
The mapping properties of some

non-holomorphic functions on the unit disk

Raymond Mortini

Abstract

We study the mapping properties of the maps f (z) = z−1
z−1 , g(z) = |z| f (z)

and h(z) = −z f (z) with |z| ≤ 1, z 6= 1.

Introduction

In this paper we are concerned with the mapping properties of some non-holo-
morphic continuous functions on the open unit disk D = {z ∈ C : |z| < 1} and
their behaviour at the boundary T = {z ∈ C : |z| = 1} of D. Our first example
is the function f (z) = (z − 1)/(z − 1) which played a prominent role in Earl’s [2]
constructive solution to the famous interpolation problem for bounded analytic
functions, originally solved by L. Carleson [1], [3]. Earl considered finite Blaschke
products of the form

Bn(z, ξ) =
n

∏
k=1

z − ξk

1 − ξkz

1 − ξk

1 − ξk
.

In contrast to the usual rotational factors −|ξk|/ξk , these new unimodular factors
(1 − ξk)/(1 − ξk) were chosen so that Bn(z, ξ) = 1 at z = 1, a fact fundamental
for his solution to work. These factors reappeared in [4] in a similar context when
studying the value distribution of interpolating Blaschke products. To see this,
let

S(z) = exp

(

−1 + z

1 − z

)
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be the atomic inner function. Choose σ ∈ T, σ 6= 1, so that S(σ) = 1. Then the
rotated Frostman shift

B(z) =
S(σz)− b

1 − bS(σz)

1 − b

1 − b

of S is an interpolating Blaschke product with singularity at σ that has the prop-
erty that B(1) = 1. Moreover, as we did want that B additionally satisfies

lim
r→1

B(σr) = a,

we were led to study the equation

−b
1 − b

1 − b
= a.

(Note that limr→1 S(r) = 0.) This gave me the motivation to study in the present
note the mapping properties of the function h(z) = −z(z − 1)/(z − 1).

It turns out that the map h also provides a solution (see Proposition 3.1) to the
following question:

Do there exist continuous involutions of D onto itself (these are continuous
functions ι for which ι ◦ ι = id, where id is the identity map), such that ι has a
continuous extension with constant value at a largest possible subset of T, namely
T \ {1}? 1 Note that the elliptic automorphisms ϕa(z) = (a − z)/(1 − az) of D

are involutions with φa(T) = T; so these functions are more or less opposite to
that class of functions we were looking for.

Now let us come back to the function f (z) = (z − 1)/(z − 1). It is clear that
| f (z)| = 1 for every z ∈ D. So in order to describe and better visualize the global
mapping properties of f , I “added” the factor |z|. In this way we are led to study
the function

g(z) = |z| z − 1

z − 1
.

As we shall see, g has a totally different behaviour than h. One striking fact, is
that the image of D under g is no longer an open set. We will explicitly determine
g(D). It turns out that certain rhodonea curves (roses) as Dürer’s folium, r =
sin(θ/2), play an important role in studying the image properties of g.

We include in our paper six figures that help to visualize and understand the
calculations and results achieved.

1 The map f (z) = (z − 1)/(z − 1)

Lemma 1.1. Consider for z ∈ D the function f (z) = (z − 1)/(z − 1) and let 0 < a <

1. Then

1. max|z|=a Re f (z) = 1;

2. min|z|=a Re f (z) = 1 − 2a2;

1Later we shall see that one cannot achieve the constancy of the involution on the entire bound-
ary of D.
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3. max|z|=a Im f (z) = 1 if and only if 1√
2
≤ a < 1 and

max|z|=a Im f (z) = 2a
√

1 − a2 if and only if 0 < a ≤ 1√
2
;

4. min|z|=a Im f (z) = −max|z|=a Im f (z).

Figure 1: The domain of variation of t, t close to π/2.

Figure 2: The domain of variation of t, t close to π

Proof. Let z = 1 + ρeit, 0 ≤ t ≤ 2π. Then f (z) = e−2it. Hence Re f (z) = cos(2t)
and Im f (z) = − sin(2t). Let T± be the two tangents to the circle |z| = a passing
through the point 1. The intersection points of T± with the circle are given by

P±
a = ae±iθ (1.1)

for some θ ∈ [0, π/2]. Consider the triangle ∆ whose end-points are 0, 1 and P+
a

and let β be the angle formed by the segment [0, 1] and the tangent T+. Using that
θ + β = π/2, there exists ρ > 0 with |1+ ρeit| = a if and only if π − β ≤ t ≤ π + β.
(If t 6= π ± β, then there are exactly two such radii ρ). The side-lengths of ∆

are 1 (the hypotenuse), a and L := |aeiθ − 1|. Since L2 + a2 = 1, we see that

L =
√

1 − a2. On the other hand,

L2 = a2 + 1 − 2a cos θ.
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Hence a = cos θ. Now let tmax := π − β. Note that tmax is close to π if a is close
to 0 and tmax is close to π/2 if a is close to 1.

Since tmax = θ + π/2, we obtain

cos(2tmax) = cos(2θ + π) = − cos(2θ) = 1 − 2 cos2(θ) = 1 − 2a2.

Thus min|z|=a Re f (z) = 1 − 2a2. The other identity max|z|=a Re f (z) = 1 is clear

by looking at the figure; it also follows from the fact that for z = a, f (z) = 1.
Now cos(2tmax) = 0 if tmax = 3π/4. Hence

max
|z|=a

Im f (z) = 1 ⇐⇒ 1 − 2a2 ≤ 0 ⇐⇒ 1√
2
≤ a < 1,

and

max
|z|=a

Im f (z) =
√

1 − (1 − 2a2)2 = 2a
√

1 − a2 ⇐⇒ 0 < a ≤ 1√
2

.

Finally, for all a ∈]0, 1[,

min
|z|=a

Im f (z) = −max
|z|=a

Im f (z).

We can also use cartesian coordinates to find these extremal values: in fact, let
z = x + iy, |z| = a. Then

Re z−1
z−1 = Re (z−1)2

|z−1|2 = (x−1)2−y2

x2+y2+1−2x

= x2−2x+1−(a2−x2)
a2+1−2x

= 1 + 2x2−2a2

a2+1−2x

Now
(

x2 − a2

a2 + 1 − 2x

)′
=

2(x − 1)(a2 − x)

(a2 + 1 − 2x)2

The zeros of this derivative are x = 1 and x = a2. Since −a ≤ x ≤ a, we deduce
that

min
|z|=a

Re
z − 1

z − 1
= 1 +

2x2 − 2a2

a2 + 1 − 2x

∣

∣

∣

x=a2
= 1 − 2a2

and

max
|z|=a

Re
z − 1

z − 1
= 1 +

2x2 − 2a2

a2 + 1 − 2x

∣

∣

∣

x=±a
= 1.

As a consequence, the cartesian coordinates of P±
a are (a2,±a

√
1 − a2).

Corollary 1.2. Let 0 < a < 1. The image of the circle |z| = a under the map

f (z) =
z − 1

z − 1

is the arc
A := {eiσ : |σ| ≤ π − 2 arccos a},

where arccos a ∈ ]0, π/2[.
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Remark. We also note that if τ runs from 0 to 2π, then f (aeiτ) runs on A from 1
to the upper end-point

E+ := ei(π−2 arccos a) = 1 − 2a2 + 2ia
√

1 − a2

of A, reaches this point when τ = arccos a (that is f (P+
a ) = E+)), then turns back,

passes through the point 1 (when τ = π) until it reaches the lower end-point

E− := e−i(π−2 arccos a) = 1 − 2a2 − 2ia
√

1 − a2

of A when τ = 2π − arccos a (that is f (P−
a ) = E−)), then turns back again up to

the point 1, that is attained for τ = 2π. In particular, with the exception of the
two end-points of A, each point of A is traversed twice.

2 The map g(z) = |z| f (z)

Theorem 2.1. Let the map g : D → C be defined by

g(z) = |z| z − 1

z − 1
.

Then g is a continuous map of D onto the set

Ω = D \ K◦,

where K is a closed region whose boundary is given by the curve

γ(a) = a(1 − 2a2)± 2i a2
√

1 − a2, 0 ≤ a ≤ 1,

which is one half of the rhodonea (rose)

r = sin(θ/2), 0 ≤ θ ≤ 2π.

Moreover, g is a homeomorphism of

H := {z ∈ D : |z − 0.5| > 0.5} onto D \ K

and a homeomorphism of

{z ∈ D : |z − 0.5| < 0.5} onto D \ K.

Let C = {z ∈ D : |z − 0.5| = 0.5}. Then the function g|C has an injective continuous
extension to the whole circle C. The image of this extension coincides with ∂K (see figures
3 and 4).

Finally, for |z| = 1, z 6= 1, g(z) = −z; thus g interchanges two points on the unit
circle whenever they have same imaginary part.
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K

g

Figure 3: The mapping properties of g
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Figure 4: Creation of the image domain Ω

Proof. The first assertion on the image follows at once when we have noticed that
by Lemma 1.1 and Corollary 1.2 the end-points of the image curve of |z| = a
under the map (z − 1)/(z − 1) are given by

1 − 2a2 ± i
√

1 − (1 − 2a2)2 = 1 − 2a2 ± i 2a
√

1 − a2

(see figure 4). Note also that the boundary of g(D) is given by the set

∂D ∪ R,

where R is parametrized by the curve

γ(a) = a(1 − 2a2)± 2i a2
√

1 − a2, 0 ≤ a ≤ 1.

Hence g(D) = Ω.
The locus of the points Pa = aei arccos a, where 0 ≤ a ≤ 1, equals the circle of

center 1/2 and radius 1/2, because
∣

∣

∣

∣

1

2
− aei arccos a

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
− a cos(arccos a)− ia sin(arccos a)

∣

∣

∣

∣
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=

∣

∣

∣

∣

(
1

2
− a2)− ia(

√

1 − a2)

∣

∣

∣

∣

=

√

(
1

2
− a2)2 + a2(1 − a2) =

1

2
.

By Corollary 1.2 and its remark,

g(aei arccos a) = aei(π−2 arccos a) = γ(a), a 6= 1.

Thus g(C) = ∂K. Moreover the open disk |z − 1/2| < 1/2 is mapped bijectively
onto Ω; the same holds for the set {z ∈ D : |z − 1/2| > 1/2}.

It remains to show that γ(a) coincides with (one part) of the rhodonea r =
sin(ϕ/2), also called Dürer’s folium, 0 ≤ ϕ ≤ 2π.

So let γ(a) = aeiϕ, 0 ≤ ϕ ≤ 2π. Note that γ(a) = g(P±
a ). Since cos ϕ = 1− 2a2,

we deduce that, in polar coordinates,

r(ϕ) = a =

√

1

2
(1 − cos ϕ) = sin

(ϕ

2

)

.

At first glance (by looking at the picture), K seems to be a cardioid. This is
not the case, though. The relation of K with the domain bounded by the classical
cardioid, given by the parametrization

z(t) = −1

2
(cos φ + 1) cos φ + i

1

2
(cos φ + 1) sin φ, 0 ≤ φ ≤ 2π

or in polar coordinates

r(ϕ) =
1

2
(1 − cos ϕ)

is shown in the following figure (the cardioid is inside the domain K bounded by
the“left part” of the rhodonea; the full rhodonea, called Dürer’s folium, is given
in the right picture.

Figure 5:
Cardioid, rhodonea and unit circle Figure 6: Dürer’s folium
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3 The map h(z) = −z z−1
z−1

If one replaces in the definition of

g(z) = |z| z − 1

z − 1
,

the factor |z| by −z, then the new function has a very different behaviour. Part
of the following result is from my previous joint work with P. Gorkin [4]. For the
readers convenience, we recapture its short proof here. Recall that the cluster set,
C(u, α), of a continuous function u : D → C at the point α ∈ T is the set of all
values w ∈ Ĉ such there exists a sequence (zn) in D for which u(zn) → w as
n → ∞.

Proposition 3.1. Let h : D → D be given by

h(z) = −z
z − 1

z − 1
.

Then h is a bijective involution (that is h ◦ h = id) of D onto D. The map h has a
continuous extension to D \ {0} with constant value 1. The cluster set C(h, 1) of h at 1
equals the unit circle T.

Proof. The first assertion follows from the fact that h(z) = a implies |z| = |a| and
the following equivalences:

−z
z − 1

z − 1
= a ⇐⇒ −z + |z|2 − a + az = 0 ⇐⇒

−z + |a|2 − a + az = 0 ⇐⇒ z = −a
a − 1

a − 1
.

If |z| = 1, z 6= 1, then −z
z − 1

z − 1
=

−1 + z

z − 1
= 1. Thus we may define h(λ) = 1

whenever |λ| = 1, λ 6= 1.
Since the cluster set of h at 1 is a decreasing intersection of continua, namely,

C(h, 1) =
∞
⋂

n=1

h(Dn)
C

,

where Dn = {z ∈ D : |z − 1| ≤ 1/n}, we see that C(h, 1) is a nonvoid connected
compact set. Now lim

x→1
0<x<1

h(x) = −1 and lim
θ→0

h(eiθ) = 1.

Since µ ∈ C(h, 1) if and only if µ ∈ C(h, 1) (note that h(z) = h(z)), and
|h(z)| = |z| → 1 if z → 1, we conclude that C(h, 1) = T.

We note that a continuous involution F of D onto D is an open map. There-
fore, F cannot have a continuous extension to T that is constant there. In fact, if
this would be the case, say F ≡ 1 on T, then we choose a sequence wn ∈ F(D)
converging to a boundary point, β, of F(D) different from 1. Let zn ∈ D satisfy
F(zn) = wn for all n. We may assume, by passing to a subsequence if necessary,
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that (zn) converges to a ∈ D. Since we have assumed that F has a continuous
extension to D, we conclude that F(a) = β. Because β 6= 1, the constancy of F on
T implies that a ∈ D. But this contradicts the fact that F is an open map.
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