Applications of monotone operators to a class of
semilinear elliptic BVPs in unbounded domain

Rasmita Kar

Abstract

We study the existence of a weak solution for a semilinear elliptic Dirich-
let boundary-value problem

Lu(x) — puigs (x) + h(u)ga(x) = f(x) in©Y,
u(x) =0 on d(},

in a suitable weighted Sobolev space, where 3 = R"\K,n > 3 is an un-
bounded domain, and where K is a closure of some bounded domain in

R", n > 3.

1 Introduction

Let O = R"\K,n > 3 be an unbounded domain with smooth boundary 0(},
where K is a closure of some bounded domain in IR”. Let L be an elliptic operator
in the divergence form

Lu(x) = — i Dj(a;j(x)Diu(x)) with D; = i, (1.1)
i=1 0x;

with coefficients a;; € L®(Q)) and the matrix (a;;) is symmetric and satisfy

n
Mgl < Y aij(x)6ig < AJE), ae,xeQ, (1.2)
=1
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forall { € R" (A > 0, A > 0). In this paper, we establish the existence results for
a class of semilinear elliptic BVP

Lu —ugiu+ gh(u) = f inQ,

1.
u=0 onoadQ), (13)

where 1 € R, gi(i = 1,2), f are elements of some weighted spaces and / is
Lipschitzian and monotonic. The main tool used is a result by Browder [8] and
Minty [9] on monotone hemi-continuous operators. The study is inspired by a
problem in bounded domain given in the book by Zeidler [7]. Also, a degenerate
elliptic BVP studied by Cavalheiro [2] in a bounded domain, say U C R" with
boundary oU. More precisely Cavalheiro [2] studied the following :

Suppose that £ be an elliptic operator in the divergence form as in (1.1), where
the coefficient matrix (a;;) satisfies the degenerate ellipticity condition

MePalx) € Y ay(x)aE < AlEPw(x), ae,xel,  (14)
ij=1

forall { € R", (A > 0,A > 0). Here, w be an Ap-weight. For more details on
Ap-weight (1 < p < c0), we refer to [3, 10, 11].
Consider the BVP

Lu—pugr +h(u)g = f inl,

1.5
u=0 onoadl. (1.5)

where y € R, h : R — R be a bounded and continuous function. Assume that
g1/w € L®(U), g/w € L?(U,w) and f/w € L*(U,w). Under these hypotheses
on the functions f, g1, g2, and h, the following proposition is due to Cavalheiro

[2].

Proposition 1.1. Suppose that y > 0 not be an eigenvalue of
Lu—pugr =0 inlU, u=0 ondl.

Then, the BVP (1.5), has a weak solution u € W&’z(l,l, w).

In the Proposition 1.1 main tools used are compact embedding in weighted
Sobolev space and a result introduced by Hess [14] in 1972 (also found in the
book by Zeidler [7]). In the present paper, we study the elliptic BVP (1.3) in a
class of unbounded domain. Elliptic BVPs in unbounded domains present spe-
cific difficulties, primarily due to lack of compactness. Another difficulty in the
study of the elliptic BVPs is due to the non-availability of the Poincare-inequality

in the Sobolev spaces Wg’p (Q)) for a general unbounded domain ). One of the
classical technique employed is approximating a solution on unbounded domain
say () by solutions on bounded subdomains of (2 under the assumption the suit-
able upper and lower solutions exist, as in Noussair and Swanson[5, 6]. Secondly,
the use of weighted-norm Sobolev spaces which admit compact embeddings, as
in Benci [16], Bongers, Heinz and Kupper [1]. In [12], Berger and Schechter have
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shown that a substitute for such embedding results can be obtained when () is
unbounded, by introducing appropriate weighted L¥ norms. As a consequence,
to prove the existence of a weak solution to (1.3) we consider suitable weighted
Sobolev space defined on a specific class of domains in R”,n > 3. Where as the
restriction on the domain has yields us a required Hardy-type inequality. Also as
in [2], we do not need the hypothesis of boundedness of the nonlinear function h
and instead we have assumed h to be Lipschitzian and monotonic. The assump-
tions on h along with Hardy-type inequality helps us to establish the existence
result without use of compact embedding theorems.

Section 2 deals with preliminaries. Section 3 concerns with the main result is
about the existence of a weak solution of the BVP (1.3).

2 Preliminaries

Let G C R" be a domain (not necessarily bounded) with a smooth boundary 9G.
For a weight function w(ie., w : G — R* be a locally integrable function with
0 < w < © a.e.,) we define the weighted p-norm

1/
lollpcaw = ( [lo@IPw@dx) ", 1< p <o, (26)

and denote by L (G, w) the space of all measurable functions v such that ||v|| G,
is finite. ~For weight functions wy and w;, the weighted Sobolev space
WLP(G,wp, wy) is defined to be the space of all functions v € LP(G,wp) such

that all weak derivatives dv/0dx; belong to L” (G, w1). In this space, the norm is
defined by

1/p
[ol1p.Gaonen = { [ (olPwo+ V0w ax} ™, @7)

where Vo = (Dyv, Dy, ..., Dy0). It is known (cf.[4, 13]) that WP (G, wy, w1) is a
uniformly convex Banach space, provided

1(G), (2.8)

-1, -1
p>1, wy,wy eLlOC

and, moreover C3°(G) C W?(G, wp, wy), if and only if
wo, w1 € Llloc(G)' (2.9)

Under the assumptions (2.8) and (2.9), let WS "P(G, wy, w) be the closure of C3°(G)
with respect to the norm (2.7). We also note that W'2(G,wp,wi) and
Wé’Z(G, wp,w1), are Hilbert spaces. We denote the space Wg’p (G,wp,1) by
Wg’P(G, wp). More details on weighted Sobolev spaces are found in [3, 4, 10, 11,
13, 15].

We say domain G belongs to class D if there exists a compact set K C R", such
that G = R"\K. For G € D, we set

a* = inf{|x|;x € G}.
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We denote by D! the set of all G € D such that
G =R"\K with K € C.

More details on the classes D%!, C%! are given in the book by Opic and Kufner
[4, p.269,p.289]. Another important and useful tool for the study of partial differ-
ential equations in unbounded domains is the Hardy-type inequality. Let a* > 0
and further we assume G € D[G € D"!] has the property that

x € G implies tx € G, foreveryt >1,

and such a class of domains is denoted by D,[DY']. Moreover, the weight func-
tions wy, wy are assumed to be radial, i.e of the form wy(x) = Po(|x|), wi(x) =
1 (|x|), where 1y, ¥, are defined on (0, o0) and bounded from below and above
on each compact subinterval in (0,00). Let 1 < p < oo and p’ be defined by
1/p+1/p’ = 1. Then, the following Hardy-type inequality holds(Theorem
21.8,[4]):

Proposition 2.1. (Hardy-type inequality) Assume that there are constants k,tg > 0
such that

Po(t) >k (t)tF foraet >t
Br(Po()E" 1, P ()", p) < oo,

where

Br(po(t)" 1 ()", p) = sup [[(Yo(t)" )Pl 00 @1 (") TP (600)-

0<s<oo

Then, there is a constant C > 0 such that
pGawy < Cll[|Vl

HU p,G, w1 (2-10)
holds for every v € WP (G, wo, wy).

As a consequence of the Hardy-type inequality, we get the equivalence of the
norms

lo

1/p
sipean = ([ IVo()lPwr(x)d)

LP/GrWO/Wl and ’v

in Wl’p (G,‘ wy, wl).

Remark 2.2. Let G € D, witha* > 0,1 > 3, ¥(t) = t72, ¥1(t) =1, p = 2. We
note that
Yo(t) >t 2p(t), for t > 0.

Also,
Br(po(H)t" ™, pr(H)t"1,2) = Sup 1o (") 21, i0,6) | (W1 (O)F ™) 7212, (5,000
<s<oo
= sup (22 0,0 (") T2 g 500
0<s<o0
n=3 1-n
= Ssup Ht 2 2,(0,s)|t 2 2,(s,00)
0<s<oo

S 3 00 1 1/2
= sup {/0 " dtx/ g dt} < 0,
S

0<s<oo
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and thus,
%R(|t|_2t”_1, t”_1,2) < 0.

From (2.10) we have for p = 2, wo(x) = Po(|x|) = |x| 72, and wq(x) = P (|x]) =1

lo

26x-2 < CllIVolla6, ve WH(G,w). (2.11)

Definition 2.3. Let (O C IR" be an open connected set. u € W&’z(Q, w) is called a
weak solution of (1.3) if

A L}f_l oy (D) Dy (¥)dx — [ u(x)gr (X)p()dx + [ h(u(x))ga (x)p ()

_ /Q F(x)p(x)dx, forall p € W2(Q,w).

From [7], we quote :
Definition 2.4. Let B : X — X* be an operator on a real Banach space X.
(i) B is monotone iff

(Bu—Bolu—v) >0 forallu,v e X.
(ii) B is uniformly monotone iff
(Bu— Boju —v) >a(|ju —v||)||u —v|| forallu,ve X.

where the continuous function a : Ry — IR} is strictly monotone increasing
with a(0) = 0and a(f) — oo as t — co.

(iii) B is coercive iff

lim
oo ||ue]]

(iv) B is hemi-continuous iff
t— (B(u+tv), w)
is continuous on [0, 1] for all u, v, w € X.

We have the following implications:
B is uniformly monotone implies B is monotone. Furthermore, we note that B is
uniformly monotone implies B is coercive.

In Definition 2.4(ii), we may choose the function a(t) = c|¢|P~! with p > 1 and
¢ > 0. In this case, we obtain

(Bu — Boju —v) > clju —v||P  forallu,v € X.
In section 3, we use the following result. We consider the operator equation
Au=0b, uecX (2.12)

Theorem 2.5. (Browder-Minty(1963)) Assume that the operator A : X — X* is mono-
tone, hemi-continuous and coercive on the real, separable, reflexive Banach space X. Then,
foreach b € X*, the equation (2.12) has a solution.

The proof of the Theorem 2.5 is found in [7, Theorem 26.A], Browder [8] and
Minty [9].
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3 The main result

Let QO C R",n > 3 be an unbounded domain of the type D! with a* > 0. The
advantage of choosing such domains is the availability of Hardy-type inequality
with suitable weights. In this section, we study the existence of a weak solution
of the BVP (1.3).

We need the following hypotheses for further study.

(F1) Suppose that w = |x|72, ¢1/w € L®(Q), go/w € L*®(Q), g > 0 and
f/lw e Lz(Q,w);

(F;) Leth : R — R be a Lipschitz continuous function with Lipschitz constant
A and h(0) = 0;

(F3) Suppose that h satisfies, (h(&) —h(¢'))(E —¢&') >0, forallE, & € R.

We define the operator Bj : WS'Z(Q,w) X WS'Z(Q,w) — R by

Biwg) = [ 3 ay(Di (D (x)p(x) dx — e [ u(x)g (1)9(x) dx

ij=1

+ / h(u(x))g2(xX)p(x) dx,  forall u,¢ € WIA(Q, w)
0
and we define T : WS'Z(Q,w) — R by
T(9) = [ fx)p(x)dx.
A function u € W&’Z(Q, w) is a weak solution of (1.3) iff

By(u,¢) = T(¢), forallp € Wy*(Q,w). (3.13)

Below, we establish the existence of a weak solution of (1.3) under certain condi-
tions.

Theorem 3.1. Let QO C R",n > 3 be an unbounded domain of the type DY with
a* > 0. Assume that the hypotheses (Fy)-(Fs) hold. Suppose that

uCllg1/wlewn <A, u>0

and C is the constant arising out of inequality (2.11). Then, the problem (1.3) has a weak
solution u € W&'Z(Q,w).

Proof. Idea of proof is such. First we write the BVP (1.3) as operator equation
ueWH(Q,w): Bu=T in [WQ,w)]*, (3.14)

where T € [W&’Z(Q, w)|*, B: W&’Z(Q,w) — [W&’Z(Q,w)]* is monotone, hemi-
continuous and coercive. Further, we put Proposition 2.5 to this operator equa-
tion. For convenience, we have divided the proof into five steps.
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Step-1 : We note that, for some constant c, |a;;(x)| < c. Since & is Lipschitzian and
h(0) = 0, we get |1(u)| < Alu|. Forall u, ¢ € Wy?(Q, w), we have

B < [ Y lay(x) rDu<mD@<|w+y/h4|w ) lga ()] d

1]1

+ [ g2 1)) [9()]| d
<C/Z|Du D)D)l dx +p [ [u0)l[(x yglxy (x) dx

ij=1 x

4 [ 1 ol o) dx
<c /()2|Diu(x)]2dx 1/2(/ i;pj(p(x)wx)m

Pl [ JuG) Pt ax) ([ o0 Polx ar)
FAIE ol [ u(Po@ ) ([ 1900w dx)”

<clulo120lPlo120 + (ﬂl|g1/w||oo,g + Ang/wHoo,Q) ull2,0,0 1¢12,0,0

< (c+ Cullg1 /@l + CAllg2 /@l lHoa20lPlorzo.  (315)

where, C is a constant arising out of the Hardy-type inequality (2.11). Now,
Bi(u,.) is linear and bounded. Then, there exists an operator

B: W, (Q,w) — [WyA(Q,w)]",

defined by (Bu| ¢) = By (u,¢) forall u,¢ € Wy?(Q, w). Also, we have

DI < [ @) dx

< Hf/wHZ,Q’wH(PHZ,Q,aJ
< Cf/wllyq,l0l0120-

Then, problem (3.13) is equivalent to the operator equation
Bu=T, u€ W,*(Q,uw). (3.16)
Step-2: We claim that B is hemi-continuous. That is,
t— (B(u+tv)|¢)
is continuous on [0,1], for all u, v, ¢ € Wg’Z(Q, w). Let F : [0,1]— R defined by
F(t) = (B(u +tv)|¢) = Bi(u+tv,¢), t € [0,1].

Suppose t, € [0,1] such that t, — ain [0,1] as n — oo. We show that F(t,) —
F(a) asn — oo.
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We note that
|F(ty) — F(a)| =|(B(u + t,0)|9) — (B(u + av)|9)]
= |B1 (1 + tyv,¢) — B1(u + av, ¢)]|

n
=| / Y a;iDi(u + t,v)Djpdx — ;4/ (1 + ty0)Ppgy dx
0,57 o

n
+ /Qh(u + t,0)pgadx — /Q Y 4;iDj(u + av) Dipdx

ij=1

+ P‘/Q(U‘Fﬂv)fl’gl dx—/gh(u—kav)(pgz}dx

< /Q ’ i’jz_l aij{(Di(u + tnU) — Di(u + LZU)}D](P} dx

+ u /Q ](tn — a)v(,bgl} dx + /Q }(h(u + tyv) — h(u + av)) g dx}
< |1 X ayDil(tu — @)o)Dg| dx + il b —al | [ogga|d
Qo o
+ A/Q |(u + ty0) — (u + av)| |pgo| dx
<lt—alfe [ Y IDwliDgldx+p [ [oll¢llsi]dx
+4 [ Jollgllgzdx]
< |t — al[c[v]o120lPlo12.0 + CHllg1/wllw,alvlo120lPlo1,2.0

+ CA|lg2/wllw,0l?l01,2,0]¢l0,1,20]
= |tn—a|[c + uCllg1/ Wllw,0 + CAllg2/ w0l lvl0120l¢l0120- (3.17)

From (3.17), we note that F is continuous and as a consequence B turns out to be
hemi-continuous.
Step-3 : It follows from the hypotheses (F;) and (F3) that

22(%) (h(u(x)) — h(v(x)))(u(x) —v(x)) >0, a.e., forall u,v € Wy*(Q,w).
Since 1C||g1/wlleo,0 < A, by (1.2), and the hypotheses (F; ) and (F3), we obtain
Bi(u,u —v) — By(v,u —v) = / i a;j(Diu — Djv)Dj(u — v)dx

Q=1
— U /Q(u —v)2g1dx + /ng(h(u) —h(v))(u —v)dx

= /Q i a;iDi(u — v)Dj(u —v)dx — p /Q(u — v)°g1dx

ij=1

+ [ ga(h(u) = h(o))(n — o)dx
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> A [ V(= 0)Pdr = pllgr/@leon [ (1= 0)wds
2/\/Q]V(u—v)]zdx—yCHgl/MOO,Q/Q|V(u—U)]2wdx
> (A= puCllg1/w|| o 0)lu— v

2
0120 =0,

forall u,v € W&’Z(Q, w). Consequently, B is monotone.
Step-4 : By (F2), h(0) = 0 and by (F3), h(u)u > 0, a.e., forall u €W*(Q, w).

Since g» > 0, we have goh(u)u > 0, a.e., forallu € Wg'z((),w). By (1.2) and the
hypotheses (F;) and (F3), we observe that

n
(Bulu) = By(u,u) = / Y. a;iDiuDjudx — y/ ugiu dx -1—/ Qoh(u)udx
o Wi 0 o)

>\ [ |Dufdx - oo [ wPwdet [ gh(uuds,
> A [ IDuPds — g/l [ Pwodst [ gohuuds
> (A— VCHgl/wHoo,Q)|”|(2J,1,2,Q for all u,v € Wy (Q, w).

Since uC||g1/wl|«,0 < A, B is coercive.

Step-5 : We have B is hemi-continuous. Also, for uC || %1 /Wl < A, Bis
monotone, and coercive. Hence, for 1C||g1/w||«,n < A, by Theorem 2.5, BVP

(1.3) has a weak solution, say u € W&’Z(Q, w). n

Remark 3.2. The Theorem 3.1 also holds true when & is monotonically decreasing
with 2 <0.

In the following two results, we consider the cases # < 0, x > 0 and relax the
hypothesis C||g1/w||«,0 < A under the restriction g; does not change sign. The
proof is similar to the Theorem 3.1; we restrict ourselves to sketch the deviations
wherever needed.

Theorem 3.3. Assume that the hypotheses (Fy)-(Fz) hold. Suppose that g1 > 0, u < 0.
Then, the BVP (1.3) has a weak solution in W&'Z(Q, w).

Proof. In Step-1 of Theorem 3.1, we note the following change :

|B1(u, 9)| < /Q|ﬂij(x)|!Diu(X)HDj¢(x)!dx+W|/Q|u(x)!|¢(x)!|g1(x)|dx

-1—/0|g2(x)||h(u(x))||¢(x)|dx
< (c+ Clulllig1/wlleo,0 + CAllg2/wloo,0) l1]0,1,2,01¢10,1,2,0-

Also, by minor changes in Step-2 (in (3.17)) of Theorem 3.1, we note that the
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operator B is hemi-continuous. Since g1 > 0, 4 < 0, we observe that
Bi(u,u —v) — Bi(v,u —v) = /Qaij(Diu D;iv)Dj(u — v)dx
— K /Q(u —v)?g1dx + /Q(h(u) —h(v))(u —v)grdx
_ /Q a;;D;(u1 — ) Dj(u — v)dx + /Q(h(u) (o)) (1 — v)gadx
> A/Q V(1 — v)|%dx (By (1.2), and (F3))
>0, forall u,v¢€ W&’z((),w).

Consequently, B is monotone. By the hypotheses (F;), (F,) and (F3), we obtain
h(u)u >0, ae., forallu € W&’z(ﬂ,w). Since g1 > 0, ¢ < 0, by (1.2) as in Step-4
of Theorem 3.1 we note that

(Bulu) = By (u,u) / Z ajj(x x)Dju(x)dx
i,j=1

—y/ x)g1(x dx-i—/ g2(x)h(u(x))u(x)dx
> /\/ |Vu]2dx—|—/ goh(u)udx

0 0
> /\|u|%’1’2’Q forallu,v € W&’z(ﬂ,w),

which shows that, B is coercive. Since B is monotone and hemi-continuous, and
coercive, by Theorem 2.5, the BVP (1.3)(with p < 0 and g; > 0), has a weak
solution in W& 2(Q, w). ]

Similarly, we have the following result :

Theorem 3.4. Assume the hypotheses (F;)-(Fs). Suppose that g1 < 0, u > 0. Then,
(1.3) has a weak solution in W&’Z(Q, w)
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ments and suggestions.
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