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Abstract

We give a sufficient condition for the set of nowhere monotone mea-
sures to be a residual Gδ set in a subspace of signed Radon measures on a
locally compact second-countable Hausdorff space with no isolated points.
We prove that the set of nowhere monotone signed Radon measures on a d-
dimensional real space Rd is lineable. More specifically, we prove that there
exists a vector space of dimension c (the cardinality of the continuum) of
signed Radon measures on Rd every non-zero element of which is a nowhere
monotone measure that is almost everywhere differentiable with respect to
the d-dimensional Lebesgue measure. Using this result we show that the set
of these measures is even maximal dense-lineable in the space of bounded
signed Radon measures on Rd that are almost everywhere differentiable with
respect to the d-dimensional Lebesgue measure.

1 Introduction

Assume that M is a subset of a topological vector space X and α is a cardinal
number. Then M is called lineable if M ∪ {0} contains an infinite-dimensional
linear subspace. More specifically, M is called α-lineable if M ∪ {0} contains an
α-dimensional linear subspace. If M ∪ {0} contains a closed infinite-dimensional
linear subspace it is called spaceable. If the set M ∪ {0} contains an infinite-
dimensional subspace that is dense in X, the set M is called dense-lineable. If M
is dim(X)-(dense)lineable, we call it maximal (dense)-lineable. Finally, if M ∪{0}
contains an infinitely generated algebra we call it algebrable.
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The concept of lineability was coined by V. I. Gurariy in the early 2000’s
and it first appeared in print in [Gurariy and Quarta(2004)], [Aron et al.(2005)]
and [Seoane-Sepúlveda(2006)]. Note, however, that V. I. Gurariy’s interest in
linear structures in generally non-linear settings dates as far back as 1966 (see
[Gurariy(1966)]). The study of large vector structures in sets of real and complex
functions has attracted many mathematicians in the last decade. For example,
in [Aron et al.(2005), Theorem 4.3], the authors prove that the set of everywhere

surjective functions on R is 2|R|-lineable. This result has been further improved
in [Gámez-Merino et al.(2010)], where the authors prove that the set of strongly
everywhere surjective functions and the set of perfectly everywhere surjective

functions are both 2|R|-lineable as well. In the same paper, the authors show that
the set NMD of nowhere monotone everywhere differentiable functions on R is
|R|-lineable (this result has been a motivation for our study of lineability of the
set of nowhere monotone measures).

As more and more examples of lineable sets were found, the questions of
dense-lineability and spaceability gradually attracted more attention. In
[Aron et al.(2009)] the authors show, among other results, that the set of nowhere
differentiable functions, the set of non-analytic C∞ functions, the set of functions
in Cm \Cn (with m < n) and the set NMD (all considered on a non-empty closed
interval [a, b]) are all dense-lineable in C([a, b]). In [Garcı́a et al.(2010)] the au-
thors construct a Banach spaces of non-Riemann-integrable bounded functions
that have an antiderivative at each point point of an interval, a Banach space
of differentiable functions on Rd failing the Denjoy-Clarkson property and a Ba-
nach space of infinitely differentiable functions that vanish at infinity and are not
the Fourier transform of any Lebesgue-integrable function. In [Aron et al.(2006)],
it is shown that given any Lebesgue-null subset J ⊂ T the set of functions in
C(T) whose Fourier series diverges in J contains a dense infinitely generated al-
gebra. For some other recent results concerning algebrability see, for example,
[Bayart and Quarta(2007)], [Aron et al.(2010)], or [Garcı́a-Pacheco et al.(2007)].

Even though most of the results on lineability focus on the study of sets of
functions, papers concerning lineability of vector measures [Muñoz-Fernández et
al.(2008)] and lineability of operators [Puglisi and Seoane-Sepúlveda(2008)] have
also been published. Some results concerning general properties of lineable sets
have appeared, despite the fact that most literature deals with specific sets of
functions or operators. For example, in [Aron et al.(2009), Theorem 2.2] the au-
thors present a sufficient condition on a lineable subset of a separable Banach
space to be dense-lineable. This technique allows for short, elegant proofs of
several of the theorems mentioned above. These conditions have been further
studied in a recent article [Bernal-González and Cabrera(2014)] in which the au-
thors prove an analogous result in the setting of general vector spaces. In an-
other recent article (see [Ciesielski et al.(2014)]), the authors present the concept
of maximal lineability cardinal number and use it to prove several results con-
cerning lineability of specific sets of real functions. Lastly, we recommend the
recently published survey [Bernal-González et al.(2014)] to the interested reader.
It provides an exceptionally well arranged list of the most important results in
the field, far beyond the scope of this article.
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2 Notation

For d ∈ N we denote by λd the d-dimensional Lebesgue measure (we write λ
instead of λ1). For a function g : Rd 7→ R we denote by {g > 0} the set of all
x ∈ Rd such that g(x) > 0. By c or |R| we denote the cardinality of the set of
real numbers. Furthermore, for P either R or a non-empty closed interval of R

we denote by C(P) the set of all real continuous functions on P endowed with
the uniform norm || f ||. For a locally compact Hausdorff space X we denote by
Cc(X) the set of all real continuous functions on X with compact support.

For a signed measure µ we denote by µ+ and µ− the positive and negative
variation of µ, respectively. We denote by M(X) the set of all signed Radon
measures on a locally compact Hausdorff space X endowed with the norm ||µ|| =
µ+(X)+µ−(X). For µ ∈ M(X) we denote the support of µ by supp µ. Moreover,
if µ and ν are two measures on X such that for any open set G ⊂ X, ν(G) = 0
implies µ(G) = 0, we write µ ≪ ν and say that µ is absolutely continuous with
respect to ν. For any given measure ν ∈ M(X) we denote the closed subspace
{µ ∈ M(X) : µ ≪ ν} by ACν(X).

We recall the definitions of density topology and of approximately continuous
functions here for the reader’s convenience. A measurable set B ⊂ Rd is called
density open if

lim
r→0+

λd(B(x, r) ∩ B)

λd(B(x, r))
= 1,

for every x ∈ B. It is clear that every euclidean open set is also density open, that
is, the density topology is finer than the euclidean topology.

A function F : Rd 7→ R is called approximately continuous if the sets {F > β}
and {F < β} are density open for all β ∈ R. There are several mutually equiv-
alent ways how to define approximately continuous functions. The reader inter-
ested in the density topology and in the properties of approximately continuous
functions should consult [Bruckner(1994)], [Lukeš and Malý(2005)] or
[Lukeš et al.(1986)] where these topics are presented in detail.

3 Nowhere Monotone Measures, Spaces with Humps

Let us start with a definition.

Definition 3.0.1. Let X be a locally compact Hausdorff space and µ be a Radon
measure on X. We say that µ is nowhere monotone if µ+(G) > 0 and µ−(G) > 0
for every non-empty open set G ⊂ X.

The concept of nowhere monotone measures has its origins in works concern-
ing Choquet theory (see [McDonald(1971)], [McDonald(1973)]). However, the
concept closely relates to that of nowhere monotone functions. Indeed, suppose
that f is a nowhere monotone function of bounded variation on [0, 1]. Then f is
a distribution function of some nowhere monotone Lebesgue-Stieltjes measure.
This example can be, in fact, taken as a direct motivation for defining these mea-
sures.



876 P. Petráček

Once the relation between nowhere monotone functions and nowhere mono-
tone measures has been established, various questions arise. We have already,
albeit informally, established that such measures exist. In the following section
we will prove that these measures form a residual set in the space of signed
Radon measures M(X) on specific Hausdorff spaces. Note that this is analo-
gous to the density of the set of nowhere monotone functions in C([a, b]) (see
[Aron et al.(2009), Theorem 3.3]). To prove this result we will introduce the no-
tion of spaces with humps.

Definition 3.0.2. Let A be a closed subspace of M(X). We say that A has humps,
if there exists q ∈ (0, 1) such that for every non-empty open set G ⊂ X there exists
µ ∈ A, such that ||µ|| = 1 and µ(G) ≥ q.

The idea of humps first appeared in a slightly less general form in a Bachelor
thesis of M. Kolář (see [Kolář(2009)]).

The following lemma establishes that for certain µ ∈ M(X) the spaces ACµ(X)
have humps. This will prove useful later, when we study lineability of nowhere
monotone measures.

Lemma 3.0.3. Suppose that µ0 is a locally finite measure on X such that supp µ0 = X.
Then ACµ0(X) has humps.

Proof. Let G ⊂ X be a non-empty open set such that |µ0(G)| is finite and
|µ0|(G) =: α > 0. We may assume that µ+

0 (G) ≥ α
2 (otherwise consider −µ0

instead of µ0). By inner regularity of µ+
0 and µ−

0 there exist disjoint compact
sets K+ ⊂ G and K− ⊂ G such that µ0 = µ+

0 on K+, µ0 = µ−
0 on K− and

µ+
0 (K

+) + µ−
0 (K

−) >
3α
4 . Since X is Hausdorff, there exist disjoint open sets V

and W such that K+ ⊂ V ⊂ G and K− ⊂ W ⊂ G. By Urysohn’s lemma we can
construct functions f , g ∈ Cc(X), 0 ≤ f ≤ 1, 0 ≤ g ≤ 1, f = 1 on K+ and f = 0

on X \ V, g = 1 on K− and g = 0 on X \ W. Let h = f − g and
Dµ
Dµ0

= h. Then

||µ|| ≤ α and

µ(G) ≥ µ+
0 (K

+) + µ−
0 (K

−)− |µ0|(G \ (K+ ∪ K−)) ≥
3α

4
−

α

4
=

α

2

It easily follows that the measure ν := µ
||µ||

has all the desired properties.

Theorem 3.0.4. Let X be a locally compact second-countable Hausdorff space with no
isolated points and let A ⊆ M(X) be a closed subspace that has humps. Then the set of
all nowhere monotone Radon signed measures on X is residual in A.

Proof. Let {Gn}n∈N be a countable basis of open sets in X and denote by N (X)
the set of all nowhere monotone measures in X. Define

E+
n := {µ ∈ A : µ+(Gn) = 0} and E−

n := {µ ∈ A : µ−(Gn) = 0}.

Clearly

A \N =
⋃

n∈N

E+
n ∪

⋃

n∈N

E−
n .
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Fix n ∈ N. To prove that E+
n is closed, consider a sequence {µk}k∈N in E+

n

such that ||µk − µ|| → 0 for some µ ∈ A. Then also µk
ω∗

→ µ. Therefore (see
[Lukeš and Malý(2005), Theorem 17.4])

µ+(Gn) ≤ lim inf
k

µ+
k (Gn) = 0.

To prove that the interior of E+
n is empty fix µ ∈ E+

n , ε > 0 and q ∈ (0, 1) from
Definition 3.0.2. Since X is Hausdorff and has no isolated points, Gn is infinite.
Therefore there exists z ∈ Gn such that µ−({z}) <

qε
2 . By regularity of µ there

exists an open set G ⊂ Gn such that z ∈ G and µ−(G) < qε
2 . Since A has humps,

we can find ν ∈ A such that ||ν|| = ε and ν(G) ≥ qε. Set γ := µ + ν. Then
||µ − γ|| = ε and γ+(Gn) ≥ γ+(G) ≥ qε − qε

2 > 0, which means that γ /∈ E+
n .

The sets E+
n are closed and their interiors are empty, therefore they are nowhere

dense. Using a similar argument we can prove that the sets E−
n have the same

properties.

Remark 3.0.5. Letting A = M(X) in the previous theorem answers the question
of existence of nowhere monotone measures in M(X) for suitable choices of X.
We will, however, use Theorem 3.0.4 to prove the existence and lineability of a
more specific type of nowhere monotone measures.

A question one might ask at this point is under what assumptions can we
expect A to have humps. It follows immediately from definition that no finite-
dimensional subspace of M(X) can have this property. It is also not difficult to
come up with an example of a subspace generated by a countably infinite se-
quence of measures that does (for example, for X = R consider the subspace
A = span{εq, q ∈ Q}). However, not every infinitely generated closed subspace
of M(X) has to have humps. Take for example A = span{µ1, µ2, . . . } such that⋃

n supp µn ⊂ X \ G, where G is a non-empty open subset of X. But even when
the the sets supp µn form a covering of X the space A need not have humps. We
will formulate this as a separate result.

Theorem 3.0.6. There exists an infinite-dimensional space A ⊂ M([0, 1]),
A = span{µ1, µ2, . . . } such that

⋃

n

supp µn = [0, 1], (1)

A does not have humps and the set of all nowhere monotone measures on [0, 1] is residual
in A.

Proof. Define the sequence of generating measures as follows:

Dµn

Dλ
:= 2nχIn , n ∈ N,

where In := [1 − 2n−1, 1 − 2n]. It is obvious that (1) holds. To prove that A does
not have humps, pick 0 < ε <

1
2 and find an open interval J ⊂ I1 such that

λ(J) < ε. For any ν ∈ span{µ1 , µ2, . . . }, ||ν|| = 1 we have

|ν(J)| < µ1(J) < 2ε.
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For a general ν ∈ A, ||ν|| = 1 find a sequence

{νk}
∞
k=1 ⊂ span{µ1 , µ2, . . . }, ||νk|| = 1, k ∈ N,

such that ||ν − νk|| → 0. Then also νk
ω∗

→ ν. Using [Lukeš and Malý(2005), Theo-
rem 17.4] and the previous paragraph we get

ν+(J) ≤ lim inf
k

ν+k (J) < 2ε.

Using the same argument for −ν instead of ν yields the same inequality for ν−(J).
Hence we have

|ν(J)| < 2ε.

This shows that A does not have humps.
Since the proof of residuality of nowhere monotone measures in A is very

similar to the proof of Theorem 3.0.4 we will make free use of its notation. In
fact, the proof of closedness of the sets E+

n is exactly the same. To prove that
these sets have empty interior, pick µ ∈ E+

n and ε > 0. Since the support sets of
generating measures form a covering of [0, 1], there exists an interval Im such that
Gm ∩ Im 6= ∅. Set κ = µ + εµm. Then ||µ − κ|| = ε and κ+(Gm) = εµn(Gm) > 0,
which means that κ /∈ E+

n . This finishes the proof.

4 Lineability of Nowhere Monotone λd-differentiable Measures

In this section we will prove that not only there exists a nowhere monotone mea-
sure on Rd that is a.e. differentiable with respect to the d-dimensional Lebesgue
measure but also that the set of all such measures is |R|-lineable.

Corollary 4.0.1. There exists a nowhere monotone Radon signed measure µ on Rd that
is absolutely continuous with respect to Lebesgue measure λd.

Proof. According to Lemma 3.0.3 the set {µ ∈ M(Rd) : µ ≪ λd} has humps.
It remains to use Theorem 3.0.4.

To prove the existence of an everywhere differentiable nowhere monotone
measure we need the following theorem (for details see [Lukeš et al.(1986), Chap-
ter 3]).

Theorem 4.0.2. Let E ⊂ Rd be a density open Fσ set. Then there exists an approximately
continuous function φ, 0 ≤ φ ≤ 1, such that {φ > 0} = E.

Theorem 4.0.3. Let f : Rd 7→ R be a measurable function. There exists a Radon

measure µ on Rd that is absolutely continuous with respect to λd and such that
Dµ
Dλd

exists everywhere on Rd. Moreover,

P :=

{
Dµ

Dλd
> 0

}
⊂ { f > 0}, N :=

{
Dµ

Dλd
< 0

}
⊂ { f < 0}

and
λd({ f > 0} \ P) = λd({ f < 0} \ N) = 0.
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Proof. Let P̃ be the interior of the set { f > 0} in the density topology. By the

Lebesgue density theorem, λd({ f > 0} \ P̃) = 0. By regularity of Lebesgue

measure, there exists an Fσ set P ⊂ P̃ such that

λd({ f > 0} \ P) = λd(P̃ \ P) = 0.

It is obvious that P is also open in the density topology. By Theorem 4.0.2 there
exists an approximately continuous function φ such that 0 ≤ φ ≤ 1, {φ > 0} = P.
We may assume that φ ∈ L1(Rd) (otherwise consider the function

φ̃(x) := φ(x) · e−||x||2 instead).
Similarly, there exists a density open Fσ set N such that N ⊂ { f < 0},

λd({ f < 0} \ N) = 0

and an approximately continuous function ψ ∈ L1(Rd) such that 0 ≤ ψ ≤ 1 and

{φ > 0} = N. Let µ be a measure on Rd such that
Dµ
Dλd

= ψ − φ. It is easy to check

that the sets P, N and the measure µ have all the desired properties.

Theorem 4.0.4. There exists a nowhere monotone Radon signed measure µ on Rd that
is everywhere differentiable with respect to λd.

Proof. Let ν be a nowhere monotone measure that is absolutely continuous with
respect to λd (the existence of such a measure is guaranteed by Corollary 4.0.1)
and let f : Rd 7→ R be a representative of the Radon-Nikodym derivative Dν

Dλd
. It

remains to use the previous theorem to finish the proof.

Remark 4.0.5. We obtain an even stronger result in the case d = 1. The distribu-
tion function of the measure constructed in the previous theorem is then even
everywhere differentiable in the classical sense.

Theorem 4.0.6. The set of all nowhere monotone almost everywhere differentiable Radon
signed measures on Rd is |R|-lineable.

Proof. First, put fα(x) := e
− α

1+||x||2 , x ∈ Rd, for α ∈ R. According to Theorem

4.0.4, there exists a nowhere monotone measure µ such that
Dµ
Dλd

= f exists every-

where on Rd. Define the measures µα for α ∈ R as follows

Dµα

Dλd
:= f · fα. (2)

Since

{( f · fα) > 0} = { f > 0} ∩ { fα 6= 0},

{( f · fα) < 0} = { f < 0} ∩ { fα 6= 0},

the measures µα are nowhere monotone. Consider a measure

ν :=
n

∑
i=1

biµαi
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for some n ∈ N and some bi not all zero. Then

Dν

Dλd
= f

n

∑
i=1

bi fαi

λd-almost everywhere. Denote

g(x) :=
n

∑
i=1

bi fαi
(x), x ∈ Rd.

The function g is constant on every sphere centered in the origin. A simple
observation yields that its restriction on any one-dimensional subspace of Rd

takes zero value in at most countably many points. Thus we get

λd({g = 0}) = 0.

Hence ν is non-trivial. Furthermore, since
{

Dν

Dλd
> 0

}
= ({ f > 0} ∩ {g > 0}) ∪ ({ f < 0} ∩ {g < 0}),

{
Dν

Dλd
< 0

}
= ({ f > 0} ∩ {g < 0}) ∪ ({ f < 0} ∩ {g > 0}),

the measure ν is nowhere monotone. To finish the proof consider the set

span{µα : α ∈ R}.

Remark 4.0.7. The idea of using the functions e
− α

1+||x||2 to produce the set
{µα : α ∈ R} was first used in [Gámez-Merino et al.(2010)], where it was used
to prove that the set of nowhere monotone everywhere differentiable functions
on R is |R|-lineable. The fact that this method could have been used in our proof
is not too surprising taking in mind our previous commentary on the analogy
between nowhere monotone functions and nowhere monotone measures.

5 Maximal Dense-lineability of Nowhere Monotone Measures in

ACλd
(Rd)

In this section we aim to prove that NMλd
(Rd) is even maximal dense-lineable

in ACλd
(Rd). Let us first recall the notion of strong sets (see [Aron et al.(2009)]):

if A and B are subsets of a vector space X, then A is said to be stronger than B if
A+ B ⊆ A. The following recent result (see [Bernal-González and Cabrera(2014),
Theorem 2.3 (c)]) will play a crucial role in our proof.

Theorem 5.0.1. Assume that X is a topological vector space. Let A ⊂ X. Suppose that
there exists a subset B ⊂ X such that A is stronger than B and B is dense-lineable. If the
origin possesses a fundamental system U of neighborhoods with card(U) ≤ dim(X), A
is maximal lineable and A ∩ B = ∅, then A is maximal dense-lineable. In particular, the
same conclusion follows if X is metrizable, A is maximal lineable and A ∩ B = ∅.
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Note that the above theorem strengthens the result in [Aron et al.(2009), The-
orem 2.2]. Neither separability, nor metrizability of X are needed as a general
assumption. Moreover, if the sets A and B are disjoint, the above theorem even
provides an estimate of the dimension of the obtained subspaces.

Some additional notation is required in the following: We denote by

C1
k ⊂ [0, 1], k ∈ N,

the fat Cantor set constructed by the well-known inductive process in which in

the n-th step we remove 2n−1 intervals of length 4−(k+n). For any k, d ∈ N, d > 1
we denote by Cd

k ⊂ [0, 1]d the set

Cd
k := C1

k × · · · × C1
k︸ ︷︷ ︸

d

.

The sets {Cd
k}d,k∈N are closed and nowhere dense in the respective spaces. They

also satisfy the following property: For any d ∈ N and ε > 0 there exists k ∈ N

such that
λd(C

d
k ) ≥ 1 − ε.

We also denote
Id
n := [−n, n]d , n, d ∈ N.

Each Id
n can be written as a union of (2n)d cubes of λd-measure 1. We denote the

set of these cubes {Id
n,k}

(2n)d

k=1 .

Lemma 5.0.2. Let us denote for d ∈ N

Bd :=

{
µ ∈ ACλd

(Rd) \ {0} : spt

{
Dµ

Dλ

}
is nowhere dense

}
.

Then Bd has the following properties:

(i) Bd is nonempty,

(ii) Bd ∪ {0} is closed under linear combinations,

(iii) NMλd
(Rd) ∩ Bd = ∅,

(iv) NMλd
(Rd) is stronger than Bd.

Proof. To prove (i) consider ν ∈ ACλd
(Rd) defined as

Dν

Dλd
:= χCd

1
.

Clearly ν ∈ Bd. Properties (ii) and (iii) follow trivially from the definition of Bd.

To prove (iv), let a ∈ NMλd
(Rd), b ∈ Bd, and I ⊂ Rd open. Since spt

{
Db
Dλ

}
is

nowhere dense, there exists a nonempty open set I ′ ⊂ I such that |b|(I ′) = 0.
Thus

(a + b)+(I) ≥ (a + b)+(I ′) = a+(I ′) > 0,

(a + b)−(I) ≥ (a + b)−(I ′) = a−(I ′) > 0

and a + b ∈ NMλd
(Rd).
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Lemma 5.0.3. The set Bd defined in Lemma 5.0.2 is dense in ACλd
(Rd) for any d ∈ N.

Proof. Let µ ∈ ACλd
(Rd) \ Bd, ||µ|| = 1 and ε > 0 be given. Find n ∈ N such that

|µ|(Rd \ Id
n) ≤

ε
2 . Denote

c := λd

(
spt

{
Dµ

Dλd

}
∩ Id

n

)

and let ε′ := min
{

ε
2 , c

2

}
. Find k ∈ N such that

λd(C
d
k ) ≥ 1 −

ε′

(2n)d
.

For every j ∈ {1, . . . , (2n)d} denote by Cd
k,j the copy of Cd

k in Id
n,j and let

Cε′ :=
(2n)d
⋃

j=1

Cd
k,j.

Finally, set
Dν

Dλd
:=

Dµ

Dλd
χCε′

.

We claim that ν ∈ Bd. Indeed, since

spt

{
Dν

Dλd

}
⊆ Cε′ ,

we have ν ∈ Bd ∪ {0}. But ν = 0 would imply

λd

(
spt

{
Dµ

Dλd

})
= λd

(
spt

{
Dµ

Dλd

}
∩ (Id

n \ Cε′)

)

≤ λd

(
Id
n \ Cε′

)
≤ (2n)d ε′

(2n)d
≤

c

2
,

which is a contradiction. Thus, ν ∈ Bd. Furthermore,

||µ − ν|| =
∫

Rd

∣∣∣∣
Dµ

Dλd
−

Dν

Dλd

∣∣∣∣ dλd

≤
∫

Id
n\Cε′

∣∣∣∣
Dµ

Dλd

∣∣∣∣ dλd +
ε

2

≤ λd(Id
n \ Cε′) +

ε

2
≤ ε.

This finishes the proof.
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Theorem 5.0.4. The set NMλd
(Rd) is maximal dense-lineable in ACλd

(Rd) for any
d ∈ N.

Proof. As mentioned at the beginning of this section, we aim to use Theorem 5.0.1.
If follows from Riesz’ theorem (see [Rudin(1987), Theorem 6.19]) that the cardi-
nality of ACλd

(Rd) is c. Thus, by Theorem 4.0.6, NMλd
(Rd) is maximal-lineable

in ACλd
(Rd). Furthermore, it follows from Lemma 5.0.2(ii) and Lemma 5.0.3 that

Bd is dense-lineable in ACλd
(Rd). Disjointness of Bd and NMλd

(Rd) follows
from Lemma 5.0.2(iii) and by Lemma 5.0.2(iv) NMλd

(R) is stronger than Bd.
The result thus follows from Theorem 5.0.1.

6 Final Remarks, Open Problems

Further inspection of spaces with humps could provide some useful results. The
author would be interested in finding out whether some useful characterizations
of these spaces can be found. One could also ask whether restricting the values
of the coefficient q to some strictly smaller interval would yield some non-trivial
(and perhaps interesting) classes of spaces. Lastly, the space constructed in The-
orem 3.0.6 has the following property: for every open set I ⊂ [0, 1], there exist
only finitely many measures in {µn}n∈N such that I intersects the supports of
these measures. This leads to the following question: Suppose we have a closed
infinitely-dimensional subspace A ⊂ M(X), A = span{µγ, γ ∈ Γ} such that for
every non-empty open set G ⊂ X there exist infinitely many measures in the set
{µγ}γ∈Γ such that the supports of these measures intersect G. Does A then have
to have humps?
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