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V.V. Tkachuk

Abstract

We study systematically when Cp(X) has a topological property P if

Cp(X) is discretely P , i.e., the set D has P for every discrete subspace
D ⊂ Cp(X). We prove that it is independent of ZFC whether discrete metriz-
ability of Cp(X) implies its metrizability for a compact space X. We show that
it is consistent with ZFC that countable tightness and Lindelöf Σ-property
are not discretely reflexive in spaces Cp(X). It is also established that a space

X must be countable and discrete if Cp(X) is discretely Čech-complete. If
Cp(X) is discretely σ-compact then X has to be finite.

1 Introduction

A topological property P is called discretely reflexive in a class A if a space X
from the class A has P if and only if the closure of every discrete subspace of
X has P . Tkachuk proved in [15] that compactness is discretely reflexive in any
space; Arhangel’skii and Buzyakova established in [6] that the Lindelöf property
is discretely reflexive in spaces of countable tightness.

A systematic study of discrete reflexivity was undertaken by Alas, Tkachuk
and Wilson in [1]. They proved that initial κ-compactness, hereditary Lindelöf
number and sequential compactness are discretely reflexive in every space. In
the same paper Alas, Tkachuk and Wilson considered topological properties that
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are discretely reflexive in compact spaces. They established, among other things,
that character and tightness are discretely reflexive in X if X is compact.

Burke and Tkachuk discovered (see [7]) that first countability, countable tight-
ness and Fréchet–Urysohn property are discretely reflexive in countably compact
spaces of weight ≤ ω1. It is an open problem of Arhangel’skii (see [4, Problem
14]) whether the Lindelöf property is discretely reflexive for all spaces. Tkachuk
and Wilson showed in the paper [18] that paracompactness and the Lindelöf
property are both discretely reflexive in GO spaces.

However, most convergence properties are not discretely reflexive even in
countable spaces. This can be easily deduced from van Douwen’s result on the
existence of a countable maximal space [8, Example 3.3]. The respective exam-
ple shows that a space X need not be sequential even if every discrete subspace
in X is closed and hence X is discretely metrizable. Therefore countable weight,
metrizability, first countability, Fréchet–Urysohn property and sequentiality are
not discretely reflexive. The same example shows that Čech-completeness is not
discretely reflexive either.

It was asked in the book [17] whether the Lindelöf property is discretely re-
flexive in the spaces Cp(X) (see Problem 4.4.2). This problem is still open but
it expresses the general idea that the algebraic structure of Cp(X) could imply
better behavior with respect to discrete reflexivity. The present study is done
with this idea in mind. We show that Čech-completeness is discretely reflexive
in the spaces Cp(X), i.e., D is Čech-complete for every discrete set D ⊂ Cp(X) if

and only if X is countable and discrete which is equivalent to Cp(X) being Čech-
complete. It turns out that σ-compactness is also discretely reflexive in Cp(X)
while this is consistently false for countable tightness, and Lindelöf Σ-property.

We also show that it is independent of ZFC whether metrizability, first count-
ability and countable network weight are discretely reflexive in Cp(X) for a com-
pact space X.

2 Notation and terminology

All spaces are assumed to be Tychonoff. If X is a space then τ(X) is its topology;
given any point x ∈ X let τ(x, X) = {U ∈ τ(X) : x ∈ U}. If A ⊂ X then
τ(A, X) = {U ∈ τ(X) : A ⊂ U}. The set R is the real line with its usual topology,
N = ω\{0} and Q ⊂ R is the set of rationals. We will also need the closed
interval I = [−1, 1] ⊂ R. If X is a space then ∆X = {(x, x) : x ∈ X} is its diagonal;
we write ∆ instead of ∆X if X is clear. If κ is an infinite cardinal then A(κ) is the
one-point compactification of a discrete space of cardinality κ. We assume that
A(κ) = κ ∪ {p} where p is the unique non-isolated point of the space A(κ).

For any spaces X and Y the set C(X, Y) consists of continuous functions from
X to Y; if it has the topology induced from YX then the respective space is denoted
by Cp(X, Y). We write C(X) instead of C(X, R) and Cp(X) instead of Cp(X, R).
Given a set A ⊂ Cp(X) let ϕ(x)( f ) = f (x) for any f ∈ A. This gives a continuous
map ϕ : X → Cp(A) which will be called the reflection map with respect to A. If we
have a continuous map ϕ : X → Y then letting ϕ∗( f ) = f ◦ ϕ for any f ∈ Cp(Y),
we obtain the dual map ϕ∗ : Cp(Y) → Cp(X).
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A map f : X → Y is called a condensation if it is a continuous bijection; in this
case we say that X condenses onto Y. Say that a family F of subsets of a space X
is a network modulo a cover C if for any C ∈ C and U ∈ τ(C, X) there exists F ∈ F
such that C ⊂ F ⊂ U. A space X is Lindelöf Σ (or has the Lindelöf Σ-property) if
there exists a countable family F of subsets of X such that F is a network modulo
a compact cover C of the space X. A space X is Fréchet–Urysohn, if for any A ⊂ X
and x ∈ A there exists a sequence {an : n ∈ ω} ⊂ A such that an → x.

The expression X ≃ Y says that the spaces X and Y are homeomorphic. A
continuous map f : X → Y is called R-quotient if a function g : Y → R is contin-
uous if and only if g ◦ f is continuous. Given a space X, a family N of subsets of
X is a network of X if for every U ∈ τ(X) there exists a family N ′ ⊂ N such that
U =

⋃
N ′. Furthermore, nw(X) = min{|N | : N is a network in X}. The cardinal

nw(X) is called the network weight of X and the spaces with a countable network
are called cosmic. A space X is called ω-monolithic if every separable subset of X
has a countable network. A space X is called left-separated if there exists a well
order < on X such that the set {x ∈ X : x < a} is closed for any a ∈ X.

If X is a space and x ∈ X then let ψ(x, X) = min{|U| : U ⊂ τ(X) and
⋂
U = {x}} and ψ(X) = sup{ψ(x, X) : x ∈ X}; the cardinal ψ(X) is called

the pseudocharacter of the space X. Given a space X, the cardinal s(X) called
the spread of X, is the supremum of cardinalities of discrete subsets of X. As
usual, we denote by d(X) the minimal cardinality of a dense subset of X and
hd(X) = sup{d(Y) : Y ⊂ X}. Now, hl(X) = sup{l(Y) : Y ⊂ X} is the hereditary
Lindelöf number of X. The cardinal iw(X) = min{κ : the space X has a weaker
topology of weight κ} is called the i-weight of X. Given an infinite cardinal κ we
say that t(X) ≤ κ if, for any A ⊂ X and x ∈ A there exists a set B ⊂ A such that
|B| ≤ κ and x ∈ B. If θ is a cardinal invariant then θ∗(X) = sup{θ(Xn) : n ∈ N}
for any space X. We say that X is a strong S-space if hd∗(X) = ω and X is not
Lindelöf.

The rest of our notation is standard and follows the book [9]. For the refer-
ences in Cp-theory, see the book [17].

3 Representative discrete subsets of Cp(X)

If P is a hereditary property then, to show that P is discretely reflexive in Cp(X),

it suffices to find a discrete Ω ⊂ Cp(X) such that Ω contains a topological copy of
Cp(X). In this section we develop some methods of construction of large discrete
subsets of Cp(X) to implement this idea.

3.1 Definition. Given a topological property P , a space X is called discretely P if D has
P for any discrete set D ⊂ X.

To construct representative discrete subspaces of Cp(X) we will need the fol-
lowing concept.

3.2 Definition. Given a space X say that a family F of subsets of X is concentrated about
a set A ⊂ X if for any U ∈ τ(A, X), the cardinality of the family {F ∈ F : F ∩U = ∅}
is strictly less than the cardinality of F .
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The following lemma was proved in [16].

3.3 Lemma. Given a space X suppose that a family F consists of finite subsets of X and
there is m ∈ N such that |F| ≤ m for all F ∈ F . Then there exists a finite set A ⊂ X
(called the core of F ) such that for any finite B ⊂ X\A, the family F is not concentrated
about B.

We start with the following sufficient condition of existence of big discrete
subsets in function spaces.

3.4 Lemma. Given an infinite space X, assume that there exists a discrete subspace D ⊂
X×X with |D| ≥ iw(X). Then we can find a discrete set Ω ⊂ Cp(X, [−2, 2])\Cp(X, I)

such that |Ω| ≤ iw(X) and Cp(X, I) ⊂ Ω.

Proof. For any k ∈ N denote by Mk the set {1, . . . , k} and let κ = iw(X). In this
proof we will pass several times to a subset D′ ⊂ D with |D′| = κ. To simplify
the notation we will assume each time that D′ = D which means that all previous
reasoning can be repeated for our smaller set D′. Given a space Z say that sets
P, Q ⊂ Z are functionally separated if there exists a function f ∈ C(Z, [0, 1]) such
that f (P) ⊂ {0} and f (Q) ⊂ {1}.

We have two mutually exclusive possibilities:

(a) there is a discrete set D ⊂ X with |D| = κ;
(b) there is no discrete set of cardinality κ in X but there exists a discrete subspace

D ⊂ X × X with |D| = κ.

Let ∆ = ∆X; we will simultaneously give a proof for both cases. If case (b)
is considered then D ∩ ∆ has cardinality < κ so we can pass to an appropriate
subset of D of cardinality κ to see that we can assume, without loss of generality,
that D ⊂ X2\∆. For any element d = (d1, d2) ∈ D let Kd = {d1, d2}. If case (a) is
under consideration then Kd = {d}.

If we are dealing with case (b) and some x ∈ X belongs to κ-many elements
of D = {Kd : d ∈ D} then, according to our policy, we can assume that x ∈ Kd

for all d ∈ D and therefore D ⊂ ({x} × X) ∪ (X × {x}). This shows that either
|D ∩ ({x}× X)| = κ or |D ∩ (X ×{x})| = κ. Since both sets X ×{x} and {x}× X
are homeomorphic to X, a discrete space of cardinality κ embeds in X which is a
contradiction. As a consequence, if the case (b) is considered, then

(1) |{d ∈ D : x ∈ Kd}| < κ for every x ∈ X.

Of course, (1) trivially holds if we deal with the case (a). In the case (b) choose,

for any d = (d1, d2) ∈ D a pair {Ud
1 , Ud

2} of open subsets of X such that Ud
1 ∩Ud

2 =

∅ and, for the set Ud = Ud
1 ×Ud

2 , we have Ud ∩D = {d}. In the case (a) we choose

a set Ud ∈ τ(d, X) such that Ud ∩ D = {d}.

Since iw(X) = κ, we can find a base B of cardinality κ of some Tychonoff
topology µ on the set X weaker than τ(X); let X′ = (X, µ). There is no loss of
generality to consider that B 6= ∅ for any B ∈ B. From now on the bar denotes the
closure in X and all topological properties for which the space is not mentioned
are meant to hold in the space X.

We can apply Lemma 3.3 to the space X′ to find a finite set A ⊂ X such that,
for any finite B ⊂ X\A, there exists a set U ∈ τ(B, X′) for which the cardinality
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of the set {d ∈ D : Kd ∩ clX′(U) = ∅} is equal to κ. It follows from (1) that only
< κ-many elements of the family D meet A so, passing if necessary, to a subset
of D of cardinality κ, we can assume, without loss of generality, that Kd ∩ A = ∅

for any d ∈ D. If A = ∅ then the reasoning is easier so we assume that A 6= ∅;
let {a1, . . . , an} be a faithful enumeration of A. Denote by Q0 the set Q ∩ I.

Our next step is to consider for every k ∈ N, the family Wk of all 3k-tuples
(W1, . . . , Wk, V1, . . . , Vk, s1, . . . , sk) ∈ B2k × Qk

0 such that

(2) Wi, Vi ∈ B for all i ∈ Mk;
(3) Vi ⊂ Wi and Vi is functionally separated from X\Wi for all i ∈ Mk;
(4) if W =

⋃
i∈Mk

Wi then W ∩ A = ∅ and |{d ∈ D : W ∩ Kd = ∅}| = κ;

(5) the family {W i : i ≤ k} is disjoint.

It is straightforward that |Wk| ≤ κ for any k ∈ ω so if W =
⋃
{Wk :

k ∈ N} then |W| ≤ κ. For any element ξ = (W1, . . . , Wk, V1, . . . , Vk, s1, . . . , sk)
of the family W let kξ = k, W[ξ] =

⋃
i≤k Wi and Ri(ξ) = si for all i ≤ k.

Using the property (4) it is easy to construct an injection ϕ : W × Qn
0 → D

such that W[ξ] ∩ Kϕ(ξ,r) = ∅ for any ξ ∈ W and r ∈ Qn
0 .

Fix ξ ∈ W and r = (r1, . . . , rn) ∈ Qn
0 ; if the case (a) is being considered and

ϕ(ξ, r) = d then we can choose a continuous function fξ,r : X → [−1, 2] and a set
H ∈ τ(d, X) with the following properties:

(6a) H ⊂ Ud and H ∩ (W[ξ] ∪ A) = ∅;
(7a) fξ,r(X\H) ⊂ I and fξ,r(Vi) = {Ri(ξ)} for all i ≤ kξ ;
(8a) fξ,r(d) = 2 and fξ,r(ai) = ri for all i ≤ n.

If we are considering the case (b) and ϕ(ξ, r) = d = (d1, d2) then we can
choose a continuous function fξ,r : X → [−2, 2] and a set Hi ∈ τ(di, X) for any
i = 1, 2 with the following properties:

(6b) Hi ⊂ Ud
i for i = 1, 2 and (H1 ∪ H2) ∩ (W[ξ] ∪ A) = ∅;

(7b) fξ,r(d1) = 2 and fξ,r(d2) = −2;
(8b) fξ,r(X\H1) ⊂ [−2, 1] and fξ,r(X\H2) ⊂ [−1, 2];
(9b) fξ,r(ai) = ri for all i ≤ n and fξ,r(Vi) = {Ri(ξ)} for all i ≤ kξ .

It turns out that Cp(X, I) is contained in the closure in the space Cp(X) of the
set Ω = { fξ,r : ξ ∈ W , r ∈ Qn

0} ⊂ Cp(X, [−2, 2])\Cp(X, I). To prove this, observe
first that |Ω| ≤ κ so it suffices to show that, for any finite set B = {x1, . . . , xk} ⊂
X\A and any s1, . . . , sk, r1, . . . , rn ∈ Q0 there exists f ∈ Ω such that f (xi) = si for
any i ≤ k and f (ai) = ri for all i ≤ n.

Recall that the set A is the core of the family D in the space X′ and therefore
we can find sets W1, . . . , Wk ∈ B such that xi ∈ Wi for all i ≤ k, the family
A′ = {clX′(Wi) : i ≤ k} is disjoint (and hence the collection A = {Wi : i ≤ k} is
disjoint as well) and there κ-many elements d ∈ D such that Kd ∩ (

⋃
A) = ∅.

It is easy to choose Vi ∈ B such that xi ∈ Vi and the set Vi is functionally
separated from X\Wi in X′ (and hence in X) for all i ∈ Mk. An immediate conse-
quence is that the 3k-tuple ξ = (W1, . . . , Wk, V1, . . . , Vk, s1, . . . , sk) belongs to W . If
r = (r1, . . . , rn) then fξ,r(xi) = si for all i ≤ k and fξ,r(ai) = ri for each i ≤ n; this

proves that Cp(X, I) ⊂ Ω.
Fix any element ξ = (W1, . . . , Wk, V1, . . . , Vk, s1, . . . , sk) ∈ W and a point

r = (r1, . . . , rn) ∈ Qn
0 . For the case (b) consider the point d = (d1, d2) = ϕ(ξ, r);
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the set Bξ,r = { f ∈ Cp(X) : f (d1) > 1 and f (d2) < −1} is open in Cp(X) and
contains the function fξ,r so it suffices to establish the equality Bξ,r ∩ Ω = { fξ,r}.
Assume toward a contradiction, that fη,t ∈ Bξ,r for some η ∈ W and t ∈ Qn

0 such
that (ξ, r) 6= (η, t); then a = (a1, a2) = ϕ(η, t) 6= d.

We have fη,t(d1) > 1 and fη,t(d2) < −1 which, together with (6b)–(8b), implies
that d1 ∈ Ua

1 and d2 ∈ Ua
2 ; this shows that d ∈ Ua contradicting the equality

Ua ∩Ω = {a}. Consequently, Bξ,r ∩Ω = { fξ,r} and hence Ω is a discrete subspace

such that Cp(X, I) ⊂ Ω. We leave to the reader the evident simplification of the
above reasoning to show that the set Ω is also discrete in the case (a).

3.5 Theorem. Assume that κ is an infinite cardinal and D ⊂ X × X is a discrete subset
of cardinality κ. Then for any set A ⊂ Cp(X, I) with |A| ≤ κ, there exists a discrete set

Ω ⊂ Cp(X, [−2, 2]) such that |Ω| ≤ κ and A ⊂ Ω\Ω.

Proof. For every point d = (d1, d2) ∈ D we can find sets Ud
1 , Ud

2 ∈ τ(X) such that

(Ud
1 ×Ud

2 )∩D = {d}. There exist functions f d
1 , f d

2 ∈ Cp(X, I) such that f d
i (di) = 1

and f d
i (X\Ud

i ) ⊂ {0} for each i ∈ {1, 2}. It is clear that the set B = A ∪ { f d
i :

d ∈ D, i ∈ {1, 2}} has cardinality at most κ.

Let ϕ : X → Cp(B) be the reflection map. By [17, Problem 163] the dual map
ϕ∗ : Cp(Y) → Cp(X) is an embedding of Cp(Y) in Cp(X) and it is easy to check
that B ⊂ ϕ∗(Cp(Y)).

For every function g ∈ B there is a unique function pg ∈ Cp(Y) such that
ϕ∗(pg) = g. It is not difficult to see that B′ = {pg : g ∈ B} ⊂ Cp(Y, I). If we

can find a discrete set Ω′ ⊂ Cp(Y, [−2, 2]) such that |Ω′| ≤ κ and B′ ⊂ Ω′\Ω′

then the set Ω = ϕ∗(Ω′) will be as promised because ϕ∗ is an embedding and
ϕ∗(Cp(Y, [−2, 2])) ⊂ Cp(X, [−2, 2]).

For every d = (d1, d2) ∈ D let ξ(d) = (ϕ(d1), ϕ(d2)) ∈ Y × Y. It is stan-
dard to check that our choice of the set B guarantees that ξ|D is an injection and
D′ = {ξ(d) : d ∈ D} is a discrete subset of Y × Y with |D′| = |D| = κ. We
have w(Y) ≤ w(Cp(B)) = |B| ≤ κ which shows that |D′| ≥ w(Y) ≥ iw(Y) and
hence Lemma 3.4 is applicable to find a discrete set Ω′ ⊂ Cp(Y, [−2, 2]) such that

|Ω′| ≤ iw(Y) ≤ κ and Cp(Y, I) ⊂ Ω′\Ω′. Finally, it follows from B′ ⊂ Cp(Y, I)

that B′ ⊂ Ω′\Ω′.

3.6 Lemma. If X is a space with d(X) ≤ κ then there exists a discrete subset D ⊂
X × (A(κ)\{p}) such that X × {p} ⊂ D. Here p is the unique non-isolated point of
A(κ).

Proof. Take a dense set A ⊂ X such that |A| ≤ κ and choose a disjoint family
{Sα : α < κ} of countably infinite subsets of κ. Let {aα : α < κ} be an enumeration
(possibly with repetitions) of the set A.

The set D =
⋃
{{aα} × Sα : α < κ} ⊂ X × (A(κ)\{p}) is discrete because the

projection of X × A(κ) onto A(κ) maps D injectively into A(κ)\{p}. Besides, the
point (aα , p) is in the closure of the set {aα} × Sα for every α < κ so A × {p} ⊂ D
and hence X × {p} ⊂ D as promised.
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4 Convergence properties in Cp(X)

It is not difficult to convince ourselves that van Douwen’s example of a countable
maximal space (see [8, Example 3.3]) shows that practically all convergence prop-
erties fail to be discretely reflexive. We will see in this section that the situation is
not so simple in function spaces.

4.1 Example. If we assume the Continuum Hypothesis, then there exists a com-
pact separable non-metrizable space X such that D is second countable for any
discrete D ⊂ Cp(X). Therefore, under CH, first countability, metrizability, sec-
ond countability, countable network weight and the Lindelöf Σ-property are not
discretely reflexive in the spaces Cp(X) even if X is compact.

Proof. It follows from Theorem 2.4 of [19] that under CH there exists a locally
countable locally compact uncountable space Y such that hd(Yn) ≤ ω for any
n ∈ N. Let X be the one-point compactification of the space Y and denote by p
the unique point of the set X\Y. It is easy to see that every compact subspace of
Y is countable and therefore |X\U| ≤ ω for any U ∈ τ(p, X). This implies that X
is functionally countable, i.e., every continuous second countable image of X is
countable.

Given a countable set A ⊂ Cp(X) let ϕ : X → Cp(A) be the reflection
map. If Z = ϕ(X) then the dual map ϕ∗ : Cp(Z) → Cp(X) is a closed em-
bedding of the space Cp(Z) in Cp(X) (see [17, Problem 163]). It is easy to see that

A ⊂ E = ϕ∗(Cp(Z)) and hence A ⊂ E. As a consequence, w(A) ≤ w(E) =
w(Cp(Z)) = |Z| ≤ ω; this proves that the closure of every countable subset
of Cp(X) is second countable. We also have hl∗(Cp(X)) = hd∗(X) = ω and
therefore s(Cp(X)) ≤ hl(Cp(X)) ≤ ω, i.e., every discrete subset of Cp(X) is

countable. Thus, D is second countable for any discrete D ⊂ Cp(X) so Cp(X)
is discretely second countable space which fails to be first countable because
χ(Cp(X)) = |X| > ω. The space Cp(X) is not Lindelöf Σ because X is not
ω-monolithic being separable and non-metrizable (see [3, Theorem IV.9.8]).

4.2 Theorem. Assume MA+¬CH and suppose that X is compact.

(a) if D is first countable for any discrete set D ⊂ Cp(X) then X is countable and hence
Cp(X) is second countable;

(b) if D has a countable network for any discrete set D ⊂ Cp(X) then X is metrizable
and hence Cp(X) has a countable network.

In other words, MA+¬CH implies that metrizability, first countability, second count-
ability, and countable network weight are discretely reflexive in Cp(X) for any compact
space X.

Proof. Let prove first that in both cases, the space X has to be metrizable.
If w(X) > ω and we have either (a) or (b), then there exists a continuous onto map
ϕ : X → Y such that w(Y) = ω1 (see [3, Proposition IV.8.11]). Since Cp(Y) embeds
in Cp(X), the space Cp(Y) is also discretely first countable (or discretely cosmic
respectively). If there exists an uncountable discrete set D ⊂ Y × Y then Lemma
3.4 is applicable to see that Cp(Y, I) ⊂ Ω for some discrete set Ω ⊂ Cp(Y). There-
fore Cp(Y, I) is first countable (or cosmic respectively) and hence so is Cp(Y) be-
ing embeddable in Cp(Y, I). As an immediate consequence, |Y| = χ(Cp(Y)) ≤ ω
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(or w(Y) = nw(Y) = nw(Cp(Y)) = ω respectively) and hence Y is metrizable
which is a contradiction.

It is a theorem of Szentmiklossy [14] that under MA+¬CH, every compact
space of countable spread is perfectly normal. Thus, if s(Y ×Y) = ω then we can
apply Szentmiklossy’s result to conclude that Y ×Y is perfectly normal and hence
∆Y is a Gδ-subset of Y × Y. This implies that Y is metrizable (see [11, Corollary
7.6]), which is again a contradiction, showing that X must be metrizable, i.e.,
w(X) ≤ ω and hence we proved (b).

For the case (a) observe that any infinite space has an infinite discrete subspace
so there is a countably infinite discrete subspace D ⊂ X × X and therefore we
can apply Lemma 3.4 again to conclude that Cp(X, I) ⊂ Ω for some discrete set
Ω ⊂ Cp(X). Therefore Cp(X, I) is first countable and hence so is Cp(X) being
embeddable in Cp(X, I). This implies that |X| = χ(Cp(X)) ≤ ω.

4.3 Corollary. If P is a topological property from the list L = {metrizability, first
countability, second countability, existence of a countable network} then it is independent
of ZFC whether P is discretely reflexive in spaces Cp(X) for a compact X.

4.4 Proposition. If X is an ω-monolithic compact space and ψ(D) = ω for any discrete
D ⊂ Cp(X) then X is metrizable and hence ψ(Cp(X)) = ω. In other words, countable
pseudocharacter is reflexive in Cp(X) for compact ω-monolithic spaces X.

Proof. If X is not metrizable then there exists a continuous onto map ϕ : X → Y
where w(Y) = ω1. Since Cp(Y) embeds in Cp(X), the closure of every discrete
subspace of Cp(Y) also has countable pseudocharacter. It is easy to see that Y is
also ω-monolithic and hence non-separable.

If there exists an uncountable discrete set D ⊂ Y × Y then Lemma 3.4 is ap-
plicable to see that Cp(Y, I) ⊂ Ω for some discrete set Ω ⊂ Cp(Y). Therefore the
space Cp(Y, I) has countable pseudocharacter and hence so has Cp(Y) being em-
beddable in Cp(Y, I). This implies d(Y) = ψ(Cp(Y)) ≤ ω; therefore Y is separable
and hence metrizable which is a contradiction.

Therefore we can assume that s(Y ×Y) ≤ ω; this, together with ω-monolithity
of the space Y × Y implies that hl(Y × Y) = ω (see Proposition 7 of [5]) and
hence the diagonal of the space Y is a Gδ-subset of Y × Y. As a consequence, Y is
metrizable by [11, Corollary 7.6], a contradiction.

4.5 Proposition. Assume that Xn is Lindelöf for any n ∈ N. Then
(a) the Lindelöf property is reflexive in Cp(X);
(b) the Fréchet–Urysohn property is reflexive in Cp(X).

Proof. Observe first that have t(Cp(X)) = ω by [17, Problem 149]); if Cp(X) is dis-
cretely Lindelöf then we can apply Proposition 3.2 of [6] to see that it is Lindelöf.
This settles (a).

(b) Suppose that Cp(X) is discretely Fréchet–Urysohn; since it embeds in
Cp(X, I), it suffices to prove that Cp(X, I) is Fréchet–Urysohn. Given a set

A ⊂ Cp(X, I) and f ∈ A we can find a countable set B ⊂ A such that x ∈ B.
Since every infinite space has an infinite discrete subspace, we can find a

countably infinite discrete set D ⊂ X × X. By Theorem 3.5, there exists a
discrete set Ω ⊂ Cp(X) such that B ⊂ Ω and therefore B ∪ { f} ⊂ D. The space
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Ω is Fréchet–Urysohn so B ∪ { f} is also Fréchet–Urysohn; this shows that there
exists a sequence S = { fn : n ∈ ω} ⊂ B which converges to f . Therefore the
sequence S ⊂ A witnesses the Fréchet–Urysohn property of the space Cp(X).

4.6 Corollary. If X is compact then both Lindelöfness and the Fréchet–Urysohn property
are discretely reflexive in Cp(X).

4.7 Example. It is consistent with ZFC that there exists a countably compact non-
compact space X such that D has countable network for any discrete set D ⊂
Cp(X). In particular, t(D) = ω for any discrete D ⊂ Cp(X) but t(Cp(X)) > ω,
i.e., it is consistent with ZFC that tightness is not discretely reflexive in spaces
Cp(X).

Proof. Juhasz proved in [12, 4.10] that it is consistent with ZFC that there
exists a countably compact strong S-space X. Since X is not Lindelöf, we have
t(Cp(X)) > ω. On the other hand, s(Cp(X)) ≤ hl(Cp(X)) ≤ hd∗(X) = ω which
shows that every discrete subset of Cp(X) is countable. It follows from countable

compactness of X that A has a countable network for any countable A ⊂ Cp(X)

(see Proposition II.6.2 and Theorem II.6.8 of [3]). Therefore nw(D) ≤ ω and hence
t(D) ≤ ω for any discrete D ⊂ Cp(X). Thus, tightness is not discretely reflexive
in Cp(X).

5 Discrete Čech-completeness in Cp(X)

It is a classical theorem of Lutzer and McCoy that X must be countable and dis-
crete if Cp(X) is Čech-complete (see [13, Theorem 8.6]). The main result of this

section is to show that the same conclusion can be obtained if we assume that D
is Čech-complete for every discrete D ⊂ Cp(X).

5.1 Lemma. If Cp(X) is discretely Čech-complete then the closure of every countable

subset of Cp(X) is metrizable and Čech-complete.

Proof. Given a countable set A ⊂ Cp(X) let ϕ : X → Cp(A) be the reflection
map. If Y = ϕ(X) then the dual map ϕ∗ : Cp(Y) → Cp(X) is an embedding of
Cp(Y) in Cp(X) (see [17, Problem 163]). It is easy to see that we have the inclusion
A ⊂ Z = ϕ∗(Cp(Y)). Apply Proposition 0.4.9 of [3] to find an R-quotient map
ξ : X → X′ and a condensation π : X′ → Y such that π ◦ ξ = ϕ.

The dual map ξ∗ : Cp(X′) → Cp(X) embeds Cp(X′) in Cp(X) and the set
Q = ξ∗(Cp(X′)) is closed in Cp(X) by [17, Problem 163]. Therefore Q is discretely

Čech-complete and hence so is Cp(X′). Observe that X′ condenses onto Y and
w(Y) ≤ ω so d(Cp(X′)) = iw(X′) ≤ ω by [17, Problem 173], i.e., Cp(X′) is
separable.

Fix a point a ∈ X′ and consider the set E = { f ∈ Cp(X′) : f (a) = 0}. Note
that Cp(X

′) is homeomorphic to E × R by [17, Problem 182] and E is separable
being a continuous image of Cp(X′). The set A(ω) is a convergent sequence so it
embeds in R and hence E × A(ω) is a closed subset of Cp(X′) so it is discretely

Čech-complete.
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Apply Lemma 3.6 to find a discrete subspace of D ⊂ E × A(ω) such that
E × {p} ⊂ D. The set D is Čech-complete, so the space E × {p} is Čech-complete
as well being a closed subspace of D. Therefore the space E is Čech-complete and
hence so is Cp(X′) because Čech-completeness is countably productive. Next
apply [17, Problem 265] to see that X′ countable and discrete which shows that
Cp(X

′) is second countable.

Finally observe that A ⊂ Z ⊂ Q and hence A ⊂ Z ⊂ Q = Q is a closed subset
of Q ≃ Cp(X

′) so it is metrizable and Čech-complete.

5.2 Lemma. Suppose that Cp(X) is discretely Čech-complete and ϕ : X → Y is a
continuous onto map such that w(Y) ≤ ω. Then there exists an R-quotient map ξ :
X → X′ and a condensation π : X′ → Y such that the space X′ is countable, discrete
and π ◦ ξ = ϕ.

Proof. Apply Proposition 0.4.9 of [3] to find an R-quotient map ξ : X → X′ and
a condensation π : X′ → Y such that π ◦ ξ = ϕ. Observe that Cp(X′) embeds

in Cp(X) as a closed subspace so it must be discretely Čech-complete. Since X′

condenses onto Y, we have d(Cp(X′)) = iw(X′) = ω which shows that Cp(X′)

is separable and hence Čech-complete by Lemma 5.1. This implies that X′ is
countable and discrete (see Problem 265 of [17]).

5.3 Lemma. Suppose that Cp(X) is discretely Čech-complete. Then
(a) X is functionally countable, i.e., every second countable continuous image of X is

countable;
(b) every countable set A ⊂ X is closed and discrete in X.

Proof. It follows from Lemma 5.2 that any second countable continuous image Y
of the space X is a continuous image of a countable space so |Y| ≤ ω, i.e., we
settled (a).

To prove (b) take any countable set A ⊂ X and assume that there exists a point
x ∈ A\A. It is easy to find a continuous map ϕ : X → Y such that w(Y) ≤ ω
and ϕ|(A ∪ {x}) is injective. Lemma 5.2 guarantees that we can find a discrete
countable space X′ together with a continuous map ξ : X → X′ and an injection
π : X′ → Y such that ϕ = π ◦ ξ. It follows from our choice of ϕ that ξ|(A∪{x}) is

an injection and hence ξ(x) /∈ ξ(A); however, x ∈ A implies that ξ(x) ∈ ξ(A) =
ξ(A) which is a contradiction. Therefore every countable set is closed in X so if
A ⊂ X is countable then all subsets of A are closed in X, i.e., A is closed and
discrete.

5.4 Lemma. Assume that there exists a space X such that Cp(X) is discretely Čech-

complete but not Čech-complete. Then it is possible to find a space X′ such that Cp(X′)

is discretely Čech-complete, fails to be Čech-complete and d(Cp(X′)) ≤ ω1.

Proof. Since Cp(X) is discretely Čech-complete but not Čech-complete, it is not
separable by Lemma 5.1 so we can find a left-separated subspace A ⊂ Cp(X)
with |A| = ω1. Let ϕ : X → Cp(A) be the reflection map. If Y = ϕ(X) then
the dual map ϕ∗ : Cp(Y) → Cp(X) is an embedding of Cp(Y) in Cp(X) (see
[17, Problem 163]). It is easy to see that A ⊂ Z = ϕ∗(Cp(Y)). Apply Proposition
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0.4.9 of [3] to find an R-quotient map ξ : X → X′ and a condensation π : X′ → Y
such that π ◦ ξ = ϕ.

The dual map ξ∗ : Cp(X′) → Cp(X) embeds Cp(X′) in Cp(X) and the set
Q = ξ∗(Cp(X

′)) is closed in Cp(X) by [17, Problem 163]. Therefore Q is discretely

Čech-complete and hence so is Cp(X
′). Observe that X′ condenses onto Y and

w(Y) ≤ ω1 so d(Cp(X′)) = iw(X′) ≤ ω1 by [17, Problem 173]. It follows from
A ⊂ Z ⊂ Q that Q is not hereditarily separable so Cp(X′) is not hereditarily
separable as well. This implies that Cp(X

′) is not second countable so it is not

Čech-complete by [17, Problem 265].

5.5 Theorem. If Cp(X) is discretely Čech-complete then it is Čech-complete and hence
X is discrete and countable.

Proof. If this is not true then Lemma 5.4 shows that we can assume, without loss
of generality, that X is a counterexample and iw(X) = d(Cp(X)) ≤ ω1. If there
exists an uncountable discrete D ⊂ X × X then we can apply Lemma 3.4 to con-
vince ourselves that Cp(X, I) ⊂ Ω for some discrete set Ω ⊂ Cp(X). The set Ω is

Čech-complete and hence so is Cp(X, I) being closed in Ω. Therefore X is discrete
by [17, Problem 287].

If X is uncountable then Cp(X) = RX and hence Rω1 embeds in Cp(X) as
a closed subspace. However, Lemma 5.1 implies that Rω1 = Cp(D(ω1)) is not

discretely Čech-complete because it is separable and non-metrizable. Here D(ω1)
is a discrete space of cardinality ω1. This contradiction shows that X must be
countable.

Now assume that the space X × X has no uncountable discrete subset, i.e.,
s(X ×X) ≤ ω. It follows from Lemma 5.3 that X ×X is ω-monolithic (we actually
have a much stronger property, namely that every countable subset of X × X
is closed and discrete) so Proposition 7 of the paper [5] can be applied to see
that X × X is hereditarily Lindelöf and hence ∆X is a Gδ-subset of X. Applying
Theorem 2.1.8 of [2] we conclude that iw(X) ≤ ω and hence Cp(X) is separable.

Now Lemma 5.1 shows that Cp(X) is metrizable and Čech-complete whence X is
discrete and countable by [17, Problem 265].

It is an old theorem (see, e.g., [3, Theorem I.2.1]) that σ-compactness of Cp(X)
implies that X is finite. It turns out that it is possible to weaken the assumption
to discrete σ-compactness of Cp(X) to obtain the same conclusion.

5.6 Theorem. The space Cp(X) is discretely σ-compact if and only if X is finite.

Proof. Take any ϕ ∈ Cp(X) and let Y = ϕ(X). Apply Proposition 0.4.9 of [3] to
find an R-quotient map ξ : X → Y′ and a condensation π : Y′ → Y such that
π ◦ ξ = ϕ. The dual map ξ∗ : Cp(Y′) → Cp(X) is an embedding and the set
Z = ξ∗(Cp(Y′)) is discretely σ-compact being closed in Cp(X). Therefore Cp(Y′)
is also discretely σ-compact. Since Y′ condenses onto Y and w(Y) ≤ ω, we have
iw(Y′) ≤ ω. Any infinite space has an infinite discrete subspace so we can find
an infinite discrete set D ⊂ Y′ × Y′.

It follows from |D| ≥ ω ≥ iw(Y′) that we can apply Lemma 3.4 to see that
there is a discrete Ω ⊂ Cp(Y′) such that Cp(Y′, I) ⊂ Ω and hence Cp(Y′, I) is
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σ-compact being closed in Ω. By [17, Problem 396], the space Y′ is discrete and
therefore Cp(Y′) = Rλ where λ = |Y′|. If Y′ is infinite then Rω embeds in Rλ as
a closed subset so Rω is discretely σ-compact.

Note that the space A(ω) embeds in R as a closed subset and therefore the
space A(ω) × Rω is a closed subset of R × Rω ≃ Rω which shows that A(ω) ×
Rω is discretely σ-compact as well. Denote by p the unique non-isolated point
of A(ω) and apply Lemma 3.6 to see that Rω × {p} ⊂ D for some discrete
D ⊂ A(ω) × Rω. Since Rω × {p} is closed in D, it must be σ-compact which
is a contradiction.

Therefore Y′ is finite and hence so is Y, i.e., we proved that ϕ(X) is finite for
any ϕ ∈ Cp(X). Now, Lemma 2.6 of [10] shows that X must be finite.

6 Open problems

Discrete reflexivity in function spaces turned out to be an interesting topic with
a potential to provide new information about classical convergence properties in
Cp(X). We hope that the following list of open questions can convince the reader
that there are still a lot of nice facts to be discovered.

6.1 Question. Does there exist in ZFC a non-compact space X such that nw(X) > ω
while nw(D) ≤ ω for any discrete set D ⊂ Cp(X)?

6.2 Question. Does there exist in ZFC a non-compact uncountable space X such that
χ(D) ≤ ω for any discrete set D ⊂ Cp(X)?

6.3 Question. Suppose that D is normal for any discrete set D ⊂ Cp(X). Must the
space Cp(X) be normal?

6.4 Question. Suppose that the set D is hereditarily normal for any discrete
D ⊂ Cp(X). Must the space Cp(X) be normal?

6.5 Question. Suppose that D has countable pseudocharacter for any discrete set D ⊂
Cp(X). Must the space X be separable, or, equivalently, is it true that ψ(Cp(X)) = ω?

6.6 Question. Suppose that D has the Fréchet–Urysohn property for any discrete set
D ⊂ Cp(X). Must the space Cp(X) have the Fréchet–Urysohn property?

6.7 Question. Assume that D is sequential for any discrete set D ⊂ Cp(X). Must the
space Cp(X) have the Fréchet–Urysohn property?

6.8 Question. Assume that D is a k-space for any discrete set D ⊂ Cp(X). Must the
space Cp(X) have the Fréchet–Urysohn property?

6.9 Question. Assume that D is realcompact for any discrete set D ⊂ Cp(X). Must the
space Cp(X) be realcompact?

6.10 Question. Assume that D is Lindelöf for any discrete set D ⊂ Cp(X). Must the
space Cp(X) be realcompact?
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6.11 Question. Is it consistent with ZFC that countable tightness is discretely reflexive
in spaces Cp(X)?

6.12 Question. Is there a ZFC example of a compact space X such that D has the Lindelöf
Σ-property for any discrete subspace D ⊂ Cp(X) but the space Cp(X) is not Lindelöf Σ?

6.13 Question. Suppose that X is compact and D is K-analytic for any discrete subspace
D ⊂ Cp(X). Must the space Cp(X) be K-analytic?

6.14 Question. Suppose that the subspace D is Lindelöf for any discrete set
D ⊂ Cp(X)× Cp(X). Must Cp(X) be Lindelöf?

6.15 Question. Given a space X, denote by ∆ the diagonal of the space Cp(X) and
assume that (Cp(X)×Cp(X))\∆ is discretely Lindelöf. Must Cp(X) be Lindelöf? Must
X be separable?
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