Volume differences of mixed complex projection bodies

Chang-Jian Zhao*

Abstract

Recently, Abardia and Bernig introduced the notion of mixed complex projection bodies and established a number of important geometric inequalities for them. In the present paper we prove several new isoperimetric type inequalities for volume differences of mixed complex projection bodies.

1 Introduction

Projection bodies in \mathbb{R}^{n} have and a long history and are widely studied. An extensive article that details this is by Bolker [9]. Bolker's article, prompted even more intensive investigations of projection bodies and also generalizations to the L_{p} Brunn-Minkowski theory (see, e.g., [6], [8], [11-13], [15], [17], [20-21], [27], [31], [33-34], [37], [39-41], [48] and [51])). New applications have appeared in combinatorics (see Stanley [49]), in stereology (see Betke-McMullen [8]), in stochastic geometry (see Schneider [42]), and even in the study of random determinants (see Vitale [50]). In 1988, a fascinating paper of Alexander [5] demonstrates a close relationship between the study of projection bodies and work on Hilbert's fourth problem. We also refer to Goodey and Weil [16], Martini [36] and Schneider and Weil [43] for related results.

Mixed projection bodies are related to projection bodies in the same way as mixed volumes are related to ordinary volume. The definition and elementary

[^0]properties of mixed projection bodies can be found in [10]. The support functions of mixed projection bodies were studied by Chakerian [14]. Lutwak had systematically studied mixed projection bodies and their polars and obtained a number of elegant results (see, for example, [26-31]). Many recent important results have appeared in [3], [19], and [32].

Moreover, it is well-known that the projection operator is a Minkowski valuation. In fact, Ludwig [23] characterized the projection body map as the unique continuous Minkowski valuation which is contravariant with respect to nondegenerate linear transformations (see [1], [18], [25] and [47]). See the references [23-24] and [44-45] for more information on Minkowski valuations.

Let V be a real vector space of dimension n. Let $\mathcal{K}(V)$ denote the space of non-empty compact convex bodies in V, endowed with the Hausdorff topology.

The projection body of $K \in K(V)$ is the convex body $\Pi K \in K\left(V^{*}\right)$ whose support function is defined by

$$
h(\Pi K, u)=\frac{n}{2} V\left(K[n-1], J_{u}\right), u \in V .
$$

Here $V\left(K[n-1], J_{u}\right)=V\left(K, \ldots, K, J_{u}\right)$ is the mixed volume of $(n-1)$ copies of K and one copy of the segment $J_{u}=[-u, u]$ joining $-u$ and u. The support function of $K \in \mathcal{K}(V)$ is the function $h(K, \xi): V^{*} \rightarrow \mathbb{R}$ defined by

$$
h(K, \xi)=\sup _{x \in K}\langle\xi, x\rangle,
$$

where $\langle\xi, x\rangle$ denotes the pairing of $\xi \in V^{*}$ and $x \in V$.
In more intuitive terms, suppose that V is endowed with a Euclidean scalar product. Then we can identify V^{*} with V and the support function of $\Pi К$ in the direction $u \in S^{n-1}$ is the volume of the orthogonal projection of K onto the hyperplane u^{\perp}.

In [2], Abardia and Bernig studied projection bodies in complex vector spaces: The real vector space V of real dimension n is replaced by a complex vector space W of complex dimension m and the $\operatorname{group} \operatorname{SL}(V)=\operatorname{SL}(n, \mathbb{R})$ is replaced by the group $\operatorname{SL}(W, \mathbb{C})=\operatorname{SL}(m, \mathbb{C})$. Note that $\operatorname{SL}(m, \mathbb{C}) \subset \operatorname{SL}(2 m, \mathbb{R})$, so that each element in $\operatorname{SL}(m, \mathbb{C})$ is volume preserving. A complex version of Ludwig's characterization theorem of the projection operator (see [23]) was established by Abardia and Bernig.

Theorem A Let W be a complex vector space of complex dimension $m \geq 3$. A map $Z: K(W) \rightarrow K\left(W^{*}\right)$ is a continuous translation invariant and SL(W,C)-contravariant Minkowski valuation if and only if there exists a convex body $C \subset \mathbb{C}$ such that $Z=\Pi_{C}$, where $\Pi_{C} K \in K\left(W^{*}\right)$ is the convex body with support function

$$
\begin{equation*}
h\left(\Pi_{C} K, w\right)=V(K[2 m-1], C \cdot w), \forall w \in W \tag{1.1}
\end{equation*}
$$

where $C \cdot w:=\{c w \mid c \in C\} \subset W$, and C is unique up to translations.
The mixed complex projection bodies of $K_{1}, \ldots, K_{2 m-1}$ were also defined by Abardia and Bernig:

Definition 1.1 Let $K_{1}, \ldots, K_{2 m-1} \in \mathcal{K}(W)$ and $C \subset \mathbb{C}$. The mixed complex projection body $\Pi_{C}\left(K_{1}, \ldots, K_{2 m-1}\right) \in \mathcal{K}\left(W^{*}\right)$ is the convex body whose support function is given by

$$
\begin{equation*}
h\left(\Pi_{C}\left(K_{1}, \ldots, K_{2 m-1}\right), w\right)=V\left(K_{1}, \ldots, K_{2 m-1}, C \cdot w\right), \forall w \in W \tag{1.2}
\end{equation*}
$$

In this paper we also fix a Euclidean scalar product on W, and denote its unit ball by B. Let $K_{1}, \ldots, K_{2 m-1} \in \mathcal{K}(W)$ and $0 \leq i \leq 2 m-1$. If $K_{1}=\cdots=$ $K_{2 m-1-i}=K, K_{2 m-i}=\cdots=K_{2 m-1}=L, K_{2 m}=M$, then the mixed volume $V\left(K_{1}, \ldots, K_{2 m}\right)$ will be written as $V(K[2 m-1-i], L[i], M)$. In particular, when $L=B, W_{i}(K, M)$ denotes the mixed volume $V(K[2 m-1], B[i], M)$. Moreover $W_{i}(K[2 m-i], B[i])$ will be written as $W_{i}(K)$ and is also called the i-th quermassintegral of K.

If $K_{i} \in \mathcal{K}(W), 1 \leq i \leq 2 m-1$, then the mixed complex projection body of K_{i} is denoted by $\Pi_{C}\left(K_{1}, \ldots, K_{2 m-1}\right)$. If $K_{1}=\cdots=K_{2 m-1-i}=K$ and $K_{2 m-i}=\cdots=$ $K_{2 m-1}=L$, then $\Pi\left(K_{1}, \ldots, K_{2 m-1}\right)$ will be written as $\Pi_{C}(K[2 m-i], L)$.

Abardia and Bernig [2] also showed geometric inequalities of Brunn-Minkowski, Aleksandrov-Fenchel and Minkowski type.

Theorem B (Brunn-Minkowski type inequality) If $K, L \in \mathcal{K}(W)$, then

$$
\begin{equation*}
V\left(\Pi_{C}(K+L)\right)^{1 / 2 m(2 m-1)} \geq V\left(\Pi_{C} K\right)^{1 / 2 m(2 m-1)}+V\left(\Pi_{C} L\right)^{1 / 2 m(2 m-1)} \tag{1.3}
\end{equation*}
$$

If K and L have non-empty interior and C is not a point, then equality holds if and only if K and L are homothetic.

Theorem C (Aleksandrov-Fenchel type inequality) If $K_{1}, \ldots, K_{2 m-1} \in \mathcal{K}(W)$, $0 \leq i \leq 2 m-1$ and $2 \leq r \leq 2 m-2$, then

$$
\begin{equation*}
W_{i}\left(\Pi_{C}\left(K_{1}, \ldots, K_{2 m-1}\right)\right)^{r} \geq \prod_{j=1}^{r} W_{i}\left(\Pi_{C}\left(K_{j}[r], K_{r+1}, \ldots, K_{2 m-1}\right)\right) \tag{1.4}
\end{equation*}
$$

Theorem D (Minkowski type inequality) If $K, L \in \mathcal{K}(W)$ and $0 \leq i<2 m-1$, then

$$
\begin{equation*}
W_{i}\left(\Pi_{C}(K[2 m-2], L)\right)^{2 m-1} \geq W_{i}\left(\Pi_{C} K\right)^{2 m-2} W_{i}\left(\Pi_{C} L\right) \tag{1.5}
\end{equation*}
$$

If K and L have non-empty interior and C is not a point, then equality holds if and only if K and L are homothetic.

Indeed, Lutwak's seminal work on Brunn-Minkowski type inequalities for the classical projection bodies was generalized to the much more general class of Minkowski valuations intertwining rigid motions (see [4], [38] and [46]).

In 2004 Leng [22] defined the volume difference function of two compact domains D and K, where $D \subseteq K$. The following Minkowski and Brunn-Minkowski type inequalities for volume difference functions were also established by Leng [22].

Theorem E If K, L, D and D^{\prime} are compact domains, $D \subseteq K, D^{\prime} \subseteq L$, and D^{\prime} is a homothetic copy of D, then

$$
\left(V_{1}(K, L)-V_{1}\left(D, D^{\prime}\right)\right)^{n} \geq(V(K)-V(D))^{n-1}\left(V(L)-V\left(D^{\prime}\right)\right),
$$

and

$$
\left(V(K+L)-V\left(D+D^{\prime}\right)\right)^{1 / n} \geq(V(K)-V(D))^{1 / n}+\left(V(L)-V\left(D^{\prime}\right)\right)^{1 / n}
$$

In each case, equality holds if and only if K and L are homothetic and $(V(K), V(D))=$ $\mu\left(V(L), V\left(D^{\prime}\right)\right)$, where μ is a constant.

Recently, Lv [35] introduced the dual volume difference function for star bodies and established the following dual Minkowski and Brunn-Minkowski type inequalities for them:

Theorem \mathbf{F} If K, L, D and D^{\prime} are star bodies in \mathbb{R}^{n}, and $D \subseteq K, D^{\prime} \subseteq L$, and L is a dilation of K, then

$$
\left(\tilde{V}_{1}(K, L)-\left(\tilde{V}_{1}\left(D, D^{\prime}\right)\right)^{n} \geq(V(K)-V(D))^{n-1}\left(V(L)-V\left(D^{\prime}\right)\right)\right.
$$

with equality if and only if D and D^{\prime} are dilates and $\left.(K, D)\right)=\mu\left(L, D^{\prime}\right)$, where μ is a constant, and

$$
\left(V(K \tilde{+} L)-\left(V\left(D \tilde{+} D^{\prime}\right)\right)^{1 / n} \geq(V(K)-V(D))^{1 / n}+\left(V(L)-V\left(D^{\prime}\right)\right)^{1 / n}\right.
$$

with equality if and only if D and D^{\prime} are dilates and $(V(K), V(D))=\mu\left(V(L), V\left(D^{\prime}\right)\right)$, where μ is a constant.

Moreover, the Aleksandrov-Fenchel type inequalities for volume differences functions were established in [53]. Motivated by the work of Leng and Lv, in this paper we establish some new affine isoperimetric inequalities in complex vector space.

Theorem 1.1 Let $K, L, D, D^{\prime} \in \mathcal{K}(W)$. If D^{\prime} is a homothetic copy of $D, V\left(\Pi_{C} D\right) \leq$ $V\left(\Pi_{C} K\right)$ and $V\left(\Pi_{C} D^{\prime}\right) \leq V\left(\Pi_{C} L\right)$, then

$$
\begin{gather*}
{\left[V\left(\Pi_{C}(K+L)\right)-V\left(\Pi_{C}\left(D+D^{\prime}\right)\right)\right]^{1 / 2 m(2 m-1)}} \\
\geq\left[V\left(\Pi_{C} K\right)-V\left(\Pi_{C} D\right)\right]^{1 / 2 m(2 m-1)}+\left[V\left(\Pi_{C} L\right)-V\left(\Pi_{C} D^{\prime}\right)\right]^{1 / 2 m(2 m-1)} \tag{1.6}
\end{gather*}
$$

If K and L have non-empty interior and C is not a point, then equality holds if and only if K and L are homothetic and $\left(V\left(\Pi_{C} K\right), V\left(\Pi_{C} D\right)\right)=\mu\left(V\left(\Pi_{C} L\right), V\left(\Pi_{C} D^{\prime}\right)\right)$, where μ is a constant.

If D and D^{\prime} are singletons, then (1.6) becomes (1.3).
Theorem 1.2 Let $K, L, D, D^{\prime} \in \mathcal{K}(W)$. If D^{\prime} is a homothetic copy of $D, W_{i}\left(\Pi_{C} D\right) \leq$ $W_{i}\left(\Pi_{C} K\right)$ and $W_{i}\left(\Pi_{C} D^{\prime}\right) \leq W_{i}\left(\Pi_{C} L\right)$, then for $0 \leq i<2 m-1$,

$$
\begin{align*}
& {\left[W_{i}\left(\Pi_{C}(K[2 m-2], L)\right)-W_{i}\left(\Pi_{C}\left(D[2 m-2], D^{\prime}\right)\right)\right]^{2 m-1}} \\
& \geq\left[W_{i}\left(\Pi_{C} K\right)-W_{i}\left(\Pi_{C} D\right)\right]^{2 m-2}\left[W_{i}\left(\Pi_{C} L\right)-W_{i}\left(\Pi_{C} D^{\prime}\right)\right] \tag{1.7}
\end{align*}
$$

If K and L have non-empty interior and C is not a point, then equality holds if and only if K and L are homothetic and $\left(W_{i}\left(\Pi_{C} K\right), W_{i}\left(\Pi_{C} D\right)\right)=\mu\left(W_{i}\left(\Pi_{C} L\right), W_{i}\left(\Pi_{C} D^{\prime}\right)\right)$, where μ is a constant.

If D and D^{\prime} are singletons, then (1.7) becomes (1.5).
Theorem 1.3 For $i=1, \ldots, 2 m-1$, let $K_{i}, D_{i} \in \mathcal{K}(W)$.
If $V(\Pi_{C}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{2 m-1})) \geq V(\Pi_{C}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{2 m-1}))$, and
$D_{j}(j=1, \ldots, r)$ are homothetic copies of each other, then for $0 \leq i \leq 2 m-1$ and $2 \leq r \leq 2 m-2$,

$$
\begin{gather*}
{\left[V\left(\Pi_{C}\left(K_{1}, \ldots, K_{2 m-1}\right)\right)-V\left(\Pi_{C}\left(D_{1}, \ldots, D_{2 m-1}\right)\right)\right]^{r}} \\
\geq \prod_{j=1}^{r}[V(\Pi_{C}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{2 m-1}))-V(\Pi_{C}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{2 m-1}))] . \tag{1.8}
\end{gather*}
$$

If $D_{j}(j=1, \ldots, r)$ are singletons, then (1.8) becomes (1.4).

2 Auxiliary Results

The following results will be required to prove our theorems.
Lemma 2.1 ([7, p.38]) Let

$$
\phi(x)=\left(x_{1}^{p}-x_{2}^{p}-\cdots-x_{n}^{p}\right)^{1 / p}, p>1,
$$

and suppose that
(a) $x_{i} \geq 0$,
(b) $x_{1} \geq\left(x_{2}^{p}+x_{3}^{p}+\cdots+x_{n}^{p}\right)^{1 / p}$.

Then for $x, y \in \mathbb{R}^{n}$, we have

$$
\begin{equation*}
\phi(x+y) \geq \phi(x)+\phi(y) \tag{2.1}
\end{equation*}
$$

with equality if and only if $x=\mu y$ where μ is a constant.
Lemma 2.2 ([52]) Let $a, b, c, d>0,0<\alpha<1,0<\beta<1$ and $\alpha+\beta=1$. If $a>b$ and $c>d$, then

$$
\begin{equation*}
a^{\alpha} c^{\beta}-b^{\alpha} d^{\beta} \geq(a-b)^{\alpha}(c-d)^{\beta} \tag{2.2}
\end{equation*}
$$

with equality if and only if $a / b=c / d$.
Lemma 2.3 ([7, p.26]) If $x_{i}>0, y_{i}>0$, then

$$
\begin{equation*}
\left(\prod_{i=1}^{n}\left(x_{i}+y_{i}\right)\right)^{1 / n} \geq\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}+\left(\prod_{i=1}^{n} y_{i}\right)^{1 / n} \tag{2.3}
\end{equation*}
$$

with equality if and only if $c_{1} / b_{1}=c_{2} / b_{2}=\cdots=c_{n} / b_{n}$.

3 Inequalities for mixed complex projection bodies

3.1 Brunn-Minkowski-type inequality

In the following we establish the Brunn-Minkowski-type inequality, Theorem 1.1, for complex projection bodies.

Theorem 3.1 Let $K, L, D, D^{\prime} \in \mathcal{K}(W)$. If D^{\prime} is a homothetic copy of $D, V\left(\Pi_{C} D\right) \leq$ $V\left(\Pi_{C} K\right)$ and $V\left(\Pi_{C} D^{\prime}\right) \leq V\left(\Pi_{C} L\right)$, then

$$
\begin{align*}
& {\left[V\left(\Pi_{C}(K+L)\right)-V\left(\Pi_{C}\left(D+D^{\prime}\right)\right)\right]^{1 / 2 m(2 m-1)} } \\
\geq & {\left[V\left(\Pi_{C} K\right)-V\left(\Pi_{C} D\right)\right]^{1 / 2 m(2 m-1)}+\left[V\left(\Pi_{C} L\right)-V\left(\Pi_{C} D^{\prime}\right)\right]^{1 / 2 m(2 m-1)} } \tag{3.1}
\end{align*}
$$

If K and L have non-empty interior and C is not a point, then equality holds if and only if K and L are homothetic and $\left(V\left(\Pi_{C} K\right), V\left(\Pi_{C} D\right)\right)=\mu\left(V\left(\Pi_{C} L\right), V\left(\Pi_{C} D^{\prime}\right)\right)$, where μ is a constant.

Proof. If $K, L \in \mathcal{K}(W)$, then, by Theorem B,

$$
\begin{equation*}
V\left(\Pi_{C}(K+L)\right)^{1 / 2 m(2 m-1)} \geq V\left(\Pi_{C} K\right)^{1 / 2 m(2 m-1)}+V\left(\Pi_{C} L\right)^{1 / 2 m(2 m-1)} \tag{3.2}
\end{equation*}
$$

If K and L have non-empty interior and C is not a point, then equality holds if and only if K and L are homothetic.

Notice that D^{\prime} is a homothetic copy of D, thus

$$
\begin{equation*}
V\left(\Pi_{C}\left(D+D^{\prime}\right)\right)^{1 / 2 m(2 m-1)}=V\left(\Pi_{C} D\right)^{1 / 2 m(2 m-1)}+V\left(\Pi_{C} D^{\prime}\right)^{1 / 2 m(2 m-1)} \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3), we obtain

$$
\begin{align*}
& V\left(\Pi_{C}(K+L)\right)-V\left(\Pi_{C}\left(D+D^{\prime}\right)\right) \geq \\
& {\left[V\left(\Pi_{C} K\right)^{1 / 2 m(2 m-1)}+V\left(\Pi_{C} L\right)^{1 / 2 m(2 m-1)}\right]^{2 m(2 m-1)}} \\
& \quad-\left[V\left(\Pi_{C} D\right)^{1 / 2 m(2 m-1)}+V\left(\Pi_{C} D^{\prime}\right)^{1 / 2 m(2 m-1)}\right]^{2 m(2 m-1)} \tag{3.4}
\end{align*}
$$

If K and L have non-empty interior and C is not a point, then equality holds if and only if K and L are homothetic.

From (3.4) and Lemma 3.2, we now obtain

$$
\begin{aligned}
& {\left[V\left(\Pi_{C}(K+L)\right)-V\left(\Pi_{C}\left(D+D^{\prime}\right)\right)\right]^{1 / 2 m(2 m-1)}} \\
& \quad \geq\left\{\left[V\left(\Pi_{C} K\right)^{1 / 2 m(2 m-1)}+V\left(\Pi_{C} L\right)^{1 / 2 m(2 m-1)}\right]^{2 m(2 m-1)}\right. \\
& \left.\quad-\left[V\left(\Pi_{C} D\right)^{1 / 2 m(2 m-1)}+V\left(\Pi_{C} D^{\prime}\right)^{1 / 2 m(2 m-1)}\right]^{2 m(2 m-1)}\right\}^{1 / 2 m(2 m-1)} \\
& \quad \geq\left[V\left(\Pi_{C} K\right)-V\left(\Pi_{C} D\right)\right]^{1 / 2 m(2 m-1)}+\left[V\left(\Pi_{C} L\right)-V\left(\Pi_{C} D^{\prime}\right)\right]^{1 / 2 m(2 m-1)}
\end{aligned}
$$

In view of the equality conditions of inequalities (3.4) and (2.1), it follows that if K and L have non-empty interior and C is not a point, then equality in (3.1) holds if and only if K and L are homothetic and $\left(V\left(\Pi_{C} K\right), V\left(\Pi_{C} D\right)\right)=\mu\left(V\left(\Pi_{C} L\right)\right.$, $\left.V\left(\Pi_{C} D^{\prime}\right)\right)$, where μ is a constant.

3.2 Minkowski-type inequality

In the following we establish the Minkowski-type inequality, Theorem 1.2, for mixed complex projection bodies.

Theorem 3.2 Let $K, L, D, D^{\prime} \in \mathcal{K}(W)$. If D^{\prime} is a homothetic copy of $D, W_{i}\left(\Pi_{C} D\right) \leq$ $W_{i}\left(\Pi_{C} K\right)$ and $W_{i}\left(\Pi_{C} D^{\prime}\right) \leq W_{i}\left(\Pi_{C} L\right)$, then for $0 \leq i<2 m-1$,

$$
\begin{align*}
& {\left[W_{i}\left(\Pi_{C}(K[2 m-2], L)\right)-W_{i}\left(\Pi_{C}\left(D[2 m-2], D^{\prime}\right)\right)\right]^{2 m-1}} \\
& \geq\left[W_{i}\left(\Pi_{C} K\right)-W_{i}\left(\Pi_{C} D\right)\right]^{2 m-2}\left[W_{i}\left(\Pi_{C} L\right)-W_{i}\left(\Pi_{C} D^{\prime}\right)\right] \tag{3.5}
\end{align*}
$$

If K and L have non-empty interior and C is not a point, then equality holds if and only if K and L are homothetic and $\left(W_{i}\left(\Pi_{C} K\right), W_{i}\left(\Pi_{C} D\right)\right)=\mu\left(W_{i}\left(\Pi_{C} L\right), W_{i}\left(\Pi_{C} D^{\prime}\right)\right)$, where μ is a constant.

Proof. If $K, L \in \mathcal{K}(W)$, then, by Theorem D,

$$
\begin{equation*}
W_{i}\left(\Pi_{C}(K[2 m-2], L)\right)^{2 m-1} \geq W_{i}\left(\Pi_{C} K\right)^{2 m-2} W_{i}\left(\Pi_{C} L\right) \tag{3.6}
\end{equation*}
$$

If K and L have non-empty interior and C is not a point, then equality holds if and only if K and L are homothetic.

Since D^{\prime} is a homothetic copy of D, we have

$$
\begin{equation*}
W_{i}\left(\Pi_{C}\left(D[2 m-2], D^{\prime}\right)\right)^{2 m-1}=W_{i}\left(\Pi_{C} D\right)^{2 m-2} W_{i}\left(\Pi_{C} D^{\prime}\right) \tag{3.7}
\end{equation*}
$$

hence

$$
\begin{align*}
& W_{i}\left(\Pi_{C}(K[2 m-2], L)\right)-W_{i}\left(\Pi_{C}\left(D[2 m-2], D^{\prime}\right)\right) \\
& \geq W_{i}\left(\Pi_{C} K\right)^{(2 m-2) /(2 m-1)} W_{i}\left(\Pi_{C} L\right)^{1 /(2 m-1)} \\
& \quad-W_{i}\left(\Pi_{C} D\right)^{(2 m-2) /(2 m-1)} W_{i}\left(\Pi_{C} D^{\prime}\right)^{1 /(2 m-1)} \tag{3.8}
\end{align*}
$$

If K and L have non-empty interior and C is not a point, then equality holds if and only if K and L are homothetic.

Since $\frac{2 m-2}{2 m-1}+\frac{1}{2 m-1}=1$, it follows from Lemma 2.2, that

$$
\begin{aligned}
& {\left[W_{i}\left(\Pi_{C}(K[2 m-2], L)\right)-W_{i}\left(\Pi_{C}\left(D[2 m-2], D^{\prime}\right)\right)\right]^{2 m-1}} \\
& \qquad \geq\left[W_{i}\left(\Pi_{C} K\right)^{(2 m-2) /(2 m-1)} W_{i}\left(\Pi_{C} L\right)^{1 /(2 m-1)}\right. \\
& \left.\quad-W_{i}\left(\Pi_{C} D\right)^{(2 m-2) /(2 m-1)} W_{i}\left(\Pi_{C} D^{\prime}\right)^{1 /(2 m-1)}\right]^{2 m-1} \\
& \quad \geq\left[W_{i}\left(\Pi_{C} K\right)-W_{i}\left(\Pi_{C} D\right)\right]^{2 m-2}\left[W_{i}\left(\Pi_{C} L\right)-W_{i}\left(\Pi_{C} D^{\prime}\right)\right]
\end{aligned}
$$

From the equality conditions of inequalities (3.8) and (2.2), it follows that if K and L have non-empty interior and C is not a point, then equality holds if and only if K and L are homothetic and $\left(W_{i}\left(\Pi_{C} K\right), W_{i}\left(\Pi_{C} D\right)\right)=\mu\left(W_{i}\left(\Pi_{C} L\right), W_{i}\left(\Pi_{C} D^{\prime}\right)\right)$, where μ is a constant.

3.3 Aleksandrov-Fenchel-type inequality

Theorem 3.3 For $i=1, \ldots, 2 m-1$, let $K_{i}, D_{i} \in \mathcal{K}(W)$. If $V(\Pi_{C}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}$, $\left.\left.\ldots, K_{2 m-1}\right)\right) \geq V(\Pi_{C}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{2 m-1}))$, and $D_{j}(j=1, \ldots, r)$ are homothetic copies of each other, then for $0 \leq i \leq 2 m-1$ and $2 \leq r \leq 2 m-2$,

$$
\begin{gather*}
{\left[V\left(\Pi_{C}\left(K_{1}, \ldots, K_{2 m-1}\right)\right)-V\left(\Pi_{C}\left(D_{1}, \ldots, D_{2 m-1}\right)\right)\right]^{r}} \\
\geq \prod_{j=1}^{r}[V(\Pi_{C}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{2 m-1}))-V(\Pi_{C}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{2 m-1}))] . \tag{3.9}
\end{gather*}
$$

Proof. For $0 \leq i \leq 2 m-1$ and $2 \leq r \leq 2 m-2$, we have by Theorem C

$$
\begin{equation*}
W_{i}\left(\Pi_{C}\left(K_{1}, \ldots, K_{2 m-1}\right)\right)^{r} \geq \prod_{j=1}^{r} W_{i}\left(\Pi_{C}\left(K_{j}, \ldots, K_{j}, K_{r+1}, \ldots, K_{2 m-1}\right)\right) \tag{3.10}
\end{equation*}
$$

Since $D_{j}(j=1, \ldots, r)$ are homothetic copies of each other, we have

$$
\begin{equation*}
W_{i}\left(\Pi_{C}\left(D_{1}, \ldots, D_{2 m-1}\right)\right)^{r}=\prod_{j=1}^{r} W_{i}\left(\Pi_{C}\left(D_{j}, \ldots, D_{j}, D_{r+1}, \ldots, D_{2 m-1}\right)\right) \tag{3.11}
\end{equation*}
$$

From (3.10) and (3.11), we obtain

$$
\begin{align*}
& V\left(\Pi_{C}\left(K_{1}, \ldots, K_{2 m-1}\right)\right)-V\left(\Pi_{C}\left(D_{1}, \ldots, D_{2 m-1}\right)\right) \\
& \geq(\prod_{j=1}^{r} V(\Pi_{C}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{2 m-1})))^{1 / r} \\
& \quad-(\prod_{j=1}^{r} V(\Pi_{C}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{2 m-1})))^{1 / r} . \tag{3.12}
\end{align*}
$$

Thus using Lemma 2.3, we obtain

$$
\begin{aligned}
& {\left[V\left(\Pi_{C}\left(K_{1}, \ldots, K_{2 m-1}\right)\right)-V\left(\Pi_{C}\left(D_{1}, \ldots, D_{2 m-1}\right)\right)\right]^{r} } \\
\geq & {[(\prod_{j=1}^{r} V(\Pi_{C}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{2 m-1})))^{1 / r}} \\
& \quad-(\prod_{j=1}^{r} V(\Pi_{C}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{2 m-1})))^{1 / r}]^{r} \\
\geq & \prod_{j=1}^{r}[V(\Pi_{C}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{2 m-1}))-V(\Pi_{C}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{2 m-1}))] .
\end{aligned}
$$

Acknowledgements The author expresses his grateful thanks to the referee for his excellent suggestions and comments.

References

[1] J. Abardia, Difference bodies in complex vector spaces, J. Funct. Anal., 263 (2012), 3588-3603.
[2] J. Abardia, A. Bernig, Projection bodies in complex vector spaces, Adv. Math., 227(4)(2011), 830-846.
[3] S. Alesker, Theory of valuations on manifolds: a survey, Geom. Funct. Anal., 17(4)(2007), 1321-1341.
[4] S. Alesker, A. Bernig, and F. E. Schuster, Harmonic analysis of translation invariant valuations, Geom. Funct. Anal., 21 (2011), 751-773.
[5] R. Alexander, Zonoid theory and Hilbert's forth problem, Geom. Dedicata., 28(1988),199-211.
[6] K. Ball, Shadows of convex bodies, Trans. Amer. Math. Soc., 327(1991),891901.
[7] E. F. Bechenbach, R. Bellman, Inequalities, Springer-Verlag, BerlinGöttingen, Heidelberg, 1961.
[8] U. Betke, P. McMullen, Estimating the sizes of convex bodies from projections, J. London Math. Soc., 27(1983),525-538.
[9] E. D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc., 145(1969),323345.
[10] T. Bonnesen, and W. Fenchel, Theorie der Konvexen Körper, Springer, Berlin, 1934.
[11] J. Bourgain, J. Lindenstrauss, Projection bodies, Israel Seminar (G. A. F. A.) 1986-1987. Lecture Notes in Math Vol.1317. Berlin, New York: SpringerVerlag,1988: 250-269.
[12] N. S. Brannen, Volumes of projection bodies, Mathematika, 43(1996), 255-264.
[13] G. D. Chakerian, E. Lutwak, Bodies with similar projections, Trans. Amer. Math. Soc., 349(1997), 1811-1820.
[14] G. D. Chakerian, Set of constant relative width and constant relative brightness, Trans. Amer. Math. Soc., 129(1967), 26-37.
[15] A. Cianchi, E. Lutwak, D. Yang, and G. Zhang, Affine Moser-Trudinger and Morrey-Sobolev inequalities, Calc. Var. Partial Differential Equations, 36 (2009), 419-436.
[16] P. R. Goodey, W. Weil, Zonoids and generalizations. In Handbook of Convex Geometry, ed. by Gruber and Wills J.M. North-Holland, Amsterdam, 1993, 326: 1297.
[17] Y. Gordon, M. Meyer and S. Reisner, Zonoids with minimal volume producta new proof, Proc. Amer. Math. Soc., 104(1988), 273-276.
[18] C. Haberl, Minkowski valuations intertwining the special linear group, J. Eur. Math. Soc., (JEMS) 14 (2012), 1565-1597.
[19] C. Haberl, F. E. Schuster, General L_{p} affine isoperimetric inequalities, J. Diff. Geom., 83(1) (2009), 1-26.
[20] C. Haberl, F. E. Schuster, Asymmetric affine L_{p} Sobolev inequalities, J. Funct. Anal., 257 (2009), 641-658.
[21] C. Haberl, F. E. Schuster, and J. Xiao, An asymmetric affine Pólya-Szegö principle, Math. Ann., 352 (2012), 517-542.
[22] G. S. Leng, The Brunn-Minkowski inequality for volume differences, Adv. Appl. Math., 32(2004), 615-624.
[23] M. Ludwig, Projection bodies and valuations, Adv. Math. 172(2)(2002), 158168.
[24] M. Ludwig, Minkowski valuations, Trans. Amer. Math. Soc., 357(10)(2005), 4191-4213.
[25] M. Ludwig, Minkowski areas and valuations, J. Diff. Geom., 86 (2010), 133161.
[26] E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc., 339(1993), 901-916.
[27] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math., 71(1988), 232-261.
[28] E. Lutwak, On quermassintegrals of mixed projection bodies, Geom. Dedicata, 33(1990),51-58.
[29] E. Lutwak, Dual Mixed volumes, Pacific J. Math., 58(1975), 531-538.
[30] E. Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc., 285(1985), 91-106.
[31] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60(1990), 365-391.
[32] E. Lutwak, D. Yang, G. Zhang, Orlicz projection bodies, Adv. Math., 223(2010), 220-242.
[33] E. Lutwak, D. Yang, G. Zhang, L_{p} affine isoperimetric inequalities, J. Diff. Geom., 56 (2000), 111-132.
[34] E. Lutwak, D. Yang, G. Zhang, Sharp affine L_{p} Sobolev inequalities, J. Diff. Geom., 62 (2002), 17-38.
[35] S. J. Lv, Dual Brunn-Minkowski inequality for volume differences, Geom. Dedicata, 145 (2010), 169-180.
[36] H. Martini, Zur Bestimmung Konvexer Polytope durch die Inhalte ihrer Projektionen, Beiträge Zur Algebra und Geometrie, 1984, 18, 75-85.
[37] L. Parapatits, $S L(n)$-Contravariant L_{p}-Minkowski Valuations, Trans. Amer. Math. Soc., in press.
[38] L. Parapatits and F. E. Schuster, The Steiner formula for Minkowski valuations, Adv. Math., 230 (2012), 978-994.
[39] S. Reisner, Zonoids with minimal volume-product, Math. Z., 192(1986), 339346.
[40] C. A. Rogers, Sections and projections of convex bodies, Portugal Math., 24(1965), 99-103.
[41] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge: Cambridge university Press, 1993.
[42] R. Schneider, Random polytopes generated by anisotropic hyperplanes, Bull. London Math. Soc., 14(1982), 549-553.
[43] R. Schneider, W. Weil, Zonoids and related topics, Convexity and its Applications, Birkhäuser, Basel, 1983, pp. 296-317.
[44] F. E. Schuster, Volume inequalities and additive maps of convex bodies, Mathematika 53(2007), 211-234, 2006.
[45] F. E. Schuster, Valuations and Busemann-Petty type problems, Adv. Math., 219(2008) 344-368.
[46] F. E. Schuster, Crofton measures and Minkowski valuations, Duke Math. J. 154 (2010), 1-30.
[47] F. E. Schuster and T. Wannerer, $G L(n)$ contravariant Minkowski valuations, Trans. Amer. Math. Soc., 364 (2012), 815-826.
[48] F. E. Schuster and M. Weberndorfer, Volume inequalities for asymmetric Wulff shapes, J. Diff. Geom., 92 (2012), 263-283.
[49] R. P. Stanley, Two combinatorial applications of the Aleksandrov-Fenchel inequalities, J. Combin. Theory Ser.A, 31(1981), 56-65.
[50] R. A. Vitale, Expected absolute random determinants and zonoids, Ann. Appl. Probab., 1(1991), 293-300.
[51] M. Weberndorfer, Shadow systems of asymmetric L_{p} zonotopes, Adv. Math., 240 (2013), 613-635.
[52] C. J. Zhao, On polars of Blaschke-Minkowski homomorphisms, Math. Scand., 111(2012), 147-160.
[53] C. J. Zhao, M. Bencze, The Aleksandrov-Fenchel type inequalities for volume differences, Balkan J. Geom. Appl., 15 2010, 163-172.

Department of Mathematics, China Jiliang University, Hangzhou 310018, P. R. China

Email: chjzhao@163.com, chjzhao@aliyun.com, chjzhao315@sohu.com

[^0]: *Research is supported by National Natural Science Foundation of China (11371334).
 Received by the editors in March 2013 - In revised form in September 2013.
 Communicated by J. Thas.
 2010 Mathematics Subject Classification : 52A40, 52A39, 52B45.
 Key words and phrases : Projection bodies, Mixed complex projection bodies, BrunnMinkowski inequality, Aleksandrov-Fenchel inequality.

