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Abstract

In this paper, some existence theorems are obtained for periodic solutions
of a damped vibration problem with (q, p)−Laplacian by using variational
methods. Our results extend some results in some known literatures.

1. Introduction and Main results

In this paper, we consider the following dynamical system















d
dt (|u̇1(t)|q−2u̇1(t)) + g(t)|u̇1(t)|q−2u̇1(t) = ∇u1

F(t, u1(t), u2(t)), a.e. t ∈ [0, T]
d
dt (|u̇2(t)|p−2u̇2(t)) + g(t)|u̇2(t)|p−2u̇2(t) = ∇u2 F(t, u1(t), u2(t)), a.e. t ∈ [0, T]
u1(0)− u1(T) = u̇1(0)− u̇1(T) = 0,
u2(0)− u2(T) = u̇2(0)− u̇2(T) = 0,

(1.1)
where

u(t) = (u1(t), u2(t)) = (u1
1(t), u2

1(t), · · · , uN
1 (t), u1

2(t), u2
2(t), · · · , uN

2 (t))τ ,

1 < p < ∞, 1 < q < ∞, T > 0, g ∈ L∞(0, T; R), G(t) =
∫ t

0 g(s)ds, G(T) = 0 and

F : [0, T]× R
N × R

N → R satisfies the following assumption:
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(A) F(t, x) is measurable in t for every x = (x1, x2) ∈ R
N × R

N and continuously
differentiable in (x1, x2) for a.e. t ∈ [0, T], and there exist a1, a2 ∈ C(R+, R

+) and
b ∈ L1(0, T; R

+) such that

|F(t, x1, x2)|, |∇x1
F(t, x1, x2)|, |∇x2 F(t, x1, x2)| ≤ [a1(|x1|) + a2(|x2|)]b(t)

for all (x1, x2) ∈ R
N × R

N and a.e. t ∈ [0, T].

Moreover, we also consider the following p−Laplacian system

{

d
dt (|u̇(t)|p−2u̇(t)) + g(t)|u̇(t)|p−2u̇(t) = ∇F(t, u(t)), a.e. t ∈ [0, T]
u(0)− u(T) = u̇(0)− u̇(T) = 0,

(1.2)

where u ∈ R
N, 1 < p < ∞, T > 0, g ∈ L∞(0, T; R), G(t) =

∫ t
0 g(s)ds, G(T) = 0

and F : [0, T]× R
N → R satisfies the following assumption:

(A)′ F(t, x) is measurable in t for every x ∈ R
N and continuously differentiable in x

for a.e. t ∈ [0, T], and there exist a ∈ C(R+, R
+) and b ∈ L1(0, T; R

+) such that

|F(t, x)|, |∇F(t, x)| ≤ a(|x|)b(t)

for all x ∈ R
N and a.e. t ∈ [0, T].

When p = q = 2 and F(t, x1, x2) = F1(t, x1), it has been proved that prob-
lem (1.1) has at least one solution by the least action principle and the minimax
methods (see [1-8]). Many solvability conditions are given, such as the coercive
condition (see [1]), the periodicity condition (see [8]); the convexity condition
(see [2]); the subadditive condition (see [7]). For system (1.2), there are also
some results (for example, [9-12]). For system (1.1), recently, in [13], by using
the least action principle and the saddle point theorem, Pasca and Tang consid-
ered system (1.1) with g(t) ≡ 0 under the following assumptions: there exist
f j, gj ∈ L1(0, T; R

+), j = 1, 2 and α1 ∈ [0, q − 1), α2 ∈ [0, p − 1) such that

|∇x1
F(t, x1, x2)| ≤ f1(t)|x1|α1 + g1(t) (1.3)

|∇x2 F(t, x1, x2)| ≤ f2(t)|x2|α2 + g2(t) (1.4)

for all (x1, x2) ∈ R
N and a.e. t ∈ [0, T]. By using saddle point theorem and the

least action principle, they obtained system (1.1) with g(t) ≡ 0 has at least one
solution.

In [14], Wu and Chen considered the following damped vibration problem

{

ü(t) + g(t)u̇(t) = ∇uF(t, u(t)), a.e. t ∈ [0, T]
u(0)− u(T) = u̇(0)− u̇(T) = 0.

(1.5)

By using the least action principle, Theorem 2 in [15] and the saddle point the-
orem, the authors obtained some existence results of solutions for system (1.5).
Moreover, recently, in [18]-[23], the authors also considered the existence and
multiplicity of solutions for damped vibration problem and p-Laplacian system.
In this paper, we will establish some similar results for system (1.1) and system
(1.2). Now we state our main results.
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Theorem 1.1. Assume the following condition holds:
(F1)

lim inf√
|x1|2+|x2|2→+∞

F(t, x1, x2)

|x1|q + |x2|p
> 0 uniformly for a.e. t ∈ [0, T].

Then system (1.1) has at least one solution in W
1,q
T × W

1,p
T . Let q′ and p′ be such that

1
q +

1
q′ = 1 and 1

p +
1
p′ = 1. Furthermore, if the following condition also holds:

(F2) there exist δ > 0, a ∈
[

0, G0
qG1

(

q′+1
T

)1/q′
]

and b ∈
[

0, G0
pG1

(

p′+1
T

)1/p′
]

such that

−a|x1|q − b|x2|p ≤ F(t, x1, x2) ≤ 0, ∀ |x1| ≤ δ, |x2| ≤ δ,

where G0 = mint∈[0,T] eG(t) and G1 = maxt∈[0,T] eG(t), then system (1.1) has at least

two nonzero solutions in W
1,q
T × W

1,p
T , where

W
1,p
T = {u : R → R

N|u is absolutely continuous, u(0) = u(T) and u̇ ∈ Lp([0, T])}.

with the norm defined by

‖u‖
[W

1,p
T ]

=

(

∫ T

0
eG(t)|u(t)|pdt +

∫ T

0
eG(t)|u̇(t)|pdt

)1/p

.

Remark 1.1. Note that G(t) is continuous on [0, T] and so is eG(t). Hence, eG(t)

has the maximal and minimal value on [0, T].

Theorem 1.2. Assume the following condition holds:
(F3)

lim inf
|x|→+∞

F(t, x)

|x|p > 0 uniformly for a.e. t ∈ [0, T].

Then system (1.2) has at least one solution in W
1,p
T . Furthermore, if the following condi-

tion also holds:

(F4) there exist δ > 0 and a ∈
[

0, G0
pG1

(

p′+1
T

)1/p′
]

such that

−a|x|p ≤ F(t, x) ≤ 0, ∀ |x| ≤ δ,

then system (1.2) has at least two nonzero solutions in W
1,p
T .

Theorem 1.3. If the following conditions hold:
(F5)

lim inf
|x|→∞

F(t, x)

|x|p−1
> −∞ uniformly for a.e. t ∈ [0, T];

(F6) whenever {un} ⊂ W
1,p
T is such that ‖un‖[W1,p

T ]
→ ∞ and

|ūn|
‖un‖

[W
1,p
T

]

(

∫ T
0 eG(t)dt

)1/p
→ 1, as n → ∞,

lim inf
n→∞

∫ T

0
eG(t)

(

∇F(t, un(t)),
ūn

|ūn|

)

dt < 0,

then system (1.2) has at least one solution in W
1,p
T .
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Remark 1.2. Theorem 1.1 generalizes Theorem 3.1 in [14]. In fact, it follows
from Theorem 1.1 by letting p = q = 2 and F(t, x1, x2) = F1(t, x1). Theorem
1.2 and Theorem 1.3 generalize Theorem 3.1 and Theorem 3.3 in [14] by letting
p = 2. Moreover, we also obtain multiplicity results by adding some conditions
like (F2) and (F4). Moreover, in [22], the authors investigated system (1.2) with
g(t) ≡ 0 and they obtained some existence and multiplicity results of solutions.
Our Theorem 1.3 generalizes Theorem 1 in [22].

2. Variational structure and some Preliminaries

The norm in W
1,p
T is defined by

‖u‖
W

1,p
T

=

[

∫ T

0
|u(t)|pdt +

∫ T

0
|u̇(t)|pdt

]1/p

.

Set

‖u‖p =

(

∫ T

0
|u(t)|pdt

)1/p

and ‖u‖∞ = max
t∈[0,T]

|u(t)|.

Lemma 2.1. (see [11] or [12]) Each u ∈ W
1,p
T and each v ∈ W

1,q
T can be written as

u(t) = ū + ũ(t) and v(t) = v̄ + ṽ(t) with

ū =
1

T

∫ T

0
u(t)dt,

∫ T

0
ũ(t)dt = 0, v̄ =

1

T

∫ T

0
v(t)dt,

∫ T

0
ṽ(t)dt = 0.

Let q′ and p′ be such that 1
q +

1
q′ = 1 and 1

p +
1
p′ = 1. Then

‖ũ‖∞ ≤
(

T

p′ + 1

)1/p′ (∫ T

0
|u̇(s)|pds

)1/p

,

‖ṽ‖∞ ≤
(

T

q′ + 1

)1/q′ (∫ T

0
|v̇(s)|qds

)1/q

, (2.1)

and

∫ T

0
|ũ(s)|pds ≤ TpΘ(p, p′)

(p′ + 1)p/p′

∫ T

0
|u̇(s)|pds,

∫ T

0
|ṽ(s)|qds ≤ TqΘ(q, q′)

(q′ + 1)q/q′

∫ T

0
|v̇(s)|qds, (2.2)

where

Θ(p, p′) =
∫ 1

0

[

sp′+1 + (1 − s)p′+1
]p/p′

ds,

Θ(q, q′) =
∫ 1

0

[

sq′+1 + (1 − s)q′+1
]q/q′

ds.
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Obviously, W
1,p
T is a reflexive Banach space and the norm ‖ · ‖

W
1,p
T

is equivalent

to the norm defined by

‖u‖
[W

1,p
T ]

=

(

∫ T

0
eG(t)|u(t)|pdt +

∫ T

0
eG(t)|u̇(t)|pdt

)1/p

because of g ∈ L∞(0, T; R).
Moreover, in order to consider system (1.1), we need to use the space W de-

fined by

W = W
1,q
T × W

1,p
T

with the norm ‖(u1, u2)‖[W] = ‖u1‖[W1,q
T ]

+ ‖u2‖[W1,p
T ]

. It is clear that W is a reflex-

ive Banach space. Let ϕ(q,p) : W → R given by

ϕ(q,p)(u1, u2) =
1

q

∫ T

0
eG(t)|u̇1(t)|qdt +

1

p

∫ T

0
eG(t)|u̇2(t)|pdt+

∫ T

0
eG(t)F(t, u1(t), u2(t))dt. (2.3)

Lemma 2.2. The functional ϕ(q,p) is continuously differentiable and weakly lower semi-
continuous on W.

Proof. Let

L(t, x1, x2, y1, y2) = eG(t)

[

1

q
|y1|q +

1

p
|y2|p + F(t, x1, x2)

]

.

Then it follows from Lemma 4 in [13] that ϕ(q,p) is continuously differentiable on
W and

〈ϕ′
(q,p)(u1, u2), (v1, v2)〉 =

∫ T

0
[(Dx1

L(t, u1(t), u2(t), u̇1(t), u̇2(t)), v1(t))+

(Dy1
L(t, u1(t), u2(t), u̇1(t), u̇2(t)), v̇1(t))+ (Dx2 L(t, u1(t), u2(t), u̇1(t), u̇2(t)), v2(t))+

(Dy2 L(t, u1(t), u2(t), u̇1(t), u̇2(t)), v̇2(t))]dt.

=
∫ T

0
eG(t)(|u̇1(t)|q−2u̇1(t), v̇1(t))dt +

∫ T

0
eG(t)(|u̇2(t)|p−2u̇2(t), v̇2(t))dt

+
∫ T

0
eG(t)(∇x1

F(t, u1(t), u2(t)), v1(t))dt+
∫ T

0
eG(t)(∇x2 F(t, u1(t), u2(t)), v2(t))dt

Moreover, by Remark 3 in [13], we know that ϕ(q,p) is weakly lower semi-conti-
nuous on W.
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Lemma 2.3. If u ∈ W is a solution of Euler equation ϕ′
(q,p)(u1, u2) = 0, then u =

(u1, u2) is a solution of system (1.1).

Proof. Since ϕ′
(q,p)

(u1, u2) = 0,

0 = 〈ϕ′
(q,p)(u1, u2), (v1, v2)〉 =

∫ T

0
eG(t)(|u̇1(t)|q−2u̇1(t), v̇1(t))dt+

∫ T

0
eG(t)(|u̇2(t)|p−2u̇2(t), v̇2(t))dt +

∫ T

0
eG(t)(∇x1

F(t, u1(t), u2(t)), v1(t))dt+

∫ T

0
eG(t)(∇x2 F(t, u1(t), u2(t)), v2(t))dt

for all v = (v1, v2) ∈ W. Then

∫ T

0
eG(t)(|u̇1(t)|q−2u̇1(t), v̇1(t))dt +

∫ T

0
eG(t)(|u̇2(t)|p−2u̇2(t), v̇2(t))dt

= −
∫ T

0
eG(t)(∇x1

F(t, u1(t), u2(t)), v1(t))dt−
∫ T

0
eG(t)(∇x2 F(t, u1(t), u2(t)), v2(t))dt

for all v = (v1, v2) ∈ W. Let v2 = 0. Then

∫ T

0
eG(t)(|u̇1(t)|q−2u̇1(t), v̇1(t))dt = −

∫ T

0
eG(t)(∇x1

F(t, u1(t), u2(t)), v1(t))dt

for all v1 ∈ W
1,q
T . Then by Fundamental Lemma and Remark 1 in [3, p. 6-7], we

know that eG(t)(|u̇1(t)|q−2u̇1(t)) has a weak derivative and

[

eG(t)(|u̇1(t)|q−2u̇1(t))
]′

= eG(t)∇x1
F(t, u1(t), u2(t)), a.e.t ∈ [0, T], (2.4)

eG(t)(|u̇1(t)|q−2u̇1(t)) =
∫ t

0
eG(s)∇x1

F(s, u1(s), u2(s))ds + c a.e. t ∈ [0, T], (2.5)

∫ T

0
eG(t)∇x1

F(t, u1(t), u2(t))dt = 0, (2.6)

where c is a constant. We identify the equivalence class eG(t)(|u̇1(t)|q−2u̇1(t)) and

its continuous represent
∫ T

0 eG(s)∇x1
F(s, u1(s), u2(s))ds + c. Then by (2.5), (2.6),

G(T) = 0 and the existence of u̇1, one has

u̇1(0)− u̇1(T) = u1(0)− u1(T) = 0.

Moreover, by (2.4), we know

d

dt
(|u̇1(t)|q−2u̇1(t)) + g(t)|u̇1(t)|q−2u̇1(t) = ∇x1

F(t, u1(t), u2(t)), a.e. t ∈ [0, T].

Similarly, if we let v1 = 0, we can obtain that

u̇2(0)− u̇2(T) = u2(0)− u2(T) = 0
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and

d

dt
(|u̇2(t)|p−2u̇2(t)) + g(t)|u̇2(t)|p−2u̇2(t) = ∇x2 F(t, u1(t), u2(t)), a.e. t ∈ [0, T].

Hence, (u1, u2) is a solution of system (1.1). We complete the proof.

Let ϕp : W
1,p
T → R given by

ϕp(u) =
1

p

∫ T

0
eG(t)|u̇(t)|pdt +

∫ T

0
eG(t)F(t, u(t))dt. (2.7)

Lemma 2.4. The functional ϕp is continuously differentiable and weakly lower semi-

continuous on W
1,p
T .

Proof. It follows from Theorem 1.4 in [3] that ϕp is continuously differentiable on

W
1,p
T and

〈ϕ′
p(u), v〉 =

∫ T

0
eG(t)(|u̇(t)|p−2u̇(t), v̇(t))dt

+
∫ T

0
eG(t)(∇F(t, u(t)), v(t))dt, u, v ∈ W

1,p
T .

Moreover, by Remark 3 in [13], we know that ϕp is weakly lower semi-continuous

on W
1,p
T .

Lemma 2.5. If u ∈ W
1,p
T is a solution of Euler equation ϕ′

p(u) = 0, then u is a solution
of system (1.2).

Proof. Similar to the proof of Lemma 2.3, the proof is easy to be completed.

We will use the following lemmas to seek the critical points of ϕ(q,p) and ϕp.

Lemma 2.6. (see [3], Theorem 1.1) If ϕ is weakly lower semi-continuous on a reflexive
Banach space X and has a bounded minimizing sequence, then ϕ has a minimum on X.

Lemma 2.7. (see [16]) Let ϕ be a C1 function on X = X1 ⊕ X2 with ϕ(0) = 0,
satisfying (PS) condition and assume that, for some ρ > 0,

ϕ(u) ≥ 0, for u ∈ X1, ‖u‖ ≤ ρ,

ϕ(u) ≤ 0, for u ∈ X2, ‖u‖ ≤ ρ.

Assume also that ϕ is bounded below and infX ϕ < 0, then ϕ has at least two nonzero
critical points.

Lemma 2.8. (see [17], Theorem 4.6) Let X = X1 ⊕ X2, where X is a real Banach
space and X1 6= {0} and is finite dimensional. Suppose ϕ ∈ C1(X, R), satisfies (PS)
condition, and

(I1) there is a constant α and a bounded neighborhood D of 0 in X1 such that ϕ|∂D ≤ α
and

(I2) there is a constant β > α such that ϕ|X2
≥ β.
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Then ϕ possesses a critical value c ≥ β. Moreover c can be characterized as

c = inf
h∈Γ

max
u∈D̄

ϕ(h(u)),

where
Γ = {h ∈ C(D̄, X)|h = id on ∂D}.

3. Proofs of Theorems

Proof of Theorem 1.1.

By (F1), there is 0 < ε < min
{

1, lim inf√|x1|2+|x2|2→+∞

F(t,x1,x2)
|x1|q+|x2|p

}

and M > 0

such that

F(t, x1, x2) >
ε

q + p
|x1|q +

ε

q + p
|x2|p (3.1)

for all (x1, x2) ∈ R
N × R

N with
√

|x1|2 + |x2|2 > M and a.e. t ∈ [0, T].
Set aM = max|x1|≤M,|x2|≤M [a(|x1|) + a2(|x2|)]. Then by (3.1) and assumption

(A), we have

F(t, x1, x2) >
ε

q + p
|x1|q +

ε

q + p
|x2|p −

ε

q + p
Mq − ε

q + p
Mp − aMb(t) (3.2)

for all (x1, x2) ∈ R
N × R

N and a.e. t ∈ [0, T]. Then

ϕ(q,p)(u1, u2)

=
1

q

∫ T

0
eG(t)|u̇1(t)|qdt +

1

p

∫ T

0
eG(t)|u̇2(t)|pdt +

∫ T

0
eG(t)F(t, u1(t), u2(t))dt

≥ 1

q

∫ T

0
eG(t)|u̇1(t)|qdt +

1

p

∫ T

0
eG(t)|u̇2(t)|pdt +

ε

q + p

∫ T

0
eG(t)|u̇1(t)|qdt

+
ε

q + p

∫ T

0
eG(t)|u̇2(t)|pdt − ε

q + p
(Mq + Mp)

∫ T

0
eG(t)dt − aM

∫ T

0
eG(t)b(t)dt

≥ ε

q + p
‖u1‖q

[W
1,q
T ]

+
ε

q + p
‖u2‖p

[W
1,p
T ]

−

ε

q + p
(Mq + Mp)

∫ T

0
eG(t)dt − aM

∫ T

0
eG(t)b(t)dt. (3.3)

for all (u1, u2) ∈ W. Obviously, ϕ(q,p) → +∞ as ‖(u1, u2)‖[W] → ∞. Hence, ϕ(q,p)
has a bounded minimizing sequence. Thus, by Lemma 2.2 and Lemma 2.6, we
know that ϕ(q,p) has a minimum on W. So system (1.1) has at least one solution in
W.

Furthermore, if (F2) also holds, we will use Lemma 2.7 to obtain more critical

points of ϕ(q,p). Let X = W, X2 = R
N × R

N and X1 = W̃ = W̃
1,q
T × W̃

1,p
T which is

the subspace of W given by

W̃ = {(u1, u2) ∈ W| (ū1, ū2) = (0, 0)}.
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By (3.3), we know that ϕ(q,p) → +∞ as ‖(u1, u2)‖[W] → ∞. So ϕ(q,p) satisfies (PS)

condition and is bounded below. Take ρ = δ
c1

, where c1 is a positive constant such

that ‖u1‖∞ ≤ c1‖u1‖W
1,q
T

≤ c1‖u‖[W] and ‖u2‖∞ ≤ c1‖u2‖W
1,p
T

≤ c1‖u‖[W] for all

(u1, u2) ∈ W. It follows from (F2) and Lemma 2.1 that for all (u1, u2) ∈ X1 with
‖u‖[W] ≤ ρ,

ϕ(q,p)(u1, u2)

=
1

q

∫ T

0
eG(t)|u̇1(t)|qdt +

1

p

∫ T

0
eG(t)|u̇2(t)|pdt +

∫ T

0
eG(t)F(t, u1(t), u2(t))dt

≥ 1

q

∫ T

0
eG(t)|u̇1(t)|qdt +

1

p

∫ T

0
eG(t)|u̇2(t)|pdt−

a
∫ T

0
eG(t)|u1(t)|qdt − b

∫ T

0
eG(t)|u2(t)|pdt

≥ 1

q
G0

∫ T

0
|u̇1(t)|qdt +

1

p
G0

∫ T

0
|u̇2(t)|pdt − aG1

(

T

q′ + 1

)1/q′ ∫ T

0
|u̇1(t)|qdt

− bG1

(

T

p′ + 1

)1/p′ ∫ T

0
|u̇2(t)|pdt. (3.4)

Since a ≤ G0
qG1

(

q′+1
T

)1/q′
and b ≤ G0

pG1

(

p′+1
T

)1/p′
, (3.4) implies that ϕ(q,p)(u1, u2) ≥

0 for all (u1, u2) ∈ X1 with ‖u‖[W] ≤ ρ. By (F2), it is easy to see that ϕ(q,p)(u1, u2) ≤
0 for all (u1, u2) ∈ X2 for all ‖u‖[W] ≤ ρ.

If inf{ϕ(q,p)(u1, u2) : (u1, u2) ∈ W} = 0, then from above, we have

ϕ(q,p)(u1, u2) = 0 all (u1, u2) ∈ X2 with ‖(u1, u2)‖W ≤ ρ. Hence, all (u1, u2) ∈ X2

with ‖(u1, u2)‖W ≤ ρ are minimal points of ϕ(q,p), which implies that ϕ(q,p) has

infinitely many critical points. If inf{ϕ(q,p)(u1, u2) : (u1, u2) ∈ W} < 0, then by
Lemma 2.7, ϕ(q,p) has at least two nonzero critical points. Hence, system (1.1) has
at least two nontrivial solutions in W. We complete our proof.

Proof of Theorem 1.2. The proof is as essentially same as Theorem 1.1. So we omit
it.

Proof of Theorem 1.3. We will use Lemma 2.8 to seek the critical point of ϕp. It is

clear that W
1,p
T = W̃

1,p
T ⊕ R

N. Let X1 = R
N and X2 = W̃

1,p
T . First, we prove that ϕ

satisfies the (PS) condition. Suppose that {un} ⊂ W
1,p
T is a sequence such that

ϕ′
p(un) → 0 (3.5)

and there exists a constant c2 > 0 such that ϕp(un) ≤ c2, n ∈ N. Then we

can claim that {un} is bounded in W
1,p
T . Otherwise, passing to a subsequence if

necessary, we assume that ‖un‖[W1,p
T ]

→ ∞. Let vn = un
‖un‖

[W
1,p
T

]

. Since W
1,p
T is a

reflexive Banach space, there is a point v0 ∈ H1
T and a subsequence of {vn}, still

noted by {vn}, such that

vn ⇀ v0, in W
1,p
T .
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By Proposition 1.2 in [3], we know that {vn} converges uniformly to v0 on [0, T].
Hence, there is a M2 > 0 such that

max
0≤t≤T

|vn(t)| ≤ M2, n = 1, 2, · · · . (3.6)

By (F5) and assumption (A)′, we know that there exist λ < 0 and M3 > 0 such
that

F(t, x) ≥ λ|x|p−1 − aM3
b(t), (3.7)

where aM3
= max|x|≤M3

a(|x|). It follows from (3.5), (3.6) and (3.7) that

c2

‖un‖p

[W
1,p
T ]

≥ ϕp(un)

‖un‖p

[W
1,p
T ]

=
1

p

∫ T

0
eG(t)|v̇n(t)|pdt +

1

‖un‖p

[W
1,p
T ]

∫ T

0
eG(t)F(t, un(t))dt

≥ 1

p

∫ T

0
eG(t)|v̇n(t)|pdt +

1

‖un‖p

[W
1,p
T ]

∫ T

0
eG(t)[λ|un(t)|p−1

−aM3
b(t)]dt

=
1

p

∫ T

0
eG(t)|v̇n(t)|pdt +

λ

‖un‖[W1,p
T ]

∫ T

0
eG(t)|vn(t)|p−1dt

− aM3

∫ T
0 b(t)dt

‖un‖p

[W
1,p
T ]

≥ 1

p
− 1

p

∫ T

0
eG(t)|vn(t)|pdt − c3

‖un‖[W1,p
T ]

− c4

‖un‖p

[W
1,p
T ]

for some constants c3 > 0 and c4 > 0. It implies that
∫ T

0 eG(t)|v0(t)|pdt ≥ 1. On
the other hand, by weak lower semi-continuity of the norm, we have

‖v0‖[W1,p
T ]

≤ lim inf ‖vn‖[W1,p
T ]

= 1.

Hence, |v̇0(t)| = 0 for a.e. t ∈ [0, T], which implies that |v0(t)| is a constant for
a.e. t ∈ [0, T]. Then |v0|p = 1

∫ T
0 eG(t)dt

. Therefore,

|ūn|
‖un‖[W1,p

T ]

(

∫ T

0
eG(t)dt

)1/p

=

∣

∣

∣

∣

∣

∣

1

T

∫ T

0

un(t)

‖un‖[W1,p
T ]

dt

∣

∣

∣

∣

∣

∣

(

∫ T

0
eG(t)dt

)1/p

=

∣

∣

∣

∣

1

T

∫ T

0
vn(t)dt

∣

∣

∣

∣

(

∫ T

0
eG(t)dt

)1/p

→
∣

∣

∣

∣

1

T

∫ T

0
v0dt

∣

∣

∣

∣

(

∫ T

0
eG(t)dt

)1/p

= 1.
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as n → ∞. Hence, by (F6), we have

lim inf
n→∞

∫ T

0
eG(t)

(

∇F(t, un(t)),
ūn

|ūn|

)

dt < 0.

However,

∫ T

0
eG(t)

(

∇F(t, un(t)),
ūn

|ūn|

)

dt =

〈

ϕ′
p(un),

ūn

|ūn|

〉

→ 0, as n → ∞,

which is a contradiction. Hence {un} is bounded in W
1,p
T . The following argu-

ments are motivated by [9], [11] and [12]. Since W
1,p
T is a reflexive Banach space,

passing to a subsequence if necessary, we suppose that

un ⇀ u in W
1,p
T , (3.8)

for some u ∈ W
1,p
T and then

un → u strongly in C([0, T]; R
N). (3.9)

Note that

〈ϕ′
p(un), un − u〉 =

∫ T

0
eG(t)(|u̇n(t)|p−2u̇n(t), u̇n(t)− u̇(t))dt

−
∫ T

0
eG(t)(∇F(t, un(t)), un(t)− u(t))dt. (3.10)

Since {‖un‖[W1,p
T ]

} is bounded and ϕ′(un) → 0, we have

|〈ϕ′
p(un), un − u〉| ≤ ‖ϕ′

p(un)‖ ‖un − u‖
[W

1,p
T ]

→ 0 as n → ∞. (3.11)

By assumption (A) and (3.9), one has

∫ T

0
eG(t)

(

∇F(t, un(t)), un(t)− u(t)
)

dt → 0 as n → ∞. (3.12)

Hence, it follows from (3.10), (3.11) and (3.12) that

∫ T

0
eG(t)(|u̇n(t)|p−2u̇n(t), u̇n(t)− u̇(t))dt → 0 as n → ∞. (3.13)

On the other hand, it is easy to derive from (3.9) and the boundedness of {un}
that

∫ T

0
eG(t)(|un(t)|p−2un(t), un(t)− u(t))dt → 0 as n → ∞. (3.14)

Set

ψ(u) =
1

p

(

∫ T

0
eG(t)|u(t)|pdt +

∫ T

0
eG(t)|u̇(t)|pdt

)

.
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Then we have

〈ψ′(un), un − u〉 =
∫ T

0
eG(t)(|un(t)|p−2un(t), un(t)− u(t))dt

+
∫ T

0
eG(t)(|u̇n(t)|p−2u̇n(t), u̇n(t)− u̇(t))dt

and

〈ψ′(u), un − u〉 =
∫ T

0
eG(t)(|u(t)|p−2u(t), un(t)− u(t))dt

+
∫ T

0
eG(t)(|u̇(t)|p−2u̇(t), u̇n(t)− u̇(t))dt.

From (3.13) and (3.14), we obtain

〈ψ′(un), un − u〉 → 0 as n → ∞. (3.15)

On the other hand, it follows from (3.8) that

〈ψ′(u), un − u〉 → 0 as n → ∞. (3.16)

By (3.15), (3.16) and by using the Hölder’s inequality, we get

〈ψ′(un)− ψ′(u), un − u〉

=
∫ T

0
eG(t)(|un(t)|p−2un(t), un(t)− u(t))dt

+
∫ T

0
eG(t)(|u̇n(t)|p−2u̇n(t), u̇n(t)− u̇(t))dt

−
∫ T

0
eG(t)(|u(t)|p−2u(t), un(t)− u(t))dt

−
∫ T

0
eG(t)(|u̇(t)|p−2u̇(t), u̇n(t)− u̇(t))dt

= ‖un‖p

[W
1,p
T ]

+ ‖u‖p

[W
1,p
T ]

−
∫ T

0
eG(t)(|un(t)|p−2un(t), u(t))dt

−
∫ T

0
eG(t)(|u̇n(t)|p−2u̇n(t), u̇(t))dt

−
∫ T

0
eG(t)(|u(t)|p−2u(t), un(t))dt −

∫ T

0
eG(t)(|u̇(t)|p−2u̇(t), u̇n(t))dt

= ‖un‖p

[W
1,p
T ]

+ ‖u‖p

[W
1,p
T ]

−
∫ T

0

(

(

eG(t)
)

p−1
p |un(t)|p−2un(t),

(

eG(t)
)

1
p

u(t)

)

dt

−
∫ T

0

(

(

eG(t)
)

p−1
p |u̇n(t)|p−2u̇n(t),

(

eG(t)
)

1
p

u̇(t)

)

dt

−
∫ T

0

(

(

eG(t)
)

p−1
p |u(t)|p−2u(t),

(

eG(t)
)

1
p

un(t)

)

dt

−
∫ T

0

(

(

eG(t)
)

p−1
p |u̇(t)|p−2u̇(t),

(

eG(t)
)

1
p

u̇n(t)

)

dt
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≥ ‖un‖p

[W
1,p
T ]

+ ‖u‖p

[W
1,p
T ]

−
∫ T

0

(

eG(t)
)

p−1
p |un(t)|p−1

∣

∣

∣

∣

(

eG(t)
)

1
p

u(t)

∣

∣

∣

∣

dt

−
∫ T

0

(

eG(t)
)

p−1
p |u̇n(t)|p−1

∣

∣

∣

∣

(

eG(t)
)

1
p

u̇(t)

∣

∣

∣

∣

dt

−
∫ T

0

(

eG(t)
)

p−1
p |u(t)|p−1

∣

∣

∣

∣

(

eG(t)
)

1
p

un(t)

∣

∣

∣

∣

dt

−
∫ T

0

(

eG(t)
)

p−1
p |u̇(t)|p−1

∣

∣

∣

∣

(

eG(t)
)

1
p

u̇n(t)

∣

∣

∣

∣

dt

≥ ‖un‖p

[W
1,p
T ]

+ ‖u‖p

[W
1,p
T ]

−





(

∫ T

0
eG(t)|un(t)|pdt

)

p−1
p
(

∫ T

0
eG(t)|u(t)|pdt

)
1
p

+

(

∫ T

0
eG(t)|u̇n(t)|pdt

)

p−1
p
(

∫ T

0
eG(t)|u̇(t)|pdt

)
1
p





−





(

∫ T

0
eG(t)|u(t)|pdt

)

p−1
p
(

∫ T

0
eG(t)|un(t)|pdt

)
1
p

+

(

∫ T

0
eG(t)|u̇(t)|pdt

)

p−1
p
(

∫ T

0
eG(t)|u̇n(t)|pdt

)
1
p





≥ ‖un‖p

[W
1,p
T ]

+ ‖u‖p

[W
1,p
T ]

−
(

∫ T

0
eG(t)|u(t)|pdt +

∫ T

0
eG(t)|u̇(t)|pdt

)
1
p

(

∫ T

0
eG(t)|un(t)|pdt +

∫ T

0
eG(t)|u̇n(t)|pdt

)
1
p′

−
(

∫ T

0
eG(t)|un(t)|pdt +

∫ T

0
eG(t)|u̇n(t)|pdt

)
1
p

(

∫ T

0
eG(t)|u(t)|pdt +

∫ T

0
eG(t)|u̇(t)|pdt

)
1
p′

= ‖un‖p

[W
1,p
T ]

+ ‖u‖p

[W
1,p
T ]

− ‖u‖
[W

1,p
T ]

‖un‖p−1

[W
1,p
T ]

− ‖un‖[W1,p
T ]

‖u‖p−1

[W
1,p
T ]

=

(

‖un‖p−1

[W
1,p
T ]

− ‖u‖p−1

[W
1,p
T ]

)(

‖un‖[W1,p
T ]

− ‖u‖
[W

1,p
T ]

)

. (3.17)

It follows that

0 ≤
(

‖un‖p−1

[W
1,p
T ]

− ‖u‖p−1

[W
1,p
T ]

)(

‖un‖[W1,p
T ]

− ‖u‖
[W

1,p
T ]

)

≤ 〈ψ′(un)−ψ′(u), un − u〉,
(3.18)

which, together with (3.15)-(3.18) yields ‖un‖[W1,p
T ]

→ ‖u‖
[W

1,p
T ]

. By the uniform

convexity of W
1,p
T and (3.8), it follows from the Kadec-Klee property that un → u

strongly in W
1,p
T . Thus we have verified that ϕp satisfies (PS) condition.
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Next, we prove that ϕp satisfies (I1) and (I2). First, we claim that ϕp(x) →
−∞, as |x| → ∞ for all x ∈ R

N = X1. By using (F6), the proof is the same as

Lemma 3.3 in [14]. So we omit it. For u ∈ X2 = W̃
1,p
T , it follows from (3.7),

Hölder’s inequality and (2.2) that

ϕp(u) =
1

p

∫ T

0
eG(t)|u̇(t)|pdt +

∫ T

0
eG(t)F(t, u(t))dt

≥ 1

p

∫ T

0
eG(t)|u̇(t)|pdt +

∫ T

0
eG(t)[λ|u(t)|p−1 − aM3

b(t)]dt

≥ eG0

p

∫ T

0
|u̇(t)|pdt − |λ|eG1

∫ T

0
|u(t)|p−1dt − aM3

∫ T

0
eG(t)b(t)dt

≥ eG0

p

∫ T

0
|u̇(t)|pdt − |λ|eG1 T1/p

(

∫ T

0
|u(t)|pdt

)1/p′

− aM3

∫ T

0
eG(t)b(t)dt

≥ eG0

p

∫ T

0
|u̇(t)|pdt − c5

(

∫ T

0
|u̇(t)|pdt

)1/p′

− aM3

∫ T

0
eG(t)b(t)dt,

where c5 = |λ|eG1 T1/p

(

TpΘ(p,p′)
(p′+1)p/p′

)1/p′

. Note that the norm ‖u̇‖Lp is equivalent to

the norm ‖u‖
[W

1,p
T ]

in W̃
1,p
T . Hence, ϕp(u) → +∞ as ‖u‖

[W
1,p
T ]

→ ∞ for all u ∈ X2.

Thus we complete the proof.
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