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Abstract

In this paper we consider finite β-expansions in the field of formal series
with Pisot basis β. We are studying the arithmetic operations on β-expansions
and provide bounds on the number of fractional digits arising in multiplica-
tion for arbitrary β-polynomials noted L⊙. This value is given explicitly for
families of Pisot basis. The last part of this paper is devoted to quadratic Pisot
series where we will give the exact value for L⊙.

1 Introduction

The β-expansions of real numbers were first introduced by A. Rényi [11]. Since
then, their arithmetic, diophantine and ergodic properties have been extensively
studied by several authors. Let β > 1 be a real number and let [β] be the integer
part of β. The β-expansion of a real number x ∈ [0, 1) is defined as the sequence

dβ(x) = (xi)i≥1 = x1x2x3 . . .

with values in {0, 1, . . . , [β]} produced by the β-transformation Tβ : x 7→ βx
(mod1) as follows:

xi = [βTi−1
β (x)].

It is easy to see that x = ∑
i≥1

xiβ
−i.
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For x ≥ 1, we consider the integer n such that βn ≤ x < βn+1. So, we have
x

βn+1 < 1 and then we can represent x by shifting dβ(
x

βn+1 ) by n + 1 digits to

the left, that is, we can write dβ(
x

βn+1 ) = (yi)i≥1 and therefore we define the

β-expansion of x by

dβ(x) = (xi)i≥−n = x−n · · · x0 • x1x2 · · ·

where yi = xi−n−1 and then we have

x = ∑
i≥−n

xiβ
−i =

0

∑
i=−n

xiβ
−i + ∑

i≥1

xiβ
−i.

The β-integer part of x is [x]β =
0

∑
i=−n

xiβ
−i and the β-fractional part is {x}β =

∑
i≥1

xiβ
−i. This is a natural generalization for the expansion in integers basis.

A β-expansion is finite if (xi)i is eventually 0. It is periodic if there exists p ≥ 1
and m ≥ 1 such that xk = xk+p for all k ≥ m; if xk = xk+p holds for all k, then it is
purely periodic. We denote by

Fin(β) = {x ∈ R+ : dβ(x) is finite}.

It was proved in [1] that if N ⊂ Fin(β) then β is a Pisot number, that is, a real
algebraic integer greater than 1 with all conjugates strictly inside the unit circle.
Note that it is not the case if we have only dβ(1) finite. Let Z[β] be the smallest
ring containing Z and β. We denote by Z[β]≥0 the non negative elements of Z[β].
We say that the number x satisfies the finiteness property if:

Fin(β) = Z[β−1]≥0.

This property was introduced by Frougny and Solomyak [6]. They showed that
if β satisfies the finiteness property then β is a Pisot number. Note that there are
Pisot numbers without the finiteness property, especially, all numbers β such that
dβ(1) is infinite.

The set of β-integers, denoted by Zβ, is the set of real numbers x such that
{|x|}β = 0. The sets Zβ and Fin(β) are not stable under usual operations like
addition and multiplication. Although, it is sometimes useful in computer science
to consider this operation in β-arithmetics. That’s why, it is important to study
what fractional parts may appear as a result of addition and multiplication of
β-integers.

The notations L⊕ and L⊙ are introduced in [6]. They represent the maximal
possible finite length of the β-fractional parts which may appear when one adds
or multiplies two β-integers. Consider the sets:

S = {n ∈ N : ∀x, y ∈ Zβ, x + y ∈ Fin(β) =⇒ βn(x + y) ∈ Zβ}

and
P = {n ∈ N : ∀x, y ∈ Zβ, xy ∈ Fin(β) =⇒ βn(xy) ∈ Zβ}
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and define

L⊕ =

{

min S if S 6= ∅

+∞ if S = ∅
and L⊙ =

{

min P if P 6= ∅

+∞ if P = ∅

Many authors are interested in the case where L⊕ and L⊙ are finite. Indeed,
if the sum or the product of two β-integers belongs to Fin(β), then the length
of the β-fractional part of this sum or product is bounded by a constant which
only depends on β. In this case, one can decide whether a given improper ex-
pansion can be renormalized into a finite or an ultimately periodic expansion, in
the sense that, if during the renormalisation process one gets a β-fractional part
of the length greater than L⊕, then, the improper expansion corresponds to a real
number that does not belong to Fin(β). Conversely, if the set of the length sums of
two β-integers is unbounded, then performing arithmetics in Zβ will be very dif-
ficult if not impossible, since one can not compute in a finite time any operation
on β-integers.

C. Frougny and B. Solomyak in [6] showed that L⊕ is finite when β is a Pisot
number. The case of Pisot quadratic unit numbers has been studied in [5] where
the authors gave exact values for L⊕ and L⊙, when β > 1 is a solution either of
the equation x2 = mx − 1, m ∈ N, m ≥ 3 or of the equation x2 = mx + 1 , m ∈ N.
They showed that in the first case L⊕ = L⊙ = 1 and in the second case L⊕ =
L⊙ = 2. In [7], the authors have generalized the last results to other quadratic
Pisot numbers. However, when β is of algebraic higher degree, it is a difficult
problem to compute the exact value of L⊕ or L⊙ and even to compute upper and
lower bounds for these two quantities. Several examples are studied in [2], where
a method is described in order to compute upper bounds for L⊕ and L⊙ for Pisot
numbers satisfying additional algebraic properties. For example, in the Tribonacci
case, that is, when β is the positive root, of the polynomial x3 − x2 − x − 1, we
have L⊕ = 5 and L⊙ is still unknown until now. However, it is only proven in [2]
that 4 ≤ L⊙ ≤ 5.

In [4], J. Bernat determinate the exact value of L⊕ for several cases of cubic
Pisot unit numbers.

In this paper, we study a similar concepts for the field of formal series over a
finite field, i.e the arithmetic operations on β-expansions and the bounds on the
number of fractional digits arising in multiplication for arbitrary β-polynomials
noted L⊙. It is well known that the field of formal power series over finite fields
has a lot of properties in common to number fields (the finite extension of Q).
The paper is in this direction and showed many properties which seem difficult
or impossible to show in the number field case. It is organized as follows: In Sec-
tion 2, we define the field of formal power series over finite field as well as the
analog to Pisot and Salem numbers. We will also define the β-expansion algo-
rithm for formal power series. In Section 3, we study the arithmetic operations
on β-expansions and provide bounds on the number of fractional digits arising
in multiplication for arbitrary β-polynomials noted L⊙ with Pisot basis. Section 4
is devoted to give explicit values of L⊙ in quadratic Pisot basis.
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2 β-expansions in Fq((x−1))

Let Fq be a finite field with q elements, Fq[x] the ring of polynomials with coeffi-

cients in Fq, Fq(x) the field of rational functions and Fq((x−1)) the field of formal
power series of the form:

f =
ℓ

∑
k=−∞

fkxk, fk ∈ Fq

where

ℓ = deg f :=

{

max{k : fk 6= 0} if f 6= 0,
−∞ if f = 0.

We define the absolute value | f | = qdeg f . Thus, Fq((x−1)), equipped with this
absolute value, is a complete metric space, it is the completion of Fq(x). Since
the above absolute value is not archimedean, then it fulfills the strict triangle
inequality:

| f + g| ≤ max(| f |, |g|) and | f + g| = max(| f |, |g|) if | f | 6= |g|.

Consider f ∈ Fq((x−1)) and define the polynomial part [ f ] =
ℓ

∑
k=0

fkxk where

the empty sum is defined to be zero. Thus, [ f ] ∈ Fq[x] and f − [ f ] ∈ M0 where

M0 = { f ∈ Fq((x−1)) : | f | < 1}.

Since Fq[x] ⊂ Fq((x−1)), then any algebraic element over Fq[x] can be val-

uated (see [10]). However, since Fq((x−1)) is not algebraically closed, such an
element is not necessarily a formal power series.

An element β ∈ Fq((x−1)) is called a Pisot (resp a Salem) element if it is an
algebraic integer over Fq[x] with |β| > 1 and |β j| < 1 for all conjugates β j (resp
|β j| ≤ 1 and there exist at least one conjugate βk with |βk| = 1). P. Bateman and

A. L. Duquette [3] characterized the Pisot and Salem elements in Fq((x−1)):

Theorem 2.1. Let β ∈ Fq((x−1)) be an algebraic integer over Fq[x] and

P(y) = yn − An−1yn−1 − · · · − A0, Ai ∈ Fq[x],

be its minimal polynomial. Then

(i) β is a Pisot element if and only if |An−1| > max
2≤j≤n

|An−j|.

(ii) β is a Salem element if and only if |An−1| = max
2≤j≤n

|An−j|.

Let β, f ∈ Fq((x−1)) where |β| > 1 and f ∈ M0. A representation in base β
(or β-representation) of f is a sequence (di)i≥1, di ∈ Fq[x], such that

f = ∑
i≥1

di

βi
.
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A particular β-representation of f is called the β-expansion of f and noted dβ( f ).
It is obtained by using the β-transformation Tβ in M0 which is given by the map-
ping:

Tβ : M0 −→ M0

f 7−→ β f − [β f ].

The β-expansion of f is dβ( f ) = (di)i≥1 where di = [βTi−1
β ( f )]. We note that dβ( f )

is finite if and only if there is a k ≥ 0 with Tk
β( f ) = 0, dβ( f ) is ultimately periodic

if and only if there is some smallest p ≥ 0 (the pre-period length) and s ≥ 1 (the

period length) for which T
p+s
β ( f ) = T

p
β ( f ). If f ∈ M0 and dβ( f ) = (di)i≥1, we

often write f = 0 • d1d2d3 · · · .
As in the real case, we can define the β-expansion dβ( f ) = (di)i≥−n for any

f ∈ Fq((x−1)):

f = ∑
i≥−n

diβ
−i, d−n 6= 0. (2.1)

In this case have degβ( f ) = n and if dβ( f ) is finite we define ordβ( f ) as ordβ( f ) =

−ℓ where ℓ is the bigger integer such that dℓ 6= 0, i.e the smallest exponent in β
appearing in the β-expansion of f .

Using this last notion, we define the set of β-polynomials as follow:

(Fq[x])β = { f ∈ Fq((x
−1)) : ordβ( f ) ≤ 0}.

In the sequel, we will use the following notation:

Fin(β) = { f ∈ Fq((x−1)) : dβ( f ) is finite}.

Remark 2.1. In contrast to the real case, there is no carry occurring, when we add two
digits. Therefore, if z, w ∈ Fq((x−1)), we have dβ(z + w) = dβ(z) + dβ(w) digitwise.
We have also dβ(c f ) = cdβ( f ) for every c ∈ Fq.

3 Study of L⊙

First, we need to recall some results given in [8, 9, 12]. Let β be an algebraic formal
power series with algebraic degree d such that |β| > 1. Then we have

Theorem 3.1. [9] β is a Pisot series if and only if dβ(1) is finite.

Theorem 3.2. [9] An infinite sequence (dj)j≥1 is the β-expansion of f ∈ M0 if and only
if it is a β-representation of f and |dj| < |β| for j ≥ 1.

Theorem 3.3. [8] β is a Pisot series of algebraic degree d if and only if the β-expansion

of (xdeg(β)) is finite and ordβ(x
deg(β)) = 1 − d.

Theorem 3.4. [12] β is a Pisot series if and only if Fin(β) = Fq[x, β−1].

Lemma 3.1. [9] Let P(Y) = AnYn − An−1Yn−1 − · · · − A0 where Ai ∈ Fq[x], for

i = 1, . . . , n. Then P admits a unique root in Fq((x−1)) with absolute value > 1 and all
other roots are with absolute value < 1 if and only if |An−1| > |Ai| for i 6= n − 1.
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Now we can define, by analogy with the real case, the quantity L⊙ as follows:

L⊙ =

{

min P if P 6= ∅,
∞ if P = ∅.

where

P = {n ∈ N : ∀p1, p2 ∈ (Fq[x])β, p1.p2 ∈ Fin(β) =⇒ βn(p1.p2) ∈ (Fq[x])β}.

Note that L⊙ designates the maximal finite shift after the comma for the product
of two β-polynomials.

Remark 3.5.

1. In the case of formal series the quantity L⊕ is not interesting, because we know that
the sum of two β-polynomials is also a β-polynomial.

2. The case: deg(β) = 1 is trivial because the product of two β-polynomials is a
β-polynomial, that is, L⊙ = 0.

To compute L⊙ for the families of basis β, we propose the following quantita-
tive study over the order in basis β of polynomials.

Lemma 3.6. Let β be a Pisot series with minimal polynomial

P(Y) = Yd − Ad−1Yd−1 − Ad−2Yd−2 − · · · − A0.

If dβ(x
k) = dk

−nk
. . . dk

0 • dk
1 . . . dk

ℓk
where dk

ℓk
6= 0, then

deg(dk
ℓk
) ≥ deg(A0) f or all k ≥ m = deg(β).

Proof. We proceed by induction on k ≥ m. For k = m, let c be the dominant
coefficient of Ad−1, so we have

xm = c−1β − (c−1Ad−1 − xm)− β−1c−1Ad−2 − · · · − β1−dc−1A0. (3.1)

According to Theorem 3.2 and Lemma 3.1, the equality (3.1) is the β-expansion of
xm. Therefore, we have dm

ℓm
= −c−1A0, hence, deg(dm

ℓm
) = deg(A0).

Now, assume that deg(dk
ℓk
) ≥ deg(A0) and dβ(x

k) = (dk
i )−nk≤i≤ℓk

with

dk
ℓk
6= 0. We have

xk = dk
−nk

βnk + · · ·+ dk
0 + dk

1β−1 + · · ·+ dk
ℓk

β−ℓk .

Therefore, the equality

xk+1 = xdk
nk

βnk + · · ·+ xdk
0 + xdk

1β−1 + · · ·+ xak
ℓk

β−ℓk (3.2)

is a β-representation of xk+1 which is not necessary the β-expansion of xk+1. Thus,
we consider the set H = {0 ≤ i ≤ ℓk : deg(xdk

i ) = m} and we have to distinguish
two cases:
Case 1: H = ∅. According to Theorem 3.2, we have dβ

(

xk+1
)

=
(

xdk
i

)

−nk≤i≤ℓk

and therefore we have dk+1
ℓk+1

= xdk
ℓk

. Hence deg
(

dk+1
ℓk+1

)

= deg
(

xdk
ℓk

)

≥ deg(A0).

Case 2: H 6= ∅. Let h = sup H and α = −c−1γ where γ is the dominant coefficient
of dk

h, for that we should make this discussion.
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(a) If h + d − 1 > ℓk, then ℓk+1 = h + d − 1 and dk+1
ℓk+1

= αA0. So, deg(dk+1
ℓk+1

) =

deg(A0).

(b) If h + d − 1 < ℓk, then h 6= ℓk, ℓk+1 = ℓk and dk+1
ℓk+1

= xdk
ℓk

. Thus, deg(dk+1
ℓk+1

) ≥

deg(A0).

(c) If h + d − 1 = ℓk, then h 6= ℓk, ℓk+1 = ℓk and dk+1
ℓk+1

= xdk
ℓk
+ αA0. Therefore, we

obtain deg(dk+1
ℓk+1

) ≥ deg(A0).

Theorem 3.7. Let β be a Pisot series. Then we have for every k ≥ 0

(1 − d) + ordβ(x
k) ≤ ordβ(x

k+1) ≤ ordβ(x
k).

Proof. Let β be a Pisot series and assume that dβ(x
k) = dk

−nk
. . . dk

0 • ak
1 . . . dk

ℓk

(dk
ℓk
6= 0). Obviously we have

xk = dk
−nk

βnk + · · ·+ dk
0 +

dk
1

β
+ · · ·+

dk
ℓk

βℓk
.

Thus

xk+1 = xdk
−nk

βnk + · · ·+ xdk
0 +

xdk
1

β
+ · · ·+

xdk
ℓk

βℓk
.

Consider H = {0 ≤ i ≤ ℓk : deg(xdk
i ) = m}. As before we have to distinguish

two cases:
Case 1: H = ∅. So, dk+1

ℓk+1
= xdk

ℓk
and therefore ordβ(x

k+1) = ordβ(x
k) = −ℓk.

Case 2: H 6= ∅. As in proof of Lemma 3.6, we consider h, α and the following
subcases:

(a) If h + d − 1 > ℓk, then ℓk+1 = h + d − 1 and ordβ(x
k+1) = −(h + d − 1) ≤

−ℓk = ordβ(x
k). On the other hand, since h ≤ ℓk, we have ordβ(x

k+1) =

−h + (1 − d) ≥ −ℓk + (1 − d) = ordβ(x
k) + (1 − d).

(b) If h + d − 1 < ℓk, then ℓk+1 = ℓk and ordβ(x
k+1) = ordβ(x

k) = −ℓk ≥

ordβ(x
k) + (1 − d).

(c) If h + d − 1 = ℓk, then ℓk+1 = ℓk and ak+1
−ℓk+1

= xak
−ℓk

+ αA0 6= 0 because by

Lemma 3.6, we have deg(dk
ℓk
) ≥ deg(A0). Thus, ordβ(x

k+1) = ordβ(x
k) =

−ℓk ≥ ordβ(x
k) + (1 − d).

Combining Theorem 3.7 (the sequence (ordβ(x
k)k≥0 is decreasing) with Re-

mark 2.1, we deduce:

Corollary 3.8. Let β be a Pisot series such that m = deg(β) ≥ 1. Then L⊙ is finite and

L⊙ = ordβ(x
2m−2).

Now, we continue our study by giving bounds on L⊙ when β is a Pisot series.
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Theorem 3.9. Let β be a Pisot series of algebraical degree d and let m = deg(β) > 1.
Then L⊙ is finite and

(d − 1) ≤ L⊙ ≤ (d − 1)(m − 1).

Proof. By induction on k ≥ m, it follows that

(k − m + 1)(d − 1) ≤ ordβ(x
k) ≤ (d − 1).

In fact, the case k = m is contained in Theorem 3.3 and the induction step is
contained in Theorem 3.7.

To show that the two bounds of Theorem 3.9 are reached, we propose the two
following propositions that ensue from Theorem 3.3.

Proposition 3.10. Let β be a Pisot series of minimal polynomial

P(Y) = Yd + Ad−1Yd−1 + · · ·+ A0,

with deg(A0) = deg(β)− 1 = m − 1. Then

L⊙ = (d − 1)(m − 1).

Indeed, in this case for all positive integer s, we have ordβ(x
m+s) = (s+ 1)(1−

d).

Proposition 3.11. Let β be a Pisot series of minimal polynomial

P(Y) = Yd + Ad−1Yd−1 + · · ·+ A0,

with Ai ∈ Fq for i 6= d − 1. Then

L⊙ = (d − 1).

Indeed, we know that

xm = c−1β − (c−1Ad−1 − xm)−
c−1Ad−2

β
− · · · −

c−1A0

βd−1
.

So, for all 0 < h < m − 1, we have

xm+h = xhc−1β − xh(c−1Ad−1 − xm)−
c−1Ad−2xh

β
− · · · −

c−1A0xh

βd−1
.

Hence ordβ(x
m+h) ≥ 1 − d. On the other hand, according to Theorem 3.7, we

obtain ordβ(x
m+h) ≤ ordβ(x

m) = 1 − d.
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4 L⊙ for quadratic Pisot series

In this section, we give the exact value for all quadratic Pisot basis. Therefore, in
the special case of quadratic Pisot unit series, it is easy to deduce the following
corollary from Proposition 3.11.

Corollary 4.1. Let β be a quadratic Pisot unit series. Then L⊙ = 1.

So far, we are interested in results for L⊙ for general algebraic series β. Hence,
we shall focus on quadratic Pisot series. For this case, we give the exact value for
L⊙. Before giving this value, we propose the following quantitative study over
the order in base β of polynomials.

Theorem 4.2. Let β be a quadratic Pisot series of minimal polynomial P(Y) = Y2 +
AY + D with deg(β) = m ≥ 1 and deg(D) = s. Then for any k ≥ m, we have

dβ(x
k) = dk

−nk
. . . dk

0 • dk
1 . . . dk

ℓk
, (dk

ℓk
6= 0)

where

ordβ(x
k) = ℓk =

[

k − s

m − s

]

and deg(dk
ℓk
) = s + (k − s)

with (k − s) is the rest of the Euclidean division of (k − s) by (m − s).

Proof. Let c be the dominant coefficient of A, so from Theorem 3.3, we have

cxm = β − (A − cxm)−
D

β
.

Now, let D1 = −c−1D, clearly we have deg(D1) = deg(D). We will proceed
by induction on k ≥ m. The result holds for k = m, in fact, we have ordβ(x

m) =

−

[

m − s

m − s

]

= −1 and dm
1 = D1. Assume that ordβ(x

k) = −

[

k − s

m − s

]

= −ℓk and

deg(dk
ℓk
) = s + (k − s). We have

xk = dk
−nk

βnk + · · ·+ dk
0 +

dk
1

β
+ · · ·+

dk
ℓk

βℓk
.

Therefore,

xk+1 = xdk
−nk

βnk + · · ·+ xdk
0 +

xdk
1

β
+ · · ·+

xdk
ℓk

βℓk

is a β-representation of xk+1, then, we distinguish two cases:

Case 1: deg(dk
ℓk
) = m − 1.

On one hand, in this case, we have ordβ(x
k+1) = ordβ(x

k)− 1 and dk+1
ℓk+1

=

αD1 where α is the dominant coefficient of dk
ℓk

. On the other hand, we have

deg(dk
ℓk
) = m − 1 and that means k − s is equal to (m − s − 1). Thus,
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[

k + 1 − s

m − s

]

=

[

k − s

m − s

]

+ 1 and deg(dk+1
ℓk+1

) = s + k + 1 − s = s.

Case 2: deg(dk
ℓk
) < m − 1.

In this case we have ordβ(x
k+1) = ordβ(x

k) and exactly

dk+1
ℓk+1

=

{

xdk
ℓk

if deg(dk
ℓk−1) < m − 1,

γD1 + xdk
ℓk

if deg(dk
ℓk−1) = m − 1,

where γ is the dominant coefficient of dk
ℓk−1. Hence deg(dk+1

ℓk+1
) = 1+deg(dk

ℓk
).

Since we have deg(dk
ℓk
) < m − 1, so k − s < m − s − 1. Thus,

[

k − s

m − s

]

=

[

k + 1 − s

m − s

]

and
s + (k + 1 − s) = 1 + (s + (k − s)).

Theorem 4.3. Let β be a quadratic Pisot series of minimal polynomial P(Y) = Y2 +
AY + D with deg(β) = m ≥ 1 and deg(D) = s. Then

L⊙ = 1 +

[

m − 2

m − s

]

.

Proof. We know from Corollary 3.8, that L⊙ = ordβ(x
2m−2). So, by Theorem 4.2,

we get

L⊙ =

[

2m − 2 − s

m − s

]

= 1 +

[

m − 2

m − s

]

.
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