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Abstract

Let R be an arbitrary ring with identity and M a right R-module with S =
EndR(M). In this paper we introduce π-Rickart modules as a generalization
of Rickart modules. π-Rickart modules are also a dual notion of dual π-
Rickart modules and extends that of generalized right principally projective
rings to the module theoretic setting. The module M is called π-Rickart if for
any f ∈ S, there exist e2 = e ∈ S and a positive integer n such that rM( f n) =
Ker f n = eM. We obtain several results about generalized right principally
projective rings by using π-Rickart modules. Moreover, we investigate rela-
tions between a π-Rickart module and its endomorphism ring.

1 Introduction

Throughout this paper R denotes an associative ring with identity and
modules are unitary right R-modules. For a module M, S = EndR(M) is the
ring of all right R-module endomorphisms of M. In this work, for the (S, R)-
bimodule M, lS(.) and rM(.) are the left annihilator of a subset of M in S and
the right annihilator of a subset of S in M, respectively. A ring is called reduced
if it has no nonzero nilpotent elements. By considering the right R-module M
as an (S, R)-bimodule the reduced ring concept was considered for modules in
[1]. The module M is called reduced if for any f ∈ S and m ∈ M, f m = 0 implies
f M∩ Sm = 0. In [10] Baer rings are introduced as rings in which the right (equiva-
lently, left) annihilator of every nonempty subset is generated by an idempotent.
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Motivated by Kaplansky’s work [10] on Baer rings, principally projective rings
were introduced by Hattori [5] to study the torsion theory, that is, a ring is called
left (right) principally projective if every principal left (right) ideal is projective. This
is equivalent to the left (right) annihilator of any element of the ring is generated
by an idempotent as a left (right) ideal, i.e., the ring is left (right) Rickart. Clearly,
every Baer ring is left and right Rickart. The concept of left (right) Rickart rings
has been comprehensively studied in the literature. The concept of Baer rings
was extended by Rizvi and Roman [17] to the general module theoretic setting,
that is, an R-module M is called Baer if for any R-submodule N of M, lS(N) = Se
with e2 = e ∈ S. Also, the notion of Rickart modules initially appeared in Rizvi
and Roman [18] and was further studied in [1] and [13]. A module M is said to be
Rickart if for any f ∈ S, rM( f ) = Ker f = eM for some e2 = e ∈ S. Clearly, every
Baer module is Rickart. In [14] Lee, Rizvi and Roman introduced a dual notion of
Rickart property for modules. A module M is called dual Rickart if for any f ∈ S,
Im f = eM for some e2 = e ∈ S. It is obvious that a ring R is Rickart (dual Rickart)
as an R-module if and only if it is a right Rickart (von Neumann regular) ring.

Regarding a generalization of Baer rings as well as principally projective rings,
Hirano introduced the notion of generalized left (right) principally projective
rings in [6]. A ring R is called generalized left (right) principally projective if for
each x ∈ R, there exists a positive integer n such that Rxn (xnR) is projective,
equivalently, for any x ∈ R, the left (right) annihilator of xn is generated by an
idempotent for some positive integer n. There are some sources for additional
information on these rings such as [6], [9] and [16]. This class of rings gener-
alizes also π-regular rings. Recently, the present authors studied the notion of
dual π-Rickart modules in [20] as a generalization of the notion of dual Rickart
modules. On the other hand, the concept of dual π-Rickart modules extended
that of π-regular rings to the general module theoretic setting. A module M is
called dual π-Rickart if for any f ∈ S, there exist e2 = e ∈ S and a positive in-
teger n such that Im f n = eM. In [20], a relation between the concepts of dual
π-Rickart property for modules and generalized left principally projectivity for
rings was obtained such as if M is a dual π-Rickart module, then S is a gener-
alized left principally projective ring. Motivated by these works, in this paper,
we define the dual notion of dual π-Rickart property for modules, namely π-
Rickart modules. Additionally, the notion of a π-Rickart module coincides with
that of a generalized right principally projective ring. In [9, Proposition 9], it is
proved that if R is a generalized right principally projective ring, then so is eRe
for any e = e2 ∈ R. It is a natural question to come to mind that if R is a gener-
alized right principally projective ring and e = e2 ∈ R, what kind of generalized
principally projectivity does the R-module eR have? One of the motivations to
study the concept of π-Rickart modules is this question. In Corollary 2.13, we
showed that eR is π-Rickart where R is a generalized right principally projec-
tive ring and e = e2 ∈ R as an answer of the question. If the endomorphism
ring S of a module M is π-regular, then it is generalized right principally pro-
jective. According to Proposition 3.1 and Proposition 3.9, the π-regularity of S
implies that M is a π-Rickart module, and if M is a π-Rickart module, then S is
a generalized right principally projective ring. Inserting the π-Rickart property
for a module between two properties of its endomorphism ring makes this con-
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cept more interesting. In other respects, some of the results in this paper can be
applied to the rings of matrices. For instance, in Theorem 3.17, we characterize
the matrix ring Mn(R) being π-regular for every positive integer n where R is a
right self-injective ring by using π-Rickart property of finitely generated projec-
tive modules. Similarly, Proposition 3.1 and Proposition 3.4 can be applied to a
ring of matrices which satisfy the generalized right principally projective prop-
erty. These make the concept of π-Rickart modules more attractive. In addition,
this paper helps improve knowledge about generalized right principally projec-
tive rings by some results such as Corollary 2.9, Corollary 2.14, Corollary 2.31,
Corollary 3.3, Corollary 3.16 and Corollary 3.24.

In what follows, we denote by Z and Zn integers and the ring of integers
modulo n, respectively. J(R) and Mn(R) denote the Jacobson radical of a ring R
and n × n matrix ring over R, respectively.

2 π-Rickart Modules

In this section, we introduce the concept of π-Rickart modules and supply an
example to show that all π-Rickart modules need not be Rickart. Although every
direct summand of a π-Rickart module is π-Rickart, we give an example to show
that a direct sum of π-Rickart modules need not be π-Rickart. It is shown that
the class of some abelian π-Rickart modules is closed under direct sums. Now
we begin with our main definition.

Definition 2.1. Let M be an R-module with S = EndR(M). The module M is
called π-Rickart if for any f ∈ S, there exist e2 = e ∈ S and a positive integer n
such that rM( f n) = eM.

For the sake of brevity, in the sequel, S will stand for the endomorphism ring
of the module M considered.

Remark 2.2. R is a π-Rickart R-module if and only if it is a generalized right principally
projective ring.

Every module of finite length, every nonsingular injective (or extending) and
every Rickart module is a π-Rickart module. Also every quasi-projective strongly
co-Hopfian module, every quasi-injective strongly Hopfian module is π-Rickart.
Every finitely generated module over a right Artinian ring is π-Rickart (see The-
orem 2.30), every free module which its endomorphism ring is generalized right
principally projective is π-Rickart (see Corollary 3.5), every finitely generated
projective regular module is π-Rickart (see Corollary 3.7) and every finitely gen-
erated projective module over a commutative π-regular ring is π-Rickart (see
Proposition 3.11).

One may suspect that every π-Rickart module is Rickart. But the following
example illustrates that this is not the case.

Example 2.3. Let M denote Z ⊕ Z2 as a Z-module. It can be easily determined

that S = EndZ(M) is

[

Z 0
Z2 Z2

]

. For any f =

[

a 0

b c

]

∈ S, consider the fol-

lowing cases.
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Case 1. Assume that a = 0, b = 0, c = 1 or a = 0, b = c = 1. In both cases f
is an idempotent, and so rM( f ) = (1 − f )M.

Case 2. If a 6= 0, b = 0, c = 1 or a 6= 0, b = c = 1, then rM( f ) = 0.
Case 3. If a 6= 0, b = c = 0 or a 6= 0, b = 1, c = 0, then rM( f ) = 0 ⊕ Z2.
Case 4. If a = 0, b = 1 , c = 0, then f 2 = 0. Hence rM( f 2) = M.

Therefore M is π-Rickart, but it is not Rickart by [13, Example 2.5].

Our next endeavor is to find conditions under which a π-Rickart module is
Rickart. We show that reduced rings play an important role in this direction.

Proposition 2.4. If M is a Rickart module, then it is π-Rickart. The converse holds if S
is a reduced ring.

Proof. The first assertion is clear. For the second, let f ∈ S. Since M is π-Rickart,
rM( f n) = eM for some positive integer n and e2 = e ∈ S. If n = 1, then there is
nothing to do. Assume that n > 1. Since S is a reduced ring, e is central and so
( f e)n = 0. It follows that f e = 0. Hence eM ≤ rM( f ). On the other hand, always
rM( f ) ≤ rM( f n) = eM. Therefore M is Rickart.

Reduced modules are studied in [1] and it is shown that if M is a reduced
module, then S is a reduced ring. Hence we have the following.

Corollary 2.5. If M is a reduced module, then it is Rickart if and only if it is π-Rickart.

We obtain the following well known result (see [9, Lemma 1] and [16, Propo-
sition 1]) as a consequence of Proposition 2.4.

Corollary 2.6. Let R be a reduced ring. Then R is right Rickart if and only if it is
generalized right principally projective.

Lemma 2.7. If M is a π-Rickart module, then every non-nil left annihilator in S contains
a nonzero idempotent.

Proof. Let I = lS(N) be a non-nil left annihilator where ∅ 6= N ⊆ M and
choose f ∈ I be a non-nilpotent element. Since M is π-Rickart, rM( f n) = eM
for some idempotent e ∈ S and a positive integer n. In addition e 6= 1. Due to
rM(I) ⊆ rM( f n), we have (1 − e)rM(I) = 0. It follows that 1 − e ∈ lS(rM(I)) =
lS(rM(lS(N))) = lS(N) = I. This completes the proof.

We now give a relation among π-Rickart modules, Rickart modules and Baer
modules by using Lemma 2.7.

Theorem 2.8. Let M be a module. If S has no infinite set of nonzero orthogonal idempo-
tents and J(S) = 0 (in particular, if S is semisimple), then the following are equivalent.

(1) M is a π-Rickart module.

(2) M is a Rickart module.

(3) M is a Baer module.
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Proof. It is enough to show that (1) implies (3). Consider any left annihilator
I = lS(N) where ∅ 6= N ⊆ M. If I is nil, then I ⊆ J(S), and so I = 0. Thus
we may assume that I is not nil. By [11, Proposition 6.59], S satisfies DCC on
left direct summands, and so among all nonzero idempotents in I, choose e ∈ I
such that S(1 − e) = lS(eM) is minimal. We claim that I ∩ lS(eM) = 0. Note
that I ∩ lS(eM) = lS(N ∪ eM). If I ∩ lS(eM) is nil, then there is nothing to do.
Now we assume that I ∩ lS(eM) is not nil. If I ∩ lS(eM) 6= 0, then there exists
0 6= f = f 2 ∈ I ∩ lS(eM) by Lemma 2.7. Since f e = 0, e + (1 − e) f ∈ I is an
idempotent, say g = e + (1 − e) f . Then ge = e, and so g 6= 0. Also f g = f .
This implies that lS(gM) ( lS(eM). This contradicts to the choice of e. Hence
I ∩ lS(eM) = 0. Due to ϕ(1 − e) ∈ I ∩ lS(eM) for any ϕ ∈ I, we have ϕ = ϕe.
Thus I ⊆ Se, and clearly Se = I = lS(N). Therefore M is Baer.

Corollary 2.9. Let R be a ring. If R has no infinite set of nonzero orthogonal idempotents
and J(R) = 0, then the following are equivalent.

(1) R is a generalized right principally projective ring.

(2) R is a right Rickart ring.

(3) R is a Baer ring.

Corollary 2.10. If M is a Noetherian (Artinian) module and J(S) = 0, then the follow-
ing are equivalent.

(1) M is a π-Rickart module.

(2) M is a Rickart module.

(3) M is a Baer module.

Proof. S has no infinite set of nonzero orthogonal idempotents in case M is either
Noetherian or Artinian. The rest is clear from Theorem 2.8.

Modules which contain π-Rickart modules need not be π-Rickart, as the fol-
lowing example shows.

Example 2.11. Let R denote the ring

[

Z Z

0 Z

]

and M the right R-module
[

Z Z

Z Z

]

. Let f ∈ S be defined by f

[

x y
r s

]

=

[

2x + 3r 2y + 3s
0 0

]

, where
[

x y
r s

]

∈ M. Then rM( f ) =

{[

3k 3z
−2k −2z

]

: k, z ∈ Z

}

. Since rM( f ) is not

a direct summand of M and rM( f ) = rM( f n) for any integer n ≥ 2, M is not a

π-Rickart module. On the other hand, consider the submodule N =

[

Z Z

0 0

]

of M. Then EndR(N) =

[

Z 0
0 0

]

. It is easy to show that N is a Rickart module

and so it is π-Rickart.
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In [13, Theorem 2.7], it is shown that every direct summand of a Rickart mod-
ule is Rickart. We now prove that every direct summand of a π-Rickart module
inherits this property.

Theorem 2.12. Every direct summand of a π-Rickart module is also π-Rickart.

Proof. Let M = N ⊕ P be a module with S = EndR(M) and SN = EndR(N).
For any f ∈ SN , define g = f ⊕ 0|P and so g ∈ S. By hypothesis, there exist a

positive integer n and e2 = e ∈ S such that rM(gn) = eM and gn = f n ⊕ 0|P . Let
M = eM ⊕ Q. Since P ⊆ eM, there exists L ≤ eM such that eM = P ⊕ L. So we
have M = eM ⊕ Q = P ⊕ L ⊕ Q. Let πN : M → N be the natural projection of
M onto N. Then πN |Q⊕L

: Q ⊕ L → N is an isomorphism. Hence N = πN(Q)⊕

πN(L). We claim that rN( f n) = πN(L). We get gn(L) = 0 since gn(P ⊕ L) = 0.
But for all l ∈ L, l = πN(l) + πP(l). Since gn(l) = gnπN(l) + gnπP(l) and
gn(l) = 0 and gnπP(l) = 0 and gnπN(l) = f nπN(l), we have f nπN(L) = 0
so πN(L) ⊆ rN( f n). For the reverse inclusion, let n ∈ rN( f n). Assume that
n /∈ πN(L) and we reach a contradiction. Then n = n1 + n2 for some n1 ∈ πN(L)
and some 0 6= n2 ∈ πN(Q) and so there exists q ∈ Q such that πN(q) = n2. Since
Q ∩ rM(gn) = 0, we have gn(q) = ( f n ⊕ 0|P)(q) 6= 0. Due to q = πN(q) + πP(q)

and gnπP(q) = ( f n ⊕ 0|P)πP(q) = 0, we get f n(q) = gn(q) = f nπN(q) 6= 0. This

implies n /∈ rN( f n) which is the required contradiction. Hence rN( f n) ≤ πN(L).
Therefore rN( f n) = πN(L).

Corollary 2.13. Let R be a generalized right principally projective ring with any idem-
potent e of R. Then eR is a π-Rickart module.

Corollary 2.14. Let R1 ⊕ R2 be a generalized right principally projective ring with di-
rect sum of the rings R1 and R2. Then the rings R1 and R2 are also generalized right
principally projective.

We now characterize generalized right principally projective rings in terms of
π-Rickart modules.

Theorem 2.15. Let R be a ring. Then R is generalized right principally projective if and
only if every cyclic projective R-module is π-Rickart.

Proof. The sufficiency is clear. For the necessity, let M be a cyclic projective R-
module. Then M ∼= I for some direct summand right ideal I of R. By Remark 2.2,
R is π-Rickart as an R-module. Also by Theorem 2.12, I is π-Rickart, and so is
M.

Proposition 2.16. Let R be a ring and consider the following conditions.

(1) Every free R-module is π-Rickart.

(2) Every projective R-module is π-Rickart.

(3) Every flat R-module is π-Rickart.

Then (3) ⇒ (2) ⇔ (1). Also (2) ⇒ (3) holds for finitely presented modules.



A Generalization of Rickart Modules 309

Proof. (3) ⇒ (2) ⇒ (1) Clear. (1) ⇒ (2) Let M be a projective R-module. Then M
is a direct summand of a free R-module F. By (1), F is π-Rickart, and so is M due
to Theorem 2.12.

(2) ⇒ (3) is clear from the fact that finitely presented flat modules are projec-
tive.

Lemma 2.17. Let M be a module and f ∈ S. If rM( f n) = eM for some central idempo-
tent e ∈ S and a positive integer n, then rM( f n+1) = eM.

Proof. It is clear that rM( f n) ≤ rM( f n+1). For the reverse inclusion, let
m ∈ rM( f n+1). Then f m ∈ rM( f n) = eM, and so f m = e f m. Since e is cen-
tral, f nm = f n−1 f m = f n−1e f m = f n−1 f em = f nem = 0. Hence m ∈ rM( f n) and
so rM( f n+1) ≤ rM( f n).

The next example reveals that a direct sum of π-Rickart modules need not be
π-Rickart.

Example 2.18. Let R denote the ring

[

Z Z

0 Z

]

and M the right R-module
[

Z Z

Z Z

]

. Consider the submodules N =

[

Z Z

0 0

]

and K =

[

0 0
Z Z

]

of M.

It is easy to check that every nonzero endomorphism of N and K is a monomor-
phism. Therefore N and K are π-Rickart modules but, as was claimed in Example
2.11, M = N ⊕ K is not π-Rickart.

A ring R is called abelian if every idempotent is central, that is, ae = ea for any
a, e2 = e ∈ R. A module M is called abelian [19] if f em = e f m for any f ∈ S,
e2 = e ∈ S, m ∈ M. Note that M is an abelian module if and only if S is an abelian
ring. In [9, Proposition 7], it is shown that the class of abelian generalized right
principally projective rings is closed under direct sums. We extend this result as
follows.

Proposition 2.19. Let M1 and M2 be π-Rickart R-modules. If M1 and M2 are abelian
and HomR(Mi, Mj) = 0 for i 6= j, then M1 ⊕ M2 is a π-Rickart module.

Proof. Let M = M1 ⊕ M2, Si = EndR(Mi) for i = 1, 2 and S = EndR(M). We may
write S as the direct sum S = S1 ⊕ S2 of the rings S1 and S2. By this notation S acts
on M as ( f1 ⊕ f2)(m1 + m2) = f1(m1) + f2(m2), where f1 ⊕ f2 ∈ S, m1 + m2 ∈
M. Let f = f1 ⊕ f2 ∈ S. By hypothesis, there exist positive integers n, m and
e2

1 = e1 ∈ S1 with rM1
( f n

1 ) = e1M1 and e2
2 = e2 ∈ S2 with rM2

( f m
2 ) = e2M2.

Without loss of generality, we may assume that n ≤ m. By Lemma 2.17, we have
rM1

( f n
1 ) = rM1

( f m
1 ) = e1M1. Let e = e1 ⊕ e2. Then e is an idempotent in S and

rM( f m) = eM.

Recall that a module M is called duo if every submodule of M is fully invariant,
i.e., for a submodule N of M, f (N) ≤ N for each f ∈ S. Our next aim is to find
some conditions under which a fully invariant submodule of a π-Rickart module
is also π-Rickart.

Lemma 2.20. Let M be a module and N a fully invariant submodule of M. If M is
π-Rickart and every endomorphism of N can be extended to an endomorphism of M,
then N is π-Rickart.
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Proof. Let S = EndR(M) and f ∈ EndR(N). By hypothesis, there exists
g ∈ S such that g|N = f and M being π-Rickart implies that there exist a posi-
tive integer n and an idempotent e of S such that rM(gn) = eM. Then rN( f n) =
N ∩ rM(gn). Since N is fully invariant, we have rN( f n) = eN, and so rN( f n) is a
direct summand of N. Therefore N is π-Rickart.

Corollary 2.21. If R is a generalized right principally projective ring and I is an ideal
of R which every endomorphism of I is extended to an endomorphism of R, then I is also
generalized right principally projective.

The following result is an immediate consequence of Lemma 2.20.

Proposition 2.22. Let M be a quasi-injective module and E(M) denote the injective hull
of M. If E(M) is π-Rickart, then so is M.

Proposition 2.23. Let M be a quasi-injective duo module. If M is π-Rickart, then every
submodule of M is also π-Rickart.

Proof. Let M be a π-Rickart module and N a submodule of M and f ∈ EndR(N).
By quasi-injectivity of M, f extends to an endomorphism g of M. Then rM(gn) =
eM for some positive integer n and e2 = e ∈ S. Since N is fully invariant under g,
the proof follows from Lemma 2.20.

Rizvi and Roman [17] introduced that a module M is K-nonsingular if for any
f ∈ S, rM( f ) is essential in M implies f = 0. They proved that every Rickart mod-
ule is K-nonsingular. For π-Rickart modules, we now give a generalization of the
notion of K-nonsingularity. The module M is called generalized K-nonsingular, if
rM( f ) is essential in M for any f ∈ S, then f is nilpotent. It is clear that every
K-nonsingular module is generalized K-nonsingular. The converse holds if the
module is rigid. A ring R is called π-regular if for each a ∈ R there exist a positive
integer n and an element x in R such that an = anxan.

Lemma 2.24. Let M be a module. If S is a π-regular ring, then M is generalized
K-nonsingular.

Proof. Let f ∈ S with rM( f ) essential in M. By hypothesis, there exist a positive
integer n and g ∈ S such that f n = f ng f n. Then g f n is an idempotent of S and
so rM( f n) is a direct summand of M. Since rM( f ) is essential in M, rM( f n) is
also essential in M. Hence rM(g f n) = M and so g f n = 0. Therefore f ng f n =
f n = 0.

Proposition 2.25. Every π-Rickart module is generalized K-nonsingular.

Proof. Let M be a π-Rickart module and f ∈ S with rM( f ) essential in M. Then
rM( f n) = eM for some e2 = e ∈ S and a positive integer n. Hence rM( f n) is
essential in M. Thus rM( f n) = M and so f n = 0.

Corollary 2.26. If R is a generalized right principally projective ring, then it is general-
ized K-nonsingular as an R-module.
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Our next purpose is to find out the conditions when a π-Rickart module M is
torsion-free as an S-module. So we consider the set T(S M) = {m ∈ M | f m = 0
for some nonzero f ∈ S} of all torsion elements of a module M with respect to S.
The subset T(SM) of M need not be a submodule of the modules SM and MR in
general. If S is a commutative domain, then T(SM) is an (S, R)-submodule of M.

Proposition 2.27. Let M be a module with a commutative domain S. If M is π-Rickart,
then T(SM) = 0 and every nonzero element of S is a monomorphism.

Proof. Let 0 6= f ∈ S. Then there exist a positive integer n and e2 = e ∈ S such
that rM( f n) = eM. Hence f ne = 0. Since S is a domain, we have e = 0 and so
rM( f n) = 0. This implies that Ker f = 0. Thus f is a monomorphism. On the
other hand, if m ∈ T(SM) there exists 0 6= f ∈ S such that f m = 0. f being a
monomorphism implies m = 0, and so T(S M) = 0.

We close this section with the relations among strongly Hopfian modules, Fit-
ting modules and π-Rickart modules. Recall that a module M is called Hopfian
if every surjective endomorphism of M is an automorphism, while M is called
strongly Hopfian [7] if for any endomorphism f of M, the ascending chain Ker f ⊆
Ker f 2 ⊆ · · · ⊆ Ker f n ⊆ · · · stabilizes. We now give a relation between abelian
and strongly Hopfian modules by using π-Rickart modules as follows. It is ob-
tained from Lemma 2.17 and [7, Proposition 2.5].

Proposition 2.28. Every abelian π-Rickart module is strongly Hopfian.

A module M is said to be a Fitting module [7] if for any f ∈ S, there exists
an integer n ≥ 1 such that M = Ker f n⊕ Im f n. In this direction we have the
following result.

Remark 2.29. Every Fitting module is π-Rickart.

The following provides another source of examples for π-Rickart modules.

Theorem 2.30. Every finitely generated module over a right Artinian ring is π-Rickart.

Proof. Let R be a right Artinian ring and M a finitely generated R-module. By
[2, Proposition 10.18, Proposition 10.19 and Theorem 15.20], M is a Fitting mod-
ule. Thus Remark 2.29 completes the proof.

By applying Theorem 2.30 to the ring itself we obtain the next result.

Corollary 2.31. Every right Artinian ring is generalized right principally projective.

3 The Endomorphism Ring of a π-Rickart Module

In this section we study some relations between π-Rickart modules and their
endomorphism rings. We prove that endomorphism ring of a π-Rickart module
is always generalized right principally projective, the converse holds either the
module is flat over its endomorphism ring or it is 1-epiretractable. Also modules
whose endomorphism rings are π-regular are characterized.
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Proposition 3.1. If M is a π-Rickart module, then S is a generalized right principally
projective ring.

Proof. If f ∈ S, then rM( f n) = eM for some e2 = e ∈ S and positive integer n.
If g ∈ rS( f n), then gM ≤ rM( f n) = eM. This implies that g = eg ∈ eS, and so
rS( f n) ≤ eS. Let h ∈ S. Due to f nehM ≤ f neM = 0, we have f neh = 0. Hence
eS ≤ rS( f n). Therefore rS( f n) = eS.

The next known result (see [9, Proposition 9]) is a consequence of Theorem
2.12 and Proposition 3.1.

Corollary 3.2. If R is a generalized right principally projective ring, then so is eRe for
any e2 = e ∈ R.

Corollary 3.3 is an application of Theorem 2.30 and Proposition 3.1 for the
matrix rings over Artinian rings.

Corollary 3.3. Let R be a right Artinian ring. Then Mn(R) is generalized right princi-
pally projective for every positive integer n.

Proof. Clear by Theorem 2.30 since Mn(R) is the endomorphism ring of the
R-module Rn for any positive integer n.

A module M is called n-epiretractable [4] if every n-generated submodule of
M is a homomorphic image of M. We now show that 1-epiretractable modules
allow us to get the converse of Proposition 3.1.

Proposition 3.4. Let M be a 1-epiretractable module. Then M is π-Rickart if and only
if S is a generalized right principally projective ring.

Proof. The necessity holds from Proposition 3.1. For the sufficiency, let f ∈ S.
Since S is generalized right principally projective, there exist a positive integer n
and e2 = e ∈ S such that rS( f n) = eS. Then f ne = 0, and so eM ≤ rM( f n). In
order to show the reverse inclusion, let 0 6= m ∈ rM( f n). The module M being
1-epiretractable implies that there exists 0 6= g ∈ S with gM = mR, and so
m = gm1 for some m1 ∈ M. On the other hand, f ngM = f nmR = 0, and so
f ng = 0. Thus g ∈ rS( f n) = eS. It follows g = eg. Hence we have m = gm1 =
egm1 = em ∈ eM. Therefore rM( f n) = eM.

Corollary 3.5. A free module is π-Rickart if and only if its endomorphism ring is gen-
eralized right principally projective.

A module M is called regular (in the sense of Zelmanowitz [24]) if for any

m ∈ M there exists a right R-homomorphism M
φ
→ R such that

m = mφ(m). Every cyclic submodule of a regular module is a direct summand,
and so it is 1-epiretractable. Then we have the following result.

Corollary 3.6. Let M be a regular module. Then S is generalized right principally pro-
jective if and only if M is π-Rickart.

Corollary 3.7. Every finitely generated projective regular module is π-Rickart.
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Proof. Let M be a finitely generated projective regular module. By [22, Theo-
rem 3.6], the endomorphism ring of M is generalized right principally projective.
Hence by Corollary 3.6, M is π-Rickart.

Let U be a nonempty set of R-modules. Recall that for a module L, the sub-
module Tr(U , L) = ∑{Imh|h ∈ Hom(U, L), U ∈ U} is called the trace of U in L. If
U consists of a single module U we simply write Tr(U, L). The following result
shows that the converse of Proposition 3.1 is also true for flat modules over their
endomorphism rings. On the other hand, Theorem 3.8 generalizes the result [23,
39.10].

Theorem 3.8. Let M be a module and f ∈ S. Then we have the following.

(1) If f nS is a projective right S-module for some positive integer n, then Tr(M, rM( f n))
is a direct summand of M.

(2) If M is a flat left S-module and S is a generalized right principally projective ring,
then M is π-Rickart as an R-module.

Proof. (1) Assume that f nS is a projective right S-module for some
positive integer n. Then there exists e2 = e ∈ S with rS( f n) = eS. We show
Tr(M, rM( f n)) = eM. Since f neM = 0, eM ≤ Tr(M, rM( f n)). Let
g ∈ Hom(M, rM( f n)). Hence gM ≤ rM( f n) or f ngM = 0 or
f ng = 0. Thus g ∈ rS( f n) = eS and so eg = g. It follows that gM ≤ egM ≤ eM
or Hom(M, rM( f n))M ≤ eM.

(2) Assume that M is a flat left S-module and S is a generalized right prin-
cipally projective ring. If f ∈ S, then f nS is a projective right S-module since
rS( f n) = eS for some positive integer n and e2 = e ∈ S. As in the proof of (1), we
have Tr(M, rM( f n)) = eM. Since M is a flat left S-module and f n ∈ S, rM( f n) is
M-generated by [23, 15.9]. Again by [23, 13.5(2)], Tr(M, rM( f n)) = rM( f n). Thus
rM( f n) = eM.

Recall that a ring R is said to be von Neumann regular if for any a ∈ R, there
exists b ∈ R with a = aba. For a module M, it is shown that if S is a von Neumann
regular ring, then M is a Rickart module (see [13, Theorem 3.17]). We obtain a
similar result for π-Rickart modules.

Proposition 3.9. Let M be a module. If S is a π-regular ring, then M is a π-Rickart
module.

Proof. Let f ∈ S. Since S is π-regular, there exist a positive integer n and an
element g in S such that f n = f ng f n. Then g f n is an idempotent of S. Now
we show that rM( f n) = (1 − g f n)M. For m ∈ M, we have f n(1 − g f n)m =
( f n − f ng f n)m = ( f n − f n)m = 0. Hence (1 − g f n)M ≤ rM( f n). For the other
side, if m ∈ rM( f n), then g f nm = 0. This implies that m = (1 − g f n)m ∈
(1 − g f n)M. Therefore rM( f n) = (1 − g f n)M.

Now we recall some known facts that will be needed about π-regular rings.



314 B. Ungor – S. Halıcıoglu – A. Harmanci

Lemma 3.10. Let R be a ring. Then

(1) If R is π-regular, then eRe is also π-regular for any e2 = e ∈ R.

(2) If Mn(R) is π-regular for any positive integer n, then so is R.

(3) If R is a commutative ring, then R is π-regular if and only if Mn(R) is π-regular
for any positive integer n.

Proof. (1) Let R be a π-regular ring, e2 = e ∈ R and a ∈ eRe. Then an = anran for
some positive integer n and r ∈ R. Since an = ane = ean, we have an = an(ere)an .
Therefore eRe is π-regular.

(2) is clear from (1).
(3) Let R be a commutative π-regular ring. By [12, Ex.4.15], every prime ideal

of R is maximal, and so every finitely generated R-module is co-Hopfian from
[21]. Then for any positive integer n, Mn(R) is π-regular by [3, Theorem 1.1]. The
rest is known from (2).

Proposition 3.11. Let R be a commutative π-regular ring. Then every finitely generated
projective R-module is π-Rickart.

Proof. Let M be a finitely generated projective R-module. So the endomorphism
ring of M is eMn(R)e for some positive integer n and an idempotent e in Mn(R).
Since R is commutative π-regular, Mn(R) is π-regular, and so is eMn(R)e by
Lemma 3.10. Hence M is π-Rickart by Proposition 3.9.

The converse of Proposition 3.9 may not be true in general, as the following
example shows.

Example 3.12. Consider Z as a Z-module. Then it can be easily shown that Z is
a π-Rickart module, but its endomorphism ring is not π-regular.

A ring R is called strongly π-regular if for every element a of R there exist a
positive integer n (depending on a) and an element x of R such that an = an+1x,
equivalently, an element y of R such that an = yan+1. Due to Armendariz, Fisher
and Snider [3], the module M is a Fitting module if and only if S is a strongly
π-regular ring. Theorem 3.13 fully characterizes the endomorphism ring of a
module with C2 condition to be π-regular. A module M has C2 condition if any
submodule N of M which is isomorphic to a direct summand of M is a direct
summand. A ring R is called right C2 if the right R-module R has C2 condition.
In [13, Theorem 3.17], it is proven that the module M is Rickart with C2 condition
if and only if S is von Neumann regular. The C2 condition allows us to show the
converse of Proposition 3.9.

Theorem 3.13. Let M be a module with C2 condition. Then M is π-Rickart if and only
if S is a π-regular ring.

Proof. The sufficiency holds from Proposition 3.9. For the necessity, let 0 6= f ∈ S.
Since M is π-Rickart, Ker f n is a direct summand of M for some positive integer
n. Let M = Ker f n ⊕ N for some N ≤ M. It is clear that f n|N is a monomorphism.
By the C2 condition, f nN is a direct summand of M. On the other hand, there
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exists 0 6= g ∈ S such that g f n|N = 1N. Hence ( f n − f ng f n)M = ( f n − f ng f n)
(Ker f n ⊕ N) = ( f n − f ng f n)N = 0. Thus f n = f ng f n, and so S is a π-regular
ring.

The following is a consequence of Proposition 3.11 and Theorem 3.13.

Corollary 3.14. Let R be a commutative right C2 ring. Then the following are equivalent.

(1) R is a π-regular ring.

(2) Every finitely generated projective R-module is π-Rickart.

Since every quasi-injective module has C2 condition, the next result is
obtained immediately.

Corollary 3.15. Let M be a quasi-injective module. Then M is π-Rickart if and only if
S is a π-regular ring.

It is known that every π-regular ring is generalized right principally projec-
tive. The next result shows when the converse of this statement is true.

Corollary 3.16. Let R be a right C2 ring. Then R is generalized right principally projec-
tive if and only if it is π-regular.

The following is an application to the ring of matrices which satisfy π-regula-
rity in view of Proposition 3.9 and Theorem 3.13. In Theorem 2.15, we determine
the necessary and sufficient condition for every cyclic projective module being
π-Rickart. Now we deal with not only cyclic but also finitely generated projective
modules.

Theorem 3.17. Let R be a right self-injective ring. Then the following are equivalent.

(1) Mn(R) is π-regular for every positive integer n.

(2) Every finitely generated projective R-module is π-Rickart.

Proof. (1) ⇒ (2) Let M be a finitely generated projective R-module. Then M ∼= eRn

for some positive integer n and e2 = e ∈ Mn(R). Hence S is isomorphic to
eMn(R)e. By (1), S is π-regular. Thus M is π-Rickart due to Proposition 3.9.

(2) ⇒ (1) Mn(R) can be viewed as the endomorphism ring of a projective
module Rn for a positive integer n. By (2), Rn is π-Rickart, and by hypothesis, it
is quasi-injective. Then Mn(R) is π-regular by Corollary 3.15.

The proof of Lemma 3.18 may be in the context. We include it as an easy
reference.

Lemma 3.18. Let M be a module. Then S is a π-regular ring if and only if for each
f ∈ S, there exists a positive integer n such that Ker f n and Im f n are direct summands
of M.

Theorem 3.19. Let M be a π-Rickart module. Then the right singular ideal Zr(S) of S
is nil, moreover, Zr(S) ⊆ J(S).
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Proof. Let f ∈ Zr(S). Since M is π-Rickart, rM( f n) = eM for some positive
integer n and e = e2 ∈ S. By Proposition 3.1, rS( f n) = eS. Since rS( f n) is essential
in S as a right ideal, rS( f n) = S. This implies that f n = 0, and so Zr(S) is nil. On
the other hand, for any g ∈ S and f ∈ Zr(S), according to previous discussion,
( f g)n = 0 for some positive integer n. Hence 1 − f g is invertible. Thus f ∈ J(S).
Therefore Zr(S) ⊆ J(S).

The next known result (see [16, Proposition 2]) can be obtained as a conse-
quence of Theorem 3.19.

Corollary 3.20. The right singular ideal Zr(RR) of a generalized right principally pro-
jective ring R is a nil ideal.

Proposition 3.21. The following are equivalent for a module M.

(1) Each element of S is either a monomorphism or nilpotent.

(2) M is an indecomposable π-Rickart module.

Proof. (1) ⇒ (2) Let e = e2 ∈ S. If e is nilpotent, then e = 0. If e is a monomor-
phism, then e(m − em) = 0 implies em = m for any m ∈ M. Hence e = 1, and so
M is indecomposable. Also for any f ∈ S, rM( f ) = 0 or rM( f n) = M for some
positive integer n. Therefore M is π-Rickart.

(2) ⇒ (1) Let f ∈ S. Then rM( f n) is a direct summand of M for some positive
integer n. Since M is indecomposable, we see that rM( f n) = 0 or rM( f n) = M.
This implies that f is a monomorphism or nilpotent.

In [15], a module M is called morphic if for every f ∈ S, M/ f M ∼= Ker f , and a
ring R is right morphic if every a ∈ R satisfies R/aR ∼= rR(a). Also in [8], a ring R
is said to be left π-morphic if for every a ∈ R, there exists a positive integer n such
that R/Ran ∼= lR(Ran). A right π-morphic ring is defined similarly. We end this
paper by observing some results about the notion of morphic modules.

Theorem 3.22. Consider the following conditions for a module M.

(1) S is a local ring with nil Jacobson radical.

(2) M is an indecomposable π-Rickart module.

Then (1) ⇒ (2). If M is a morphic module, then (2) ⇒ (1).

Proof. (1) ⇒ (2) Clearly, each element of S is either a monomorphism or nilpotent.
Then M is indecomposable π-Rickart due to Proposition 3.21.

(2) ⇒ (1) Let f ∈ S. Then rM( f n) = eM for some positive integer n and an
idempotent e in S. If e = 0, then f is a monomorphism. Since M is morphic, f is
invertible by [15, Corollary 2]. If e = 1, then f n = 0. Hence 1 − f is invertible.
This implies that S is a local ring. Now let 0 6= f ∈ J(S). Since f is not invertible,
there exists a positive integer n such that rM( f n) = M. Therefore J(S) is nil.

The next result can be obtained from Theorem 3.22 and [8, Lemma 2.11].

Corollary 3.23. Let M be an indecomposable π-Rickart module. If M is morphic, then
S is a left and right π-morphic ring.



A Generalization of Rickart Modules 317

Corollary 3.24. Consider the following conditions for a ring R.

(1) Each element of R is either regular or nilpotent.

(2) R is indecomposable generalized right principally projective.

(3) R is local with J(R) nil.

Then (3) ⇒ (2) ⇔ (1). If R is a morphic ring, then (2) ⇒ (3).

Acknowledgements. The authors would like to thank the referee for several
helpful suggestions which contributed to improve the presentation of this pa-
per. The first author thanks the Scientific and Technological Research Council of
Turkey (TUBITAK) for the financial support.

References

[1] N. Agayev, S. Halicioglu and A. Harmanci, On Rickart modules, Bull. Iran.
Math. Soc. 38(2)(2012), 433-445.

[2] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-
Verlag, New York, 1992.

[3] E. P. Armendariz, J. W. Fisher and R. L. Snider, On injective and surjective
endomorphisms of finitely generated modules, Comm. Algebra 6(7)(1978), 659-
672.

[4] A. Ghorbani and M. R. Vedadi, Epi-Retractable modules and some applications,
Bull. Iran. Math. Soc. 35(1)(2009), 155-166.

[5] A. Hattori, A foundation of the torsion theory over general rings, Nagoya Math.
J. 17(1960), 147-158.

[6] Y. Hirano, On generalized p.p.-rings, Math. J. Okayama Univ. 25(1)(1983), 7-11.

[7] A. Hmaimou, A. Kaidi and E. Sanchez Campos, Generalized fitting modules
and rings, J. Algebra 308(1)(2007), 199-214.

[8] Q. Huang and J. Chen, π-Morphic rings, Kyungpook Math. J. 47(2007), 363-
372.

[9] C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure
Appl. Algebra 167(1)(2002), 37-52.

[10] I. Kaplansky, Rings of operators, W. A. Benjamin Inc. New York-Amsterdam,
1968.

[11] T. Y. Lam, Lectures on modules and rings, Springer-Verlag, New York, 1999.

[12] T. Y. Lam, A first course in noncommutative rings, Springer-Verlag, New
York, 2001.



318 B. Ungor – S. Halıcıoglu – A. Harmanci

[13] G. Lee, S. T. Rizvi and C. S. Roman, Rickart modules, Comm. Algebra
38(11)(2010), 4005-4027.

[14] G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart modules, Comm. Algebra
39(2011), 4036-4058.

[15] W. K. Nicholson and E. Sanchez Campos, Morphic modules, Comm. Algebra
33(2005), 2629-2647.

[16] M. Ohori, On non-commutative generalized p.p. rings, Math. J. Okayama Univ.
26(1984), 157-167.

[17] S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra
32(2004), 103-123.

[18] S. T. Rizvi and C. S. Roman, Baer property of modules and applications, Ad-
vances in Ring Theory (2005), 225-241.

[19] J. E. Roos, Sur les catégories spectrales localement distributives, C. R. Acad. Sci.
Paris Ser. A-B 265(1967), 14-17.

[20] B. Ungor, Y. Kurtulmaz, S. Halicioglu and A. Harmanci, Dual π-Rickart mod-
ules, Rev. Colombiana Mat. (46)(2)(2012), 167-183.

[21] W. V. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc.
138(1969), 505-512.

[22] R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc.
155, 1(1971), 233-256.

[23] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach,
Reading, 1991.

[24] J. M. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc. 163(1972), 341-
355.

Department of Mathematics, Ankara University, Turkey
email:bungor@science.ankara.edu.tr

Department of Mathematics, Ankara University, Turkey
email:halici@ankara.edu.tr

Department of Mathematics, Hacettepe University, Turkey
email:harmanci@hacettepe.edu.tr


