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Abstract

We characterize Banach lattices under which each AM-compact (resp.
b-AM-compact) operator is Dunford-Pettis. Also, we study the AM-compact-
ness of limited completely continuous operators.

1 Introduction

Throughout this paper X, Y will denote Banach spaces, and E, F will denote
Banach lattices. The positive cone of E will be denoted by E+.

The class of AM-compact operators was introduced and studied by Dodds-
Fremlin [9]. We say that an operator T : E → X is called AM-compact if the
image of each order bounded subset of E is a relatively compact subset of X.

Following Aliprantis and Burkinshaw we say that an operator T : X → Y is
called a Dunford-Pettis operator if for each weakly null sequence (xn), we have
lim

n→∞
‖T(xn)‖ = 0). Equivalently, T carries relatively weakly compact sets onto

relatively compact subsets of Y [1].
Recently, M. Salimi et S. M. Moshtaghioun introduced the class of limited

completely continuous operators, and characterized this class of operators and
studied some of its properties in [12]. Let us recall that the operator T : X −→ Y
is called limited completely continuous (abb. lcc), if T carries limited and weakly
null sequences in X to norm null ones. Alternatively, T is lcc if, and only if, for
each limited set A ⊂ X, the set T(A) is relatively compact, [12].

In [5], the authors studied the AM-compactness of Dunford-Pettis operators.
Our goal in the first section of this article is to study the Banach lattice under
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which every AM-compact operator is Dunford-Pettis. In fact,we give necessary
conditions under which each AM-compact operator is Dunford-Pettis. More pre-
cisely, we show that if any AM-compact operator T from a Banach lattice E such
that its norm is order continuous, in a Banach lattice F, is Dunford-Pettis then E
admits the positive Schur property or the norm of F is order continuous (The-
orem 3.4 ). Also, we establish some sufficient conditions for each AM-compact
operator is Dunford-Pettis (Theorem 3.2) and with an example, we prove that the
condition “the norm of E is order continuous” is essential in Theorem 3.2.

In the second section of this article, we will study the AM-compactness of lcc
operators. In fact, we give some sufficient conditions under which each AM-
compact operator is an lcc (Theorem 3.6). As a consequence of Theorem 3.2
and Theorem 3.6, we give some sufficient conditions under which each Dunford-
Pettis operator is lcc.

2 Preliminaries

To state our results, we need to fix some notations and recall some definitions.
A Banach lattice is a Banach space (E, ‖.‖) such that E is a vector lattice and its
norm satisfies the following property: for each x, y ∈ E such that |x| ≤ |y|, we
have ‖x‖ ≤ ‖y‖. A norm ‖ · ‖ of a Banach lattice E is order continuous if for
each generalized sequence (xα) such that xα ↓ 0 in E, (xα) converges to 0 for the
norm ‖ · ‖ where the notation xα ↓ 0 means that (xα) is decreasing, its infimum
exists and inf(xα) = 0. Note that if E is a Banach lattice, its topological dual E′,
endowed with the dual norm and the dual order, is also a Banach lattice.

A Banach lattice E is said to have the positive Schur property if every weakly
convergent sequence to 0 in E+ is norm convergent to zero. For example, the
Banach space ℓ1 has the positive Schur property but the Banach space ℓ∞ does
not has this property.

A Banach lattice E is called a KB-space whenever every increasing norm boun-
ded sequence of E+ is norm convergent. As an example, each reflexive Banach
lattice is a KB-space, but the Banach lattice c0 is not a KB-space.

Recall that a subset A of a Banach lattice E is almost order bounded, if for all
ǫ > 0 there exists x ∈ E+ with A ⊂ [−x, x] + ǫBE.

A nonzero element x of a vector lattice E is discrete if the order ideal gen-
erated by x equals the lattice subspace generated by x. The vector lattice E is
discrete, if it admits a complete disjoint system of discrete elements. A subset A
of a vector lattice E is called order bounded, if it include in an order interval in
E. A linear mapping T from a vector lattice E into another F is order bounded
if it carries order bounded set of E into order bounded set of F. We will use the
term operator T : E −→ F between two Banach lattices to mean a bounded linear
mapping, it is positive if T(x) ≥ 0 in F whenever x ≥ 0 in E. The operator T is
regular if T = T1 − T2 where T1 and T2 are positive operators from E into F. Note
that each positive linear mapping on a Banach lattice is continuous, If an operator
T : E −→ F between two Banach lattices is positive, then its adjoint T′ : F′ −→ E′

is likewise positive, where T′ is defined by T′( f )(x) = f (T(x)) for each f ∈ F′

and for each x ∈ E. For terminologies concerning Banach lattice theory and posi-
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tive operators we refer the reader to the excellent book of Aliprantis-Burkinshaw
[1].

3 Main results

3.1 On the classes of Dunford-Pettis and AM-compact operators

Recall that an operator T : E → Y is almost Dunford-Pettis if ‖T(xn)‖ → 0 for
every weakly null sequence (xn) in E consisting of pairwise disjoint elements
[13]. Note that every Dunford-Pettis operator is almost Dunford-Pettis, but the
converse is not true in general. Indeed, the identity operator of the Banach lat-
tice L1[0, 1] is almost Dunford-Pettis and fails to be Dunford-Pettis. On the other
hand, an AM-compact operator is not necessary a Dunford-Pettis. In fact, the
identity operator of the Banach lattice c0 is AM-compact but fails to be Dunford-
Pettis.

Proposition 3.1. If T : F → X is an AM-compact operator and S : E → F is an almost
Dunford-Pettis operator, then the product T ◦ S is Dunford-Pettis.

In the following result, we give a sufficient conditions under which each
AM-compact operator is Dunford-Pettis.

Theorem 3.2. Each AM-compact operator T : E −→ F is Dunford-Pettis if one of the
following statements is valid:

1. E has the positive Schur property,

2. F has the Schur property.

Proof. (1) Let T : E → F be an operator and A be a relatively weakly compact
subset of E. Since E has the positive Schur property, it follows from
Theorem 3.1 of [8] that A is almost order bounded, then there exists x ∈ E+ with
A ⊂ [−x, x] + ǫBE and hence T(A) ⊂ T([−x, x]) + ǫ‖T‖BF.

Now, as T is AM-compact then, T([−x, x]) is relatively compact in F and hence
T(A) is relatively compact. This show that T is Dunford-Pettis.

(2) In this case each operator is Dunford-Pettis.

Recall from [3] that an operator T : E → X is said to be b-AM-compact if it
carries b-order bounded set of E (i.e., order bounded in E′′) into norm relatively
compact set of X. Note that a b-AM-compact operator is not necessary Dunford-
Pettis. In fact, the identity operator of the Banach lattice ℓ2 is b-AM-compact
(because ℓ2 is a discrete KB-space) but it is not a Dunford-Pettis operator (because
ℓ2 does not has the Schur property).

As consequence of Theorem 3.2, we obtain the following result,
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Corollary 3.3. Each b-AM-compact operator T : E −→ F is Dunford-Pettis if one of
the following statements is valid:

1. E has the positive Schur property,

2. F has the Schur property.

Reciprocally, we give necessary conditions under which each AM-compact
operator is Dunford-Pettis,

Theorem 3.4. Let E and F be two Banach lattices such that the norm of E is order
continuous. If each AM-compact operator T : E −→ F is Dunford-Pettis then one of the
following statements is valid:

1. E has the positive Schur property,

2. F has an order continuous norm.

Proof. Assume that E does not has the positive Schur property and that the norm
of F is not order continuous. Since E does not have the positive Schur property,
it follows from Proposition 2.1 of [2] that there is a disjoint weakly null sequence
(xn) in E+ with ‖xn‖ = 1 for all n. Hence, by Proposition 2.5 of [2], there exists
a positive disjoint sequence (gn) in E′ with ‖gn‖ = gn(xn) = 1 for all n and
gn(xm) = 0 if n 6= m. (⋆)

Since the norm of E is order continuous, it follows from Corollary 2.4.3 of [11]
that gn → 0 for σ(E′, E). Hence, the positive operator Q : E → c0 defined by

Q(x) = (gn(x))∞
n=1 for all x ∈ E,

is well defined. On the other hand, since the norm of F is not order continuous,
there exists a disjoint sequence (yn) of F+ and y ∈ F+ such that 0 ≤ yn ≤ y and
‖yn‖ = 1 for each n.

Now, we consider the positive operator S : c0 → F defined by

S((λn)) =
∞

∑
n=1

λnyn for all (λn) ∈ c0.

The series defining Q is norm convergent for (λn) ∈ c0 because the sequence (yn)
is disjoint and order bounded.

Now, we consider the positive operator T = S ◦ Q : E → c0 → F. It is clear
that T is AM-compact but T is not Dunford-Pettis. In fact, note that (xn) is a
weakly null sequence of E+ and then by (⋆) we have

T(xn) = S ◦ Q(xn) = S(en) = yn for all n.

If T is Dunford-Pettis, then lim
n→∞

‖T(xn)‖ = lim
n→∞

‖yn‖ = 0, which contradicts with

‖yn‖ = 1 for all n.

Remark 1. The assumption “E has an order continuous norm” is essential in Theorem
3.4. In fact, each operator T : ℓ∞ → c is Dunford-Pettis but neither ℓ∞ has the positive
Schur property nor c has an order continuous norm.



Some results on AM-compact operators 569

3.2 On the classes of limited completely continuous and AM-compact

operators

To study the AM-compactness of lcc operators, we need to recall some definitions.
A norm bounded subset A of X is said limited set if every weak⋆ null sequence

( fn) of X′ converges uniformly to zero on A [7], that is, lim
n→∞

supx∈A |〈 fn, x〉| = 0.

Note that every relatively compact set is limited but the converse is not true in
general. Indeed, the set {en : n ∈ N} of unit coordinate vectors is a limited set in
ℓ∞ which is not relatively compact. If every limited subset of X is relatively com-
pact then, X has the Gelfand-Phillips property (abb. GP-property). Alternatively,
X has the GP-property if, and only if, every limited and weakly null sequence
(xn) in X is norm null ones [10]. As an example, the classical Banach spaces c0

and ℓ1 has the GP-property but the Banach space ℓ∞ does not has this property.
Let us recall from Borwein [6] that, X has the Dunford-Pettis⋆ property (abb.

DP⋆ property) if every relatively weakly compact subset of X is limited. Also, the
lattice operations in E′ are called weak⋆ sequentially continuous if the sequence
(| fn|) converges to 0 for the weak⋆ topology σ(E′, E) whenever the sequence ( fn)
converges to 0 for the topology σ(E′, E). And, the lattice operations of E are
weak sequentially continuous if the sequence (|xn|) converges to 0 for the weak
topology σ(E, E′) whenever the sequence (xn) converges to 0 for the topology
σ(E, E′).

Note that there exists a lcc operator which is not AM-compact. Indeed, the
identity operator of the Banach space L2[0, 1] is lcc (because L2[0, 1] has the
GP-property) but fails to be AM-compact (because L2[0, 1] is not discrete).

To establish our first result in this section, we will need the following Lemma,
which gives a characterization of limited order intervals .

Lemma 3.5. Let E be a Banach lattice. Then the following assertions are equivalent

1. E′ has weak⋆ sequentially continuous lattice operations,

2. for each x ∈ E+, the order interval [−x, x] is limited.

Proof. [−x, x] is limited if, and only if, sup{| fn(z)|; z ∈ [−x, x]} −→ 0.
As | fn|(x) = sup{| fn(z)|; z ∈ [−x, x]}, we conclude that | fn| converge weak⋆

to 0, i.e. E′ has weak⋆ sequentially continuous lattice operations.

The following result gives some sufficient conditions under which each lcc
operator from E into X is AM-compact,

Theorem 3.6. Each lcc operator T : E → X is AM-compact if one of the following
assertions is valid:

1. E has an order continuous norm and has the DP⋆ property,

2. E′ has weak⋆ sequentially continuous lattice operations,

3. F is a discrete with an order continuous norm,
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Proof. (1) Let x ∈ E+, since E has an order continuous norm then, the order
interval [−x, x] is weakly relatively compact.

On the other hand, since E has the DP⋆ property then, [−x, x] is a limited
subset of X. Now, since T is lcc then T([−x, x]) is relatively compact and hence T
is AM-compact.

(2) Let x ∈ E+ and E′ has weak⋆ sequentially continuous lattice operations
then, it follows from Lemma 3.5 that the order interval is a limited subset of E.
Now, since T is lcc then T([−x, x]) is relatively compact and hence T is
AM-compact.

(3) In this case, each operator T : E → X is AM-compact.

Note that each Dunford-Pettis operator is lcc, but the converse is not true in
general. Indeed, the identity operator of the Banach lattice ℓ2 is lcc but fails to
be a Dunford-Pettis operator. However, as a consequence of Theorem 3.2 and
Theorem 3.6, we obtain sufficient conditions under which each Dunford-Pettis
operator is lcc,

Corollary 3.7. Let E and F two Banach lattices. Then, each lcc operator T : E → X is
Dunford-Pettis if one of the following conditions is valid:

1. E admits the positive Shur property and has the DP⋆ property,

2. E admits the positive Shur property and E′ has a sequentially continuous lattice
operations,

3. E admits the positive Shur property and F is discreet with order continuous norm.

The following Proposition gives some properties whenever each lcc operator
from a Dedekind σ-complete Banach lattice E into F is AM-compact,

Proposition 3.8. Let E and F be a two Banach lattices such that E is Dedekind
σ-complete and the lattice operations of F are weakly sequentially continuous. If each
lcc operator T : E → X is AM-compact then one of the following assertions is valid:

1. E has an order continuous norm,

2. F is a discrete with an order continuous norm.

Proof. Assume that the norm of E is not order continuous and that F is not discrete
with order continuous norm.

Since E is Dedekind σ-complete, it follows from Corollary 2.4.3 of [11] that E
contains a sub-lattice which is isomorphic to ℓ∞ and there exists a positive pro-
jection P : E → ℓ∞.

On the other hand, as the lattice operations of F are weakly sequentially con-
tinuous and F is not discrete with order continuous norm, it follows from Theo-
rem 3.7 [4] that there exists a regular Dunford-Pettis operator S : ℓ∞ → F which
is not AM-compact.

Since S : ℓ∞ → F is Dunford-Pettis, then it is order weakly compact and and
Since ℓ∞ is an AM-space with unit, then S : ℓ∞ → F is weakly compact. It follows
from Corollary 2.5 of [12] that the operator S is lcc.
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Now we consider the operator product T = S ◦ P : E → F. Since the operator
S is lcc then operator T is lcc because the class of lcc operators is a two-sided
ideal. But it is not AM-compact. Otherwise, the operator T ◦ ı = S would be
AM-compact ( where ı : ℓ∞ → F is the natural embedding). This presents a
contradiction.

As consequence of Proposition 3.8, we have the following result,

Corollary 3.9. Let F be a Banach lattice with weakly sequentially continuous lattice
operations. Then the following assertions are equivalent:

1. each lcc operator T : ℓ∞ → F is AM-compact,

2. the norm of F is order continuous.
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