The mapping properties of some non-holomorphic functions on the unit disk

Raymond Mortini

Abstract

We study the mapping properties of the maps $f(z)=\frac{\bar{z}-1}{z-1}, g(z)=|z| f(z)$ and $h(z)=-z f(z)$ with $|z| \leq 1, z \neq 1$.

Introduction

In this paper we are concerned with the mapping properties of some non-holomorphic continuous functions on the open unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and their behaviour at the boundary $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ of \mathbb{D}. Our first example is the function $f(z)=(\bar{z}-1) /(z-1)$ which played a prominent role in Earl's [2] constructive solution to the famous interpolation problem for bounded analytic functions, originally solved by L. Carleson [1], [3]. Earl considered finite Blaschke products of the form

$$
B_{n}(z, \xi)=\prod_{k=1}^{n} \frac{z-\xi_{k}}{1-\bar{\xi}_{k} z} \frac{1-\bar{\xi}_{k}}{1-\bar{\xi}_{k}} .
$$

In contrast to the usual rotational factors $-\left|\xi_{k}\right| / \xi_{k}$, these new unimodular factors $\left(1-\bar{\xi}_{k}\right) /\left(1-\xi_{k}\right)$ were chosen so that $B_{n}(z, \xi)=1$ at $z=1$, a fact fundamental for his solution to work. These factors reappeared in [4] in a similar context when studying the value distribution of interpolating Blaschke products. To see this, let

$$
S(z)=\exp \left(-\frac{1+z}{1-z}\right)
$$

[^0]be the atomic inner function. Choose $\sigma \in \mathbb{T}, \sigma \neq 1$, so that $S(\sigma)=1$. Then the rotated Frostman shift
$$
B(z)=\frac{S(\bar{\sigma} z)-b}{1-\bar{b} S(\bar{\sigma} z)} \frac{1-\bar{b}}{1-b}
$$
of S is an interpolating Blaschke product with singularity at σ that has the property that $B(1)=1$. Moreover, as we did want that B additionally satisfies
$$
\lim _{r \rightarrow 1} B(\sigma r)=a
$$
we were led to study the equation
$$
-b \frac{1-\bar{b}}{1-b}=a
$$
(Note that $\lim _{r \rightarrow 1} S(r)=0$.) This gave me the motivation to study in the present note the mapping properties of the function $h(z)=-z(\bar{z}-1) /(z-1)$.

It turns out that the map h also provides a solution (see Proposition 3.1) to the following question:

Do there exist continuous involutions of \mathbb{D} onto itself (these are continuous functions ι for which $\iota \circ \iota=\mathrm{id}$, where id is the identity map), such that ι has a continuous extension with constant value at a largest possible subset of \mathbb{T}, namely $\mathbb{T} \backslash\{1\} ?^{1}$ Note that the elliptic automorphisms $\varphi_{a}(z)=(a-z) /(1-\bar{a} z)$ of \mathbb{D} are involutions with $\phi_{a}(\mathbb{T})=\mathbb{T}$; so these functions are more or less opposite to that class of functions we were looking for.

Now let us come back to the function $f(z)=(\bar{z}-1) /(z-1)$. It is clear that $|f(z)|=1$ for every $z \in \mathbb{D}$. So in order to describe and better visualize the global mapping properties of f, I "added" the factor $|z|$. In this way we are led to study the function

$$
g(z)=|z| \frac{\bar{z}-1}{z-1}
$$

As we shall see, g has a totally different behaviour than h. One striking fact, is that the image of \mathbb{D} under g is no longer an open set. We will explicitly determine $g(\mathbb{D})$. It turns out that certain rhodonea curves (roses) as Dürer's folium, $r=$ $\sin (\theta / 2)$, play an important role in studying the image properties of g.

We include in our paper six figures that help to visualize and understand the calculations and results achieved.

1 The map $f(z)=(\bar{z}-1) /(z-1)$
Lemma 1.1. Consider for $z \in \mathbb{D}$ the function $f(z)=(\bar{z}-1) /(z-1)$ and let $0<a<$ 1. Then

1. $\max _{|z|=a} \operatorname{Re} f(z)=1$;
2. $\min _{|z|=a} \operatorname{Re} f(z)=1-2 a^{2}$;

[^1]3. $\max _{|z|=a} \operatorname{Im} f(z)=1$ if and only if $\frac{1}{\sqrt{2}} \leq a<1$ and
$\max _{|z|=a} \operatorname{Im} f(z)=2 a \sqrt{1-a^{2}}$ if and only if $0<a \leq \frac{1}{\sqrt{2}}$;
4. $\min _{|z|=a} \operatorname{Im} f(z)=-\max _{|z|=a} \operatorname{Im} f(z)$.

Figure 1: The domain of variation of t, t close to $\pi / 2$.

Figure 2: The domain of variation of t, t close to π
Proof. Let $z=1+\rho e^{i t}, 0 \leq t \leq 2 \pi$. Then $f(z)=e^{-2 i t}$. Hence $\operatorname{Re} f(z)=\cos (2 t)$ and $\operatorname{Im} f(z)=-\sin (2 t)$. Let $T^{ \pm}$be the two tangents to the circle $|z|=a$ passing through the point 1 . The intersection points of $T^{ \pm}$with the circle are given by

$$
\begin{equation*}
P_{a}^{ \pm}=a e^{ \pm i \theta} \tag{1.1}
\end{equation*}
$$

for some $\theta \in[0, \pi / 2]$. Consider the triangle Δ whose end-points are 0,1 and P_{a}^{+} and let β be the angle formed by the segment $[0,1]$ and the tangent T^{+}. Using that $\theta+\beta=\pi / 2$, there exists $\rho>0$ with $\left|1+\rho e^{i t}\right|=a$ if and only if $\pi-\beta \leq t \leq \pi+\beta$. (If $t \neq \pi \pm \beta$, then there are exactly two such radii ρ). The side-lengths of Δ are 1 (the hypotenuse), a and $L:=\left|a e^{i \theta}-1\right|$. Since $L^{2}+a^{2}=1$, we see that $L=\sqrt{1-a^{2}}$. On the other hand,

$$
L^{2}=a^{2}+1-2 a \cos \theta
$$

Hence $a=\cos \theta$. Now let $t_{\max }:=\pi-\beta$. Note that $t_{\max }$ is close to π if a is close to 0 and $t_{\max }$ is close to $\pi / 2$ if a is close to 1 .

Since $t_{\max }=\theta+\pi / 2$, we obtain

$$
\cos \left(2 t_{\max }\right)=\cos (2 \theta+\pi)=-\cos (2 \theta)=1-2 \cos ^{2}(\theta)=1-2 a^{2}
$$

Thus $\min _{|z|=a} \operatorname{Re} f(z)=1-2 a^{2}$. The other identity $\max _{|z|=a} \operatorname{Re} f(z)=1$ is clear by looking at the figure; it also follows from the fact that for $z=a, f(z)=1$.

Now $\cos \left(2 t_{\max }\right)=0$ if $t_{\max }=3 \pi / 4$. Hence

$$
\max _{|z|=a} \operatorname{Im} f(z)=1 \Longleftrightarrow 1-2 a^{2} \leq 0 \Longleftrightarrow \frac{1}{\sqrt{2}} \leq a<1
$$

and

$$
\max _{|z|=a} \operatorname{Im} f(z)=\sqrt{1-\left(1-2 a^{2}\right)^{2}}=2 a \sqrt{1-a^{2}} \Longleftrightarrow 0<a \leq \frac{1}{\sqrt{2}}
$$

Finally, for all $a \in] 0,1[$,

$$
\min _{|z|=a} \operatorname{Im} f(z)=-\max _{|z|=a} \operatorname{Im} f(z) .
$$

We can also use cartesian coordinates to find these extremal values: in fact, let $z=x+i y,|z|=a$. Then

$$
\begin{aligned}
\operatorname{Re} \frac{\bar{z}-1}{z-1} & =\operatorname{Re} \frac{(\bar{z}-1)^{2}}{|z-1|^{2}}=\frac{(x-1)^{2}-y^{2}}{x^{2}+y^{2}+1-2 x} \\
& =\frac{x^{2}-2 x+1-\left(a^{2}-x^{2}\right)}{a^{2}+1-2 x}=1+\frac{2 x^{2}-2 a^{2}}{a^{2}+1-2 x}
\end{aligned}
$$

Now

$$
\left(\frac{x^{2}-a^{2}}{a^{2}+1-2 x}\right)^{\prime}=\frac{2(x-1)\left(a^{2}-x\right)}{\left(a^{2}+1-2 x\right)^{2}}
$$

The zeros of this derivative are $x=1$ and $x=a^{2}$. Since $-a \leq x \leq a$, we deduce that

$$
\min _{|z|=a} \operatorname{Re} \frac{\bar{z}-1}{z-1}=1+\left.\frac{2 x^{2}-2 a^{2}}{a^{2}+1-2 x}\right|_{x=a^{2}}=1-2 a^{2}
$$

and

$$
\max _{|z|=a} \operatorname{Re} \frac{\bar{z}-1}{z-1}=1+\left.\frac{2 x^{2}-2 a^{2}}{a^{2}+1-2 x}\right|_{x= \pm a}=1
$$

As a consequence, the cartesian coordinates of $P_{a}^{ \pm}$are $\left(a^{2}, \pm a \sqrt{1-a^{2}}\right)$.
Corollary 1.2. Let $0<a<1$. The image of the circle $|z|=a$ under the map

$$
f(z)=\frac{\bar{z}-1}{z-1}
$$

is the arc

$$
A:=\left\{e^{i \sigma}:|\sigma| \leq \pi-2 \arccos a\right\}
$$

where $\arccos a \in] 0, \pi / 2[$.

Remark. We also note that if τ runs from 0 to 2π, then $f\left(a e^{i \tau}\right)$ runs on A from 1 to the upper end-point

$$
E^{+}:=e^{i(\pi-2 \arccos a)}=1-2 a^{2}+2 i a \sqrt{1-a^{2}}
$$

of A, reaches this point when $\tau=\arccos a$ (that is $\left.f\left(P_{a}^{+}\right)=E^{+}\right)$), then turns back, passes through the point 1 (when $\tau=\pi$) until it reaches the lower end-point

$$
E^{-}:=e^{-i(\pi-2 \arccos a)}=1-2 a^{2}-2 i a \sqrt{1-a^{2}}
$$

of A when $\tau=2 \pi-\arccos a$ (that is $\left.f\left(P_{a}^{-}\right)=E^{-}\right)$), then turns back again up to the point 1 , that is attained for $\tau=2 \pi$. In particular, with the exception of the two end-points of A, each point of A is traversed twice.

2 The map $g(z)=|z| f(z)$

Theorem 2.1. Let the map $g: \mathbb{D} \rightarrow \mathbb{C}$ be defined by

$$
g(z)=|z| \frac{\bar{z}-1}{z-1} .
$$

Then g is a continuous map of \mathbb{D} onto the set

$$
\Omega=\mathbb{D} \backslash K^{\circ},
$$

where K is a closed region whose boundary is given by the curve

$$
\gamma(a)=a\left(1-2 a^{2}\right) \pm 2 i a^{2} \sqrt{1-a^{2}}, \quad 0 \leq a \leq 1,
$$

which is one half of the rhodonea (rose)

$$
r=\sin (\theta / 2), 0 \leq \theta \leq 2 \pi .
$$

Moreover, g is a homeomorphism of

$$
H:=\{z \in \mathbb{D}:|z-0.5|>0.5\} \text { onto } \mathbb{D} \backslash K
$$

and a homeomorphism of

$$
\{z \in \mathbb{D}:|z-0.5|<0.5\} \text { onto } \mathbb{D} \backslash K .
$$

Let $C=\{z \in \mathbb{D}:|z-0.5|=0.5\}$. Then the function $\left.g\right|_{C}$ has an injective continuous extension to the whole circle $\overline{\mathrm{C}}$. The image of this extension coincides with ∂K (see figures 3 and 4).

Finally, for $|z|=1, z \neq 1, g(z)=-\bar{z}$; thus g interchanges two points on the unit circle whenever they have same imaginary part.

Figure 3: The mapping properties of g

Figure 4: Creation of the image domain Ω

Proof. The first assertion on the image follows at once when we have noticed that by Lemma 1.1 and Corollary 1.2 the end-points of the image curve of $|z|=a$ under the map $(\bar{z}-1) /(z-1)$ are given by

$$
1-2 a^{2} \pm i \sqrt{1-\left(1-2 a^{2}\right)^{2}}=1-2 a^{2} \pm i 2 a \sqrt{1-a^{2}}
$$

(see figure 4). Note also that the boundary of $g(\mathbb{D})$ is given by the set

$$
\partial \mathbb{D} \cup R,
$$

where R is parametrized by the curve

$$
\gamma(a)=a\left(1-2 a^{2}\right) \pm 2 i a^{2} \sqrt{1-a^{2}}, \quad 0 \leq a \leq 1 .
$$

Hence $g(\mathbb{D})=\Omega$.
The locus of the points $P_{a}=a e^{i \arccos a}$, where $0 \leq a \leq 1$, equals the circle of center $1 / 2$ and radius $1 / 2$, because

$$
\left|\frac{1}{2}-a e^{i \arccos a}\right|=\left|\frac{1}{2}-a \cos (\arccos a)-i a \sin (\arccos a)\right|
$$

$$
=\left|\left(\frac{1}{2}-a^{2}\right)-i a\left(\sqrt{1-a^{2}}\right)\right|=\sqrt{\left(\frac{1}{2}-a^{2}\right)^{2}+a^{2}\left(1-a^{2}\right)}=\frac{1}{2} .
$$

By Corollary 1.2 and its remark,

$$
g\left(a e^{i \arccos a}\right)=a e^{i(\pi-2 \arccos a)}=\gamma(a), a \neq 1 .
$$

Thus $g(C)=\partial K$. Moreover the open disk $|z-1 / 2|<1 / 2$ is mapped bijectively onto Ω; the same holds for the set $\{z \in \mathbb{D}:|z-1 / 2|>1 / 2\}$.

It remains to show that $\gamma(a)$ coincides with (one part) of the rhodonea $r=$ $\sin (\varphi / 2)$, also called Dürer's folium, $0 \leq \varphi \leq 2 \pi$.

So let $\gamma(a)=a e^{i \varphi}, 0 \leq \varphi \leq 2 \pi$. Note that $\gamma(a)=g\left(P_{a}^{ \pm}\right)$. Since $\cos \varphi=1-2 a^{2}$, we deduce that, in polar coordinates,

$$
r(\varphi)=a=\sqrt{\frac{1}{2}(1-\cos \varphi)}=\sin \left(\frac{\varphi}{2}\right) .
$$

At first glance (by looking at the picture), K seems to be a cardioid. This is not the case, though. The relation of K with the domain bounded by the classical cardioid, given by the parametrization

$$
z(t)=-\frac{1}{2}(\cos \phi+1) \cos \phi+i \frac{1}{2}(\cos \phi+1) \sin \phi, \quad 0 \leq \phi \leq 2 \pi
$$

or in polar coordinates

$$
r(\varphi)=\frac{1}{2}(1-\cos \varphi)
$$

is shown in the following figure (the cardioid is inside the domain K bounded by the"left part" of the rhodonea; the full rhodonea, called Dürer's folium, is given in the right picture.

Figure 5:
Cardioid, rhodonea and unit circle

Figure 6: Dürer's folium

3 The map $h(z)=-z \frac{\bar{z}-1}{z-1}$
If one replaces in the definition of

$$
g(z)=|z| \frac{\bar{z}-1}{z-1}
$$

the factor $|z|$ by $-z$, then the new function has a very different behaviour. Part of the following result is from my previous joint work with P. Gorkin [4]. For the readers convenience, we recapture its short proof here. Recall that the cluster set, $C(u, \alpha)$, of a continuous function $u: \mathbb{D} \rightarrow \mathbb{C}$ at the point $\alpha \in \mathbb{T}$ is the set of all values $w \in \hat{\mathbb{C}}$ such there exists a sequence $\left(z_{n}\right)$ in \mathbb{D} for which $u\left(z_{n}\right) \rightarrow w$ as $n \rightarrow \infty$.

Proposition 3.1. Let $h: \mathbb{D} \rightarrow \mathbb{D}$ be given by

$$
h(z)=-z \frac{\bar{z}-1}{z-1} .
$$

Then h is a bijective involution (that is $h \circ h=\mathrm{id}$) of \mathbb{D} onto \mathbb{D}. The map h has a continuous extension to $\overline{\mathbb{D}} \backslash\{0\}$ with constant value 1 . The cluster set $C(h, 1)$ of h at 1 equals the unit circle \mathbb{T}.

Proof. The first assertion follows from the fact that $h(z)=a$ implies $|z|=|a|$ and the following equivalences:

$$
\begin{gathered}
-z \frac{\bar{z}-1}{z-1}=a \Longleftrightarrow-z+|z|^{2}-a+a z=0 \Longleftrightarrow \\
-z+|a|^{2}-a+a z=0 \Longleftrightarrow z=-a \frac{\bar{a}-1}{a-1} .
\end{gathered}
$$

If $|z|=1, z \neq 1$, then $-z \frac{\bar{z}-1}{z-1}=\frac{-1+z}{z-1}=1$. Thus we may define $h(\lambda)=1$ whenever $|\lambda|=1, \lambda \neq 1$.

Since the cluster set of h at 1 is a decreasing intersection of continua, namely,

$$
C(h, 1)=\bigcap_{n=1}^{\infty}{\overline{h\left(D_{n}\right)}}^{c},
$$

where $D_{n}=\{z \in \mathbb{D}:|z-1| \leq 1 / n\}$, we see that $C(h, 1)$ is a nonvoid connected compact set. Now $\lim _{\substack{x \rightarrow 1 \\ 0<x<1}} h(x)=-1$ and $\lim _{\theta \rightarrow 0} h\left(e^{i \theta}\right)=1$.

Since $\mu \in C(h, 1)$ if and only if $\bar{\mu} \in C(h, 1)$ (note that $h(\bar{z})=\overline{h(z)}$), and $|h(z)|=|z| \rightarrow 1$ if $z \rightarrow 1$, we conclude that $C(h, 1)=\mathbb{T}$.

We note that a continuous involution F of \mathbb{D} onto \mathbb{D} is an open map. Therefore, F cannot have a continuous extension to \mathbb{T} that is constant there. In fact, if this would be the case, say $F \equiv 1$ on \mathbb{T}, then we choose a sequence $w_{n} \in F(\mathbb{D})$ converging to a boundary point, β, of $F(\mathbb{D})$ different from 1 . Let $z_{n} \in \mathbb{D}$ satisfy $F\left(z_{n}\right)=w_{n}$ for all n. We may assume, by passing to a subsequence if necessary,
that $\left(z_{n}\right)$ converges to $a \in \overline{\mathbb{D}}$. Since we have assumed that F has a continuous extension to $\overline{\mathbb{D}}$, we conclude that $F(a)=\beta$. Because $\beta \neq 1$, the constancy of F on \mathbb{T} implies that $a \in \mathbb{D}$. But this contradicts the fact that F is an open map.

Acknowledgements

I thank the referee for drawing my attention to the class of curves, called roses (rhodonea), and Jérôme Noël for having realized figure 4 with $\mathrm{T}_{\mathrm{E}} \mathrm{Xgraph}$.

References

[1] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930.
[2] J.P. Earl, On the interpolation of bounded sequences by bounded functions, J. London Math. Soc. 2 (1970), 544-548.
[3] J.B. Garnett Bounded Analytic Functions, Academic Press, New York, 1981.
[4] P. Gorkin, R. Mortini, Value distribution of interpolating Blaschke products, J. London Math. Soc. 72 (2005), 151-168.

Département de Mathématiques
IECL, UMR 7502, Université de Lorraine Ile du Saulcy
F-57045 Metz, France
email:raymond.mortini@univ-lorraine.fr

[^0]: Received by the editors in September 2012.
 Communicated by H. De Schepper.
 2010 Mathematics Subject Classification : Primary 30J99; Secondary 30C99; 53A04.

[^1]: ${ }^{1}$ Later we shall see that one cannot achieve the constancy of the involution on the entire boundary of \mathbb{D}.

