restriction of M(τ1) to E (see Section 3 in [10]). A locally convex algebra is
said to be pseudo-complete if every closed bounded and idempotent (alias multi-
plicative) disc is completent.

An absolutely convex subset of a locally convex algebra (E, τ) is said to be bor-
nivorous (resp. m-bornivorous) if it absorbs every bounded (resp. m-bounded)
subset of (E, τ). A locally convex algebra (E, τ) is said to be barrelled (resp.
m-barrelled) if every barrel (resp. m-barrel) is a neighborhood of zero (the latter
class of locally convex algebras was introduced in [14]). Furthermore, a
locally convex algebra is called m-infrabarrelled in the sense of A.K. Chilana and
S. Sharma if every bornivorous m-barrel is a neighborhood of zero [3, p. 140].
In this paper, we also use the term of an m-infrabarrelled algebra in the sense of
A. Mallios, namely a locally convex algebra (E, τ) is said to be m-infrabarrelled
if every m-bornivorous m-barrel in E is a neighborhood of zero (see [15, p. 307,
Definition 9.4]). The unified terminology applied in Definition 3.1 below, enables
us to distinguish the last two aspects of m-infrabarrelledness.

3 Definitions and first comparisons

In this section, we provide relations between the six classes of locally convex
algebras that are characterized through barreldness and bornivority (see Defini-
tion 3.1). Throughout the paper, the letters B, m and B will be used for a barrel,
idempotence (multiplicativity) and bornivorousness, respectively. Moreover, all
spaces (resp. algebras) are locally convex ones. So, we use (B, 0) for barrels with-
out any property of bornivorousness, (B, B) for barrels which are bornivorous,
(mB, 0) for m-barrels without any property of bornivorousness, (mB, B) for bor-
nivorous m-barrels, (B, mB), to indicate m-bornivorous barrels, and (mB, mB) for
m-bornivorous m-barrels. We also make use of the following unified terminology.

Definition 3.1. We say that a locally convex algebra (E, (pλ)λ∈Λ) is
(i) A (B, 0)-barrelled algebra if it is a barrelled space (namely, every barrel is a

neighborhood of zero).
(ii) A (B, B)-barrelled algebra if every bornivorous barrel is a neighborhood of

zero.
(iii) An (mB, 0)-barrelled algebra, if every m-barrel is a neighborhood of zero.

This is i-barrelledness, in the sense of S. Warner [21, p. 192].
(iv) A (B, mB)-barrelled algebra if every m-bornivorous barrel is a neighbor-

hood of zero.
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(v) An (mB, B)-barrelled algebra if every bornivorous m-barrel is a neighbor-
hood of zero. This is m-infrabarrelledness in the sense of Chilana and Sharma.

(vi) An (mB, mB)-barrelled algebra if every m-bornivorous m-barrel is a neigh-
borhood of zero. This is m-infrabarrelledness in the sense of A. Mallios.

A study of m-infrabarrelledness, in the context of locally convex algebras has
been given in [10]. As a first step, we easily get the next.

Proposition 3.2. The following hold true.
(i) The class of (B, 0)-barreled algebras is contained in each one of the others.
(ii) (B, B)-barrelled algebras are (mB, B)-barrelled.
(iii) (mB, 0)-barrelled algebras are (mB, B)-barrelled and (mB, mB)-ones.
(iv) (B, mB)-barrelled algebras are (mB, mB), (mB, B) and (B, B)-barrelled.
(v) Any (mB, mB)-barrelled algebra is (mB, B)-barrelled.

Statement (v), in the previous proposition, amends a comment in [10, p. 474],
concerning the relation between (mB, mB)-barrelled algebras and (mB, B)-barrel-
led ones.

In Section 5, we give some examples of the topological algebras defined in
Proposition 3.2, as well as counter-examples that ensure, whose of them are not
identical to each other. We also give some examples of locally convex algebras
that do not belong to some of the classes, given in Definition 3.1. From (v) in the
previous proposition, the notion of an m-infrabarrelled algebra in Chilana and Sharma
sense is a generalization of that in the sense of Mallios. Examples 5.7 and 5.12 below,
ensure the distinction between these two notions.

The following diagram displays the relations between those classes of locally
convex algebras which are characterized via barreldness and bornivority, as in
Definition 3.1.
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4 Characterizations

We know that in the context of locally convex spaces E, “barrelledness of E” is
equivalent to “every lower semi-continuous seminorm on E is continuous” (see e.g.
[12, p. 219]). We can get analogous results in the algebra setting. Namely, in
the next three propositions we characterize barrelledness in the sense of Mallios,
Warner, and Chilana and Sharma, respectively. Recall that a seminorm is said to
be m-bounded if it is bounded on the m-bounded subsets.
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Proposition 4.1. Let (E, τ) be a Hausdorff locally convex algebra. The following are
equivalent:

(1) (E, τ) is an (mB, mB)-barrelled algebra.
(2) Every algebra seminorm p which is lower semi-continuous and m-bounded is

automatically continuous.

Proof. (1) ⇒ (2): Put V = {x ∈ E : p(x) ≤ 1}. Since p is lower semi-continuous,
V is closed (see e.g. [12, p. 219]), and finally, an m-barrel. It is also m-bornivorous,
since p is m-bounded. So, by assumption, V is a neighborhood of zero, and hence
p is continuous.

(2) ⇒ (1): Let U be an m-bornivorous m-barrel. The respective gauge func-
tion pU is an algebra seminorm. Moreover, V = {x ∈ E : pU(x) ≤ 1} is closed.
Therefore, pU is lower semi-continuous. Besides, pU is m-bounded, since U is
m-bornivorous. Hence, by hypothesis, pU is continuous, and therefore U is a
neighborhood of zero. Namely, E is (mB, mB)-barrelled.

By (iii) and (iv) of Proposition 3.2, any (mB, 0)-barrelled algebra is an
(mB, B)-barrelled algebra, and also an (mB, mB)-barrelled algebra. So an ob-
vious modification of the proof of Proposition 4.1 leads to the next two proposi-
tions.

Proposition 4.2. Let (E, τ) be a Hausdorff locally convex algebra. The following are
equivalent:

(1) (E, τ) is an (mB, 0)-barrelled algebra.
(2) Every algebra seminorm p which is lower semi-continuous is automatically

continuous.

Proposition 4.3. Let (E, τ) be a Hausdorff locally convex algebra. The following are
equivalent:

(1) (E, τ) is an (mB, B)-barrelled algebra.
(2) Every algebra seminorm p which is lower semi-continuous and bounded is auto-

matically continuous.

Note 4.4. Concerning the last results, we note that all other notions can be char-
acterized in analogous ways.

By Proposition 3.2, (iv), every (B, mB)-barrelled algebra is a (B, B)-barrelled
one. In the next proposition we give a context in which the converse is also true.

Proposition 4.5. Let (E, τ) be a unital Mackey-complete locally uniformly
A-convex algebra. Then E is a (B, B)-barrelled algebra if and only if it is a (B, mB)-
barrelled algebra.

Proof. We only have to prove that every m-bornivorous barrel is a neighborhood
of zero, and since every bornivorous barrel is, by hypothesis, a neighborhood of
zero, we restrict ourselves to the bounded structure Bτ of the topological algebra.
Since E is locally uniformly A-convex, there is an algebra norm ‖·‖0 on E, that
yields a topology stronger than M(τ). If (pλ)λ∈Λ is the family of seminorms
defining τ, the stronger topology is given by

‖x‖0 = sup{qλ(x) : λ ∈ Λ} (4.1)
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(viz. pλ(x) ≤ ‖x‖0 , for all λ ∈ Λ, and for all x ∈ E; see [5, p. 477, (**) and
Lemma 3.2]). For the definition of the qλ’s, see (2.1). In this case, Bτ = B‖·‖0

.
Thus, all of them are m-bounded.

By Proposition 3.2, (v) every (mB, mB)-barrelled algebra is an (mB, B)-barrel-
led one. So, arguing as in Proposition 4.5, we get that for unital Mackey-complete
locally uniformly A-convex algebras, the notions “(mB, mB)-barrelled algebra” and
“(mB, B)-barrelled algebra” coincide.

5 Examples and counter-examples

Example 5.1. Any seminormed algebra (E, p) (in particular, a normed one) is an
example of each of (ii) to (vi) barrelledness algebra notions (see Definition 3.1),
described through barrels and bornivorousness. Indeed, the unit ball
Bp = {x : p(x) ≤ 1} is included in every bornivorous subset of E.

For the next example see Remark 3.4 in [10].

Example 5.2. A complete locally m-convex algebra that is (B, 0)-barrelled. Let X be
a non compact, locally compact and metrizable space such that X = ∪Kn where
(Kn) is an exhaustive sequence of compact subsets of X. Take the complex al-
gebra K(X) of continuous functions with compact support, and the subalgebras
En = K(X, Kn) of functions with support in Kn. It is known that K(X) ≡ E is
algebraically the inductive limit of the En’s (see for instance, [15, p. 128, (4.6); see
also p. 127, 4.(1)]). Consider the strict inductive limit topology τ of the Banach
algebras (En, ‖.‖n), where ‖.‖n is the supremum norm on En. Then (E, τ) is a
complete locally m-convex algebra and (B, 0)-barrelled (namely, a barrelled one) and
it is not a normed algebra.

Example 5.3. [B.E. Johnson] A (B, 0)-barrelled (topological) algebra (jointly continu-
ous multiplication). Let X be a Hausdorff topological space. Take the algebra C(X)
of all continuous complex valued functions on X. Let S be the class of the subsets
of X filtered by the relation “⊂”, in the sense that if S1, S2 ∈ S , then there is an
S ∈ S such that S1 ∪ S2 ⊂ S. Consider the subalgebra C0(S) of those bounded
elements f ∈ C(X) so that f (x) = 0 in the complement X\S of some S ∈ S . It is
easy to see that, for each S ∈ S , the set

IS = { f : f ∈ C0(S), f (x) = 0 if x ∈ X\S}

is an ideal in C0(S), which under the supremum (or uniform) norm becomes a
Banach space. On C0(S) we consider the inductive limit of these topologies. Then
C0(S) is a (B, 0)-barrelled (topological) algebra (jointly continuous multiplication).
We note that, the topology considered on C0(S) is finer than the supremum norm
topology. See [13, p. 603, Theorem 1].

Example 5.4. [S. Warner] A locally m-convex algebra which is an
(mB, 0)-barrelled algebra but not a (B, 0)-barrelled space. Consider the algebra K[x]
of all polynomials in a variable x over a field K. Take the subalgebra E of K[x]
of all polynomials without constant term, endowed with the strongest locally



On different barrelledness notions in locally convex algebras 31

m-convex topology (viz. the collection of all convex, balanced, multiplicative, ab-
sorbing sets is a fundamental system of neighborhoods of zero). According to
Theorem 3.1 in [15, p. 18] these neighborhoods of zero can be considered closed).
Then E is an (mB, 0)-barrelled algebra which is not a (B, 0)-barrelled space (see [21,
p. 193, Example 5]). Moreover, it is an (mB, B)-barrelled algebra, but not a (B, 0)-
barrelled algebra.

In the sequel, the topology induced by the norm ‖ · ‖ will be denoted by τ‖·‖.

Example 5.5. A complete locally convex algebra which belongs to none of the six classes
of barrelled algebras. (See Example 3.8 in [10]). Let Cb (R) be the algebra of all com-
plex continuous bounded functions on the real field R with the usual pointwise
operations. Denote by C+

0 (R) the set of all strictly positive real-valued contin-
uous functions on R vanishing at infinity (as elements of Cb (R)). Consider the
family {pϕ : ϕ ∈ C+

0 (R)} of seminorms given by

pϕ( f ) = sup {| f (x)ϕ(x)| : x ∈ R}; f ∈ Cb (R) ,

that determines a locally convex topology, say β, on Cb (R). The space (Cb (R) , β)
is actually, a complete (non-metrizable) locally convex algebra. Since

pϕ( f g) ≤ ‖ f‖∞ pϕ(g) for all g

the previous algebra is a (unital) locally uniformly A-convex algebra ([19]; see
also [18]). Notice that β ≺ τ‖·‖∞

. But then, (Cb (R) , (pϕ)) can be endowed with a

locally m-convex topology M(β) stronger than β. This topology is defined by the
seminorms

qϕ( f ) = sup{pϕ( f g) : pϕ(g) ≤ 1}.

Thus, we have β ≺ M(β) ≺ τ‖·‖0
, where

‖ f‖0 = sup{qϕ( f g) : qϕ(g) ≤ 1}

(see also the proof of Proposition 4.5). By the previous argument, Bβ = Bτ‖·‖0
.

Consider the unit ball B∞,1 = { f : ‖ f‖∞ ≤ 1}. This is a β-barrel, which is not
a neighborhood of zero. Otherwise, the considered algebra would be normable,
which is not the case. So, (Cb (R) , β) is not of any kind of barrelled algebras, as
in Definition 3.1.

Remark. The reasoning of Example 5.5 is actually true for any unital Mackey
complete locally uniformly A-convex algebra. For a realization, see Example 5.10,
below.

Example 5.6. [10, Example 4.5]. A unital complete locally m-convex algebra which
belongs to none of the six barrelledness classes of Definition 3.1. Consider the algebra
(C[0, 1], | · |Kd

) of all continuous complex valued functions on the interval [0, 1],
where Kd are compact subsets of [0, 1] and | f |Kd

= sup
x∈Kd

| f (x)|. Denote by τ the

respective topology, under which the considered topological algebra is not metriz-
able. Moreover, we have

| f g|Kd
= sup

x∈Kd

| f (x)g(x)| ≤ ‖ f‖∞‖g‖Kd
, for all g.
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For the bounded structures, we have Bτ = Bτ‖·‖∞
. Now, since

B∞ = { f : ‖ f‖∞ ≤ 1}

is a bornivorous (hence m-bornivorous) m-barrel which is not a τ-neighborhood
of zero, (C[0, 1], | · |Kd

) belongs to none of the six classes of barrelled algebras.

In what follows, mBτ will denote the set of all multiplicative bounded sets
with respect to the topology τ, of a locally convex space (E, τ).

Example 5.7. ([10, Remark 3.7]) A pseudo-complete A-normed algebra which is (B, B)-
barrelled and (mB, B)-one, and does not belong to the rest of the barrelledness classes.

Endow the algebra C[0, 1] with the L1-norm, ‖ f‖1 =
∫ 1

0 | f (t)| dt. Then
(C[0, 1], ‖ · ‖1) is a pseudo-complete A-normed algebra, which is not m-infrabar-
relled.
Notice that

‖ f g‖1 =
∫ 1

0
| f g(t)| dt =

∫ 1

0
| f (t)g(t)| dt ≤ ‖ f‖∞‖g‖1, for all g.

Moreover, the m-bounded subsets, with respect to ‖ · ‖1, are exactly the m-boun-
ded subsets for the uniform norm ‖·‖

∞
. Namely, mBτ‖·‖1

= mBτ‖·‖
∞

. Consider
the unit ball

B0,1 = { f : ‖ f‖0 ≤ 1}

where ‖ f‖0 = sup{‖ f g‖1, ‖g‖1 ≤ 1}. Then B0,1 is a ‖ · ‖1-m-barrel, that can not
be a neighborhood of zero, since τ‖·‖1

≺ τ‖·‖
∞

. Moreover, B0,1 is not bornivorous.
Otherwise, it would exist some α > 0 such that B1,1 ⊂ αB0,1, where B1,1 is a
neighborhood of zero. So, B0,1 would be a neighborhood of zero, which is not.
Take now B a bornivorous subset. Then there exists a λ > 0 with B1,1 ⊂ λB,

where B1,1 is a neighborhood of zero for ‖ · ‖1. Thus, 1
λ B1,1 is a neighborhood of

zero contained in B. Namely, every bornivorous set is a neighborhood of zero.
Thus, (C[0, 1], ‖ · ‖1) is, as asserted.

Example 5.8. A (B, B)-barrelled algebra which is not (B, 0)-barrelled. Let (E, d) be a
non-barrelled metric space. Under the trivial multiplication (xy = 0 for all x, y ∈
E), every barrel is an m-barrel and every bounded subset of E is m-bounded.
Namely, mB ≡ B and mB ≡ B. In this case the diagram is reduced to (B, 0) −→
(B, B). Thus, E is a (B, B)-barrelled algebra which is not (B, 0)-barrelled. For the
non-trivial case, consider E × F with F a Banach algebra or yet a Fréchet locally
m-convex algebra.

Example 5.9. A locally convex algebra that belongs to none of the six classes of barrelled
algebras of Definition 3.1. Let (E, ‖ · ‖) be an infinite-dimensional
C∗-algebra. Endow E with the weak topology σ (the weakest topology, induced,
as an initial one, from its topological dual E′). Denote by τ‖·‖ the norm-topology

on E. Then σ ≺ τ‖·‖. In that case, any element in E′ is still continuous, and
Bσ = Bτ‖·‖. Furthermore, σ and τ‖·‖ have the same convex closed sets. Besides,
the unit ball B‖·‖ is then σ-closed. Moreover, it is an absorbent disc and hence
a σ-m-barrel, which is not a neighborhood of zero, otherwise, the locally convex
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algebra (E, σ) would be normable, that is a contradiction. Thus, (E, σ) is neither
an (mB, B)-barrelled algebra nor a (B, B)-one. Thus, according to the diagram, it
belongs to none of the rest four classes of barrelled-algebras.

For the next example, we remind that a Q-algebra is a topological algebra
whose the group of its quasi-invertible elements is a neighborhood of zero.

Example 5.10. A unital commutative complete locally uniformly A-convex algebra,
which is locally m-convex, and it does not belong to any class of barrelled algebras, as
in Definition 3.1. Let X be a pseudo-compact, locally compact, non-compact topo-
logical space. Consider the algebra Cc(X) of continuous complex valued func-
tions on X, endowed with the compact-open topology. Then Cc(X) is a unital
commutative complete locally uniformly A-convex algebra. The same algebra is locally
m-convex, which is not a Q-algebra (see [1, p. 245, Example 4.1]). Besides, every
element in Cc(X) is bounded, in the sense that the local spectrum is bounded. So,
if it was (mB, mB)-barrelled, it should be, by Proposition 4.1 in [10], a Q-algebra,
that is a contradiction. Furthermore, according to the remark after Example 5.5,
the considered algebra is not of any kind of barrelledness.

Example 5.11. An example of a (B, B)-barrelled algebra. Consider the topological
algebra (C(R), (| · |n)n∈N), where

| f |n = sup{| f (x)|, x ∈ [−n, n]}. (5.1)

Since | f g|n ≤ | f |n|g|n, this algebra is locally m-convex and hence a locally
A-convex algebra. Take a bornivorous barrel B; this is a disc. Besides, C(R) is
metrizable, therefore bornological (see [20, p. 61, 8.1]), and hence every balanced
(: circled) convex subset of the algebra that absorbs every bounded set in it is a
neighborhood of zero. The previous shows that B is a neighborhood of zero, and
hence the considered topological algebra is a (B, B)-barrelled algebra.

Example 5.12. Let Cb(R) be the unital algebra of all complex valued bounded
functions on the field of reals R with the pointwise operations. The topologi-
cal algebra (Cb(R), (| · |n)) (see also (5.1), is a pseudo-complete locally uniformly
A-convex algebra. Endow Cb(R) with the topology, denoted by τ‖·‖0

, induced on
it by the algebra norm

‖ f‖0 = sup{| f |n : n}.

Thus, the topology τ‖·‖0
is stronger that τ induced by (| · |n). Namely, | f |n ≤ ‖ f‖0

for all n and all f ∈ Cb(R). Remark that B‖·‖0
= { f : ‖ f‖0 ≤ 1} is a τ-barrel

and in particular, a τ-m-barrel. Then the m-bounded sets are the same, namely
mBτ = mBτ‖·‖0

. Moreover, the topological algebra in question, is metrizable,
and thus the previous argument (see also the reasoning in Example 5.11) shows
that (Cb(R), ‖ · ‖0) is a (B, B)-barrelled algebra and thus an (mB, B)-one, as well. The
same topological algebra does not belong to any of (B, mB), (mB, mB), (B, 0) or yet
(mB, 0)-barrelled algebras.

Example 5.13. A (B, mB)-barrelled algebra which is not (B, 0)-barrelled. Let (E, d)
be a non-barrelled metric space (hence bornological), endowed with the trivial
multiplication, and F a Banach algebra. Then the cartesian product of topological
algebras E × F is a (B, mB)-barrelled algebra which is not (B, 0)-barrelled. See
also Example 5.8.
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6 (B, mB)-barrelledness

As we mentioned above, from what we know, the notion of (B, mB)-barrelledness
is new. So one wonders about its usefulness. In which specific context can it be
used? It turns out that it is appropriate in the frame of locally uniformly convex
algebras. Indeed, in that context, one exhibits a vector space norm which is not
necessarily submultiplicative. So, to state similar results, what we exactly need, is
the (B, mB)-barrelledness. We first recall the basics on locally uniformly convex
algebras. Such complex algebras have been introduced in [19] (see also [9] for the
real case). We will exhibit examples of locally uniformly convex algebras which
are not uniformly A-convex. But, we first examine the subnormability of such
algebras. A locally convex algebra (E, τ) is said to be subnormable (A-subnormable,
m-subnormable) if it can be endowed with a vector space norm (A-norm, algebra
norm) which induces a topology stronger than τ.

A locally convex algebra (E, (pλ)λ∈Λ) is said to be a locally uniformly convex
algebra if,

for all x and for all λ, there exist M(x) > 0 and λ
′

such that

pλ(xy) ≤ M(x)p
λ
′ (y), for all y

with M(x) depending only on x (not on λ) and λ
′

depending only on λ (not on
x).

The class of such algebras is different from that of locally uniformly A-convex
ones (see Example 6.5). Good properties of the latter algebras are lost, in general,
such as the boundedness of every element. The existence of an algebra norm on
any unital locally uniformly-A-convex algebra ([17], [18]) provides a setting for a
nice spectral theory. Here, the situation is less comfortable as one could expect.

Proposition 6.1. (i) A unital locally uniformly convex algebra (E, τ) is subnormable.
Moreover, if it is barrelled, then it is normable too.

(ii) A non unital locally uniformly convex algebra (E, τ) is subnormable if and only
if, its unitization E1 is also a locally uniformly convex algebra.

Proof. (i) Let (pλ)λ∈Λ be a family of seminorms defining τ, such that

pλ(xy) ≤ M(x)p
λ
′ (y); for every y ∈ E.

In particular, for the unit element e, we get

pλ(x) ≤ M(x)p
λ
′ (e); for every x ∈ E.

Without loss of generality, we may assume that p
λ
′ (e) 6= 0; otherwise pλ being

null should be excluded from the beginning. Now, the family
(

[

p
λ
′ (e)
]−1

pλ

)

λ∈Λ

of seminorms determines exactly the topology τ. And one has

sup
λ

[

p
λ
′ (e)
]−1

pλ (x) ≤ M(x); for every x ∈ E.

But then,
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x 7→ ‖x‖ = sup
λ

[

p
λ
′ (e)
]−1

pλ (x)

is a vector space norm that induces a topology stronger than τ and this proves
the first assertion. Moreover, as E is subnormable and barrelled, it is normable
(see [17, p. 86, Remark 6.1]).

(ii) The proof is standard and we omit it (for details see [19]).

Remark 6.2. The norm in (i) in the proof of the previous proposition, is a vec-
tor space norm but not necessarily an algebra norm (Example 6.4, below). This
example also shows that, unlike to the case of locally uniformly A-convex alge-
bras, not every element here is necessarily bounded.

Under an additional completeness condition, one can say more.

Proposition 6.3. ([17], [19]). Let (E, τ) be a unital and Mackey complete locally uni-
formly convex algebra. Then there is a Banach algebra norm the topology of which is
stronger than τ with the same bounded structure.

Proof. See [17, p. 87, Proposition 6.3].

Example 6.4. Consider the algebra C [X] of complex polynomials and (zm) a se-
quence of complex numbers, such that |zm| → +∞. Endow C [X] with the topol-
ogy τ given by the seminorms P 7−→ |P|m = |P(zm)|. Then (C [X] , τ) is a unital
commutative and metrizable locally m-convex algebra. Since it has a denumer-
able algebraic basis, it is subnormable by [8, p. 1039, Lemma]. Denote by ‖.‖ the
vector space norm that induces a topology stronger than τ. Thus, for every m,
there exists km > 1 : |P|m ≤ km ‖P‖ ; for every P ∈ C [X] . Then

|PQ|m = |P|m |Q|m ≤ ‖P‖ km |Q|m ; for every Q ∈ C [X] .

But the topology τ can also be defined by the family of seminorms
(|.|m) ∪ (α |.|m)α≥1 which makes E a locally uniformly convex algebra. It can
not be a locally uniformly A-convex algebra. Otherwise, it could be endowed
with an algebra norm ‖.‖0 the topology of which would be stronger than τ.
But then, the characters P 7−→ P(zm) should be continuous for ‖.‖0. Whence
|P(zm)| ≤ ‖P‖0 ; for all m which contradicts |P(zm)| → +∞.

Here also, not every element is bounded as it is the case in locally uniformly
A-convex algebras. Indeed,

sup
m

(

lim sup
l

∣

∣

∣
Pl
∣

∣

∣

1
l

m

)

= sup
m

|P(zm)| = +∞,

for every non constant P.

This example shows also that a unital locally uniformly convex algebra, which is
always subnormable, is not necessarily m-subnormable. Actually, it is not even A-
subnormable. Otherwise, it should be m-subnormable.
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Example 6.5. Let (E, τ) be an algebra as in Proposition 6.3 and (Cb(R), β) the well
known locally uniformly A-convex algebra, described in Example 5.5. Take the
algebra (E, τ)× (Cb(R), β). It is a locally uniformly convex algebra which is not
locally m-convex nor locally uniformly A-convex. It is a locally A-convex algebra
with a continuous multiplication.

Example 6.6. Consider the algebra (C [0, 1] , ‖.‖1) where ‖.‖1 is the norm in
L1 [0, 1]. Then (E, τ) × (Cb(R), β) × (C [0, 1] , ‖.‖1) is a locally uniformly convex
algebra which is also a locally A-convex algebra. It is not a locally uniformly
A-convex algebra. The multiplication is only separately continuous.

Example 6.7. Let E = C1[0, 1] be the algebra of C-valued continuous functions
on [0, 1] with continuous derivative also at extreme points. Endow it with the
topology τ given by the seminorms ‖ f‖

∞
= sup{| f (t)| : 0 ≤ t ≤ 1} and

| f |Kd
= sup{| f ′(t)| : t ∈ Kd}, where Kd runs over denumerable compact sub-

sets of [0, 1]. Then (E, τ) is a unital commutative sequentially complete locally
m-convex algebra. It is also a locally uniformly convex algebra. Indeed,

| f g|Kd
= sup{

∣

∣ f ′(t)g(t) + f (t)g′(t)
∣

∣ : t ∈ Kd}

≤ M( f )
[

|g|Kd
+
∣

∣g′
∣

∣

Kd

]

, with M( f ) = max
(

‖ f‖
∞

,
∥

∥ f ′
∥

∥

∞

)

.

It can not be a locally uniformly A-convex algebra. Otherwise, there should be
an algebra norm ‖.‖0 the topology of which would be stronger than τ, which
moreover, is the coarsest norm with such properties (see [17]). But then,

τ‖.‖
∞
� τ � τ‖.‖0

and τ‖.‖0
� τ‖.‖

∞
.

So τ should be equivalent to τ‖.‖0
, which is not the case. Here, the norm of Propo-

sition 6.1 is ‖.‖
∞
+ ‖.‖′

∞
, where ‖ f‖′

∞
= ‖ f ′‖

∞
.

Example 6.8. Let E = C[0, 1] be the complex algebra of continuous functions on
the interval [0, 1]. Endow it with the vector space norm ‖.‖1 namely,

‖ f‖1 =
∫ 1

0 | f (t)| dt. Then (E, ‖.‖1) is an A-normed algebra. It is pseudo-complete,
but not Mackey complete. To obtain a non uniformly A-convex example, take e.g.
C1[0, 1]×C[0, 1].

The characterization, via a seminorm, is the next.

Proposition 6.9. Let (E, τ) be a locally uniformly convex algebra. The following asser-
tions are equivalent:

(i) (E, τ) is a (B, mB)-barrelled algebra.
(ii) Every seminorm which is m-bounded and the topology of which is locally sequen-

tially complete is automatically continuous.

Proof. As in Proposition 4.1.

The previous result allows a characterization of normed algebras among
locally uniformly convex algebras.
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Proposition 6.10. Let (E, τ) be a locally uniformly convex algebra. The following
assertions are equivalent:

(i) (E, τ) is a (B, mB)-barrelled algebra.
(ii) (E, τ) is normable.

Remark 6.11. We do not know if there exists an (mB, B)-barrelled algebra which
is not a (B, B)-one.
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