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Abstract

Let B be the class of meromorphic functions f such that the set sing ( f−1)
is bounded, where sing ( f−1) is the set of critical and asymptotic values of f .
Suppose that f has at most finitely many poles in the complex plane, and that
L( f )− P and f − P share 0 CM, where L[ f ] = f (k) + ak−1 f (k−1)+ · · ·+ a1 f ′ +
a0 f , where k is a positive integer and a0, a1, · · · , ak−1 are complex numbers,
P is a nonconstant polynomial. Then, the hyper-order of f is nonnegative in-
teger or ∞. Applying this result, we obtain some uniqueness results for tran-
scendental meromorphic functions having the same fixed points with their
linear differential polynomials, where the meromorphic functions belong to
B and have at most finitely many poles in the complex plane. The results in
this paper are concerning a conjecture of Brück [5]. An example is provided
to show that the results in this paper are best possible.

1 Introduction and Main Results

In this paper, by meromorphic functions we will always mean meromorphic func-
tions in the complex plane. We adopt the standard notations in Nevanlinna the-
ory of meromorphic functions as explained in [13, 17, 33, 34]. It will be convenient
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to let E denote any set of positive real numbers of finite linear measure, not nec-
essarily the same at each occurrence. For a nonconstant meromorphic function h,
we denote by T(r, h) the Nevanlinna characteristic of h and by S(r, h) any quan-
tity satisfying S(r, h) = o{T(r, h)}, as r → ∞ and r 6∈ E.

Let f and g be two nonconstant meromorphic functions, and let a be a finite
value. We say that f and g share the value a CM, provided that f − a and g − a
have the same zeros and each common zero of f − a and g − a has the same
multiplicity related to f and g. Similarly, we say that f and g share a IM, provided
that f − a and g− a have the same zeros and each common zero of f − a and g− a
is counted only once. In addition, we say that f and g share ∞ CM, if 1/ f and
1/g share 0 CM, and we say that f and g share ∞ IM, if 1/ f and 1/g share 0 IM
(see [34]). Let ϕ 6≡ ∞ be a meromorphic function such that T(r, ϕ) = S(r, f ). Then
we say that ϕ is a small function of f . A point b ∈ C is said to be an asymptotic
value of f if there exists a curve Γ ⊂ C tending to ∞ such that f (z) → b as z → ∞

along Γ. A value b is called a critical value of f if there exists z0 ∈ C such that
f ′(z0) = 0 and f (z0) = b. Throughout this paper, we denote by sing ( f−1) the set
of critical and asymptotic values of f , and denote by B the class of meromorphic
functions f , where f is such that the set sing ( f−1) is bounded. This class has been
considered extensively in iteration theory, see, e.g. [3, 11, 18]. In this paper, we
also need the following definition:

Definition 1.1. For a nonconstant entire function f , the lower order µ( f ), the
order ρ( f ), the lower hyper-order µ2( f ), the hyper-order ρ2( f ) are defined as

µ( f ) = lim inf
r→∞

logT(r, f )

logr
= lim inf

r→∞

loglogM(r, f )

logr
,

ρ( f ) = lim sup
r→∞

logT(r, f )

logr
= lim sup

r→∞

loglogM(r, f )

logr
,

µ2( f ) = lim inf
r→∞

loglogT(r, f )

logr
= lim inf

r→∞

log log log M(r, f )

logr

and

ρ2( f ) = lim sup
r→∞

loglogT(r, f )

logr
= lim sup

r→∞

log log log M(r, f )

logr

respectively, where and in what follows, M(r, f ) = max
|z|=r

| f (z)|.

In 1977, Rubel and Yang [27] proved that if an entire function f shares two
distinct finite complex numbers CM with its derivative f ′, then f = f ′. What can
be said about the relationship between an entire f and its first order derivative
f ′, if f shares one finite value a CM with f ′ ? In 1996, Brück [5] made the conjec-
ture that if f is a nonconstant entire function satisfying ρ2( f ) < ∞, where ρ2( f )
is not a positive integer, and if f and f ′ share one finite complex number a CM,
then f − a = c( f ′ − a) for some constant c 6= 0. For the case that a = 0, the
above conjecture had been proved by Brück [5]. Brück [5] also proved the above
conjecture is true, provided that a 6= 0 and N(r, 1/ f ′) = S(r, f ), where f is an
entire function. Later on, Gundersen and Yang [12], Chen and Shon [8] proved
that the above conjecture is true, provided that ρ( f ) < ∞ and ρ2( f ) < 1/2 re-
spectively, where f is an entire function. In 2005, Al-Khaladi [1] showed that
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the conjecture remains true for a nonconstant meromorphic function f such that
N(r, 1/ f ′) = S(r, f ). In this direction, some other research works have been ob-
tained, see, e. g., Banerjee and Bhattacharjee [2], Chang and Zhu [6], Chang
and Fang[7], Heittokangas, Korhonen, Laine, Rieppo and Zhang [14], Lahiri and
Sarkar [16], Li and Gao[19, 20], Li and Yi [21-26], Wang [29], Wang and Laine [30],
Wang and Li [31], Xiao and Li [32], Zhang [35], Zhang and Yang [36-37]. But the
conjecture remains open by now.

First we recall the following result due to Gundersen and Yang:

Theorem A ([12, Theorem 1]). Let f be a nonconstant entire function of finite
order, and let a 6= 0 be a finite complex number. If f and f ′ share a CM, then
f ′ − a = c( f − a) for some nonzero constant c.

Wang [29] obtained the following result to improve Theorem A:

Theorem B ([29, Theorem 1]). Let f be a nonconstant entire function of finite
order, let P be a polynomial with degree p ≥ 1, and let k be a positive integer.

If f − P and f (k) − P share 0 CM, then f (k) − P = c( f − P) for some complex
number c 6= 0.

Consider the following linear differential polynomial related to f .

L[ f ] = f (k) + ak−1 f (k−1) + · · ·+ a1 f ′ + a0 f , (1.1)

where k is a positive integer and a0, a1, · · · , ak−1 are complex numbers.

One may ask, what can be said about the relations between a meromorphic
function f and L[ f ], if f − P and L[ f ] − P share 0 CM, where f belongs to the
class B and has at most finitely many poles in the complex plane, L[ f ] is defined
as in (1.1), k ≥ 1 is a positive integer and P is a nonconstant polynomial. In this
direction, we first prove the following results:

Theorem 1.1. Suppose that f ∈ B is a nonconstant entire function and P is a
nonconstant polynomial such that f − P and L[ f ] − P share 0 CM, where L[ f ] is
defined as in (1.1), at least one of a0, a1, · · · , ak−1 is not zero, k ≥ 1 is a positive
integer. Then, there exists an entire function α1 such that L[ f ] − P = ( f − P)eα1

and µ2( f ) = ρ2( f ) = ρ(eα1).

Theorem 1.2. Let f ∈ B be a transcendental meromorphic function such that
f has at least one pole but at most finitely many poles ω1, ω2, · · · , ωn−1 and ωn,
where n ≥ 1 is a positive integer, and let P be a nonconstant polynomial. Suppose
that f − P and L[ f ]− P share 0 CM, where L[ f ] is defined as in (1.1), at least one
of a0, a1, · · · , ak−1 is not zero, k ≥ 1 is a positive integer. Then, there exists an
entire function α2 such that (L[ f ] − P)P1 = ( f − P)eα2 and ρ2( f ) = ρ(eα2), where
P1 = (z − ω1)

k(z − ω2)
k · · · (z − ωn)k.

From Theorem 1.1 we get the following corollary:

Corollary 1.1. Let f ∈ B be a transcendental entire function. Suppose that
f − z and L[ f ] − z share 0 CM, where L[ f ] is defined as in (1.1), at least one of
a0, a1, · · · , ak−1 is not zero. If ρ2( f ) is not a positive integer and ρ2( f ) < ∞, then
L[ f ]− z = c( f − z) for some nonzero constant c.

In 1995, Yi and Yang posed the following question.

Question 1.1 ([34, p.398]). Let f be a nonconstant meromorphic function,

and let a be a finite nonzero complex constant. If f , f (n) and f (m) share the value
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a CM, where n and m (n < m) are distinct positive integers not all even or odd,

then can we get the result f = f (n)?

Gundersen and Yang [12] proved the following result to deal with Question
1.1:

Theorem C ([12, Theorem 2]). Let f be a nonconstant entire function of finite
order, let a 6= 0 be a complex number, and let k be a positive integer. If a is shared

by f , f (k) and f (k+1) IM, and shared by f (k) and f (k+1) CM, then f = f ′.

We will prove the following result, which is an analogue of Theorem C con-
cerning meromorphic functions having the same fixed points with their certain
differential polynomials, where the meromorphic functions belongs to the class
B and have at most finitely many poles:

Theorem 1.3. Let f be a transcendental meromorphic function such that f
has at most finitely many poles and such that ρ2( f ) < ∞, where ρ2( f ) is not a
positive integer. Suppose 0 is shared by f − z, L[ f ] − z and L′[ f ] − z IM, and
shared by L[ f ]− z and L′[ f ]− z CM, where

L[ f ] = f ′ + a0 f (1.2)

and

L′[ f ] = f ′′ + a0 f ′, (1.3)

in which a0 is a finite value. If L[ f ] ∈ B, then a0 = 0 and that f is a transcendental
entire function such that f is given as f = cez, where c 6= 0 is some constant.

From Theorem 1.3 we get the following result:

Corollary 1.2. Let f be a transcendental meromorphic function such that f
has at most finitely many poles and such that ρ2( f ) < ∞, where ρ2( f ) is not a
positive integer. Suppose 0 is shared by f − z, f ′ − z and f ′′ − z IM, and shared
by f ′ − z and f ′′ − z CM. If f ′ ∈ B, then f is a transcendental entire function such
that f (z) = dez, where d 6= 0 is some constant.

2 Some Lemmas

In order to prove our theorems, we need the following preliminary results. Lemma
2.1 plays an important role in proving the main results of this paper. Lemma 2.2
is the lemma of the logarithmic derivative. Lemma 2.5 is a result of the Wiman-
Valiron theory, which together with Lemma 2.4, Lemma 2.6 and Lemma 2.7 is
a powerful tool for hyper-order and order considerations of entire solutions of
linear differential equations.

Lemma 2.1 ([4, Lemma 2]) Let g be a transcendental meromorphic function,
and suppose that g(0) 6= ∞ and that the set of finite critical and asymptotic values
of g is bounded. Then there exists R > 0 such that

|g′(z)| ≥
|g(z)|

2π|z|
log

|g(z)|

R
,

as |z| is large.
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Lemma 2.2 ([17, Corollary 2.3.4]) Let f be a transcendental meromorphic

function and k ≥ 1 be an integer. Then m(r, f (k)/ f ) = O(log(rT(r, f )), outside of
a possible exceptional set E of finite linear measure, and if f is of finite order of

growth, then m(r, f (k)/ f ) = O(log r).

Lemma 2.3 ([28]). Let f be a meromorphic function and k a positive integer. If

f is a solution of the differential equation a0 f (k) + a1 f (k−1) + · · ·+ ak f = 0, where
a0, a1, · · · , ak are complex numbers with a0 6= 0, then T(r, f ) = O(r). Moreover,
if f is transcendental, then r = O(T(r, f )).

Let f =
∞

∑
n=0

anzn be an entire function. Next we define by µ(r) = max{|an|rn :

n = 0, 1, 2, · · · } the maximum term of f , and define by ν(r, f ) = max{m : µ(r) =
|am|rm} the central index of f (see[15, pp. 33-35]).

Lemma 2.4 ([25, Lemma 2.2]). Let f be an entire function of infinite order
with the lower-order µ( f ) and the hyper-order µ2( f ). Then

µ( f ) = lim inf
r→∞

log ν(r, f )

log r

and

µ2( f ) = lim inf
r→∞

log log ν(r, f )

log r
.

Lemma 2.5 (Wiman-Valiron, [15, pp. 187-199]). Let g(z) be a transcendental
entire function, and let 0 < δ <

1
4 . Then, exists a set E ⊂ R

+ of finite logarithmic
measure, i.e.,

∫

E dt/t < +∞, such that for all z with |z| = r 6∈ E and

|g(z)| > M(r, g)ν(r, g)−
1
4+δ,

one has

g(m)(z) =

(

ν(r, g)

z

)m

{1 + o(1)}g(z),

where m ≥ 0 is an integer.

Lemma 2.6 ([9, Lemma 2] or [10, Lemma 4]). If f is a transcendental entire
function of hyper order ρ2( f ), then

ρ2( f ) = lim sup
r→∞

loglogν(r, f )

log r
.

Lemma 2.7 ([15, Satz 4.5]). If f is a nonconstant entire function of order ρ( f ),
then

ρ( f ) = lim sup
r−→∞

log ν(r, f )

log r
.

Lemma 2.8 ([13, Theorem 3.2]). Let f (z) be a nonconstant meromorphic
function, and let Ψ(z) be a nonconstant meromorphic function such that Ψ(z) =

k

∑
j=0

aj(z) f (j)(z), where a1(z), a2(z), · · · , ak(z) are small function of f (z). Then

T(r, f ) ≤ N(r, f ) + N

(

r,
1

f

)

+ N

(

r,
1

ψ − 1

)

− N0

(

r,
1

ψ′

)

+ S(r, f ),
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where N0

(

r, 1
ψ′

)

denotes the counting function of those zeros of ψ′, which are not

zeros of ψ − 1.

Lemma 2.9 ([24, Lemma 2.7]). Suppose that α and β are nonconstant en-
tire functions, and that a1, a2, b1 and b2 are meromorphic functions satisfying
T(r, a1) + T(r, a2) = S(r, eα), T(r, b1) + T(r, b2) = S(r, eβ) and a1a2b1b2 6≡ 0. If
a1eα − a2 and b1eβ − b2 share 0 IM, then a1b2eα = a2b1eβ or a1b1eα+β = a2b2.

Lemma 2.10 ([24, Lemma 2.8]). Suppose that R1 and R2 are rational functions,
and that a1 and a2 are two constants satisfying 0 < |a1| ≤ |a2| and a1 6= a2. Then
there exists a constant A > 1 such that

AT(r, ea1z) ≤ T(r, R1ea1z + R2ea2z) + O(log r).

Lemma 2.11 ([24, Lemma 2.5]). Let f j (j = 1, 2, · · · , n) be nonconstant mero-

morphic functions satisfying N
(

r, 1
f j

)

+ N
(

r, f j

)

= S(r, f j) (j = 1, 2, · · · , n),

and let F = a +
n

∑
j=1

f j, where a is a meromorphic function such that a 6≡ 0. If F is

not a constant, and T(r, a) = S(r, F), then T(r, F) = N
(

r, 1
F

)

+ S(r, F).

3 Proof of Theorems

Proof of Theorem 1.1. By the condition that f − P and L[ f ] − P share 0 CM we
have

L[ f (z)] − P(z)

f (z)− P(z)
= eα1(z), (3.1)

where α1(z) is an entire function. If f (z) is a polynomial, from (3.1) we see that

eα1(z) is a nonzero constant, and so ρ2( f ) = ρ(eα1) = 0, which reveals the conclu-
sion of Theorem 1.1. We next suppose that f is a transcendental entire function.

Suppose that |z| is large and that | f (z)− P(z)| ≤ 1. Then, |P(z)| and | f (z)| are
large. Combining this with Lemma 2.1 and the condition f ∈ B, we know that
there exists a sufficiently large positive number R such that

|z f ′(z)| ≥
| f (z)|

2π
log

| f (z)|

R
≥

1

4π
|P(z)| log |P(z)|, (3.2)

as |z| is large. Therefore, from (3.2) we get

|z( f ′(z)− P′(z))| ≥
1

4π
|P(z)|

(

log |P(z)| − 4π

∣

∣

∣

∣

zP′(z)

P(z)

∣

∣

∣

∣

)

, (3.3)

as |z| is large. From (3.3) and Lemma 2.2 we get

m

(

r,
1

f − P

)

≤ m

(

z( f ′ − P′)

f − P
·

1

z( f ′ − P′)

)

≤ m

(

r,
z( f ′ − P′)

f − P

)

+ m

(

r,
1

z( f ′ − P′)

)

≤ O(log r + log T(r, f )),
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as |z| = r 6∈ E is large, where E ⊂ R
+ is some subset with linear measure mesE <

∞. This together with (3.1) and Lemma 2.2 gives

m(r, eα1) = m

(

r,
L[ f (z) − P(z)] + L[P(z)] − P(z)

f (z)− P(z)

)

≤ m

(

r,
L[ f (z) − P(z)]

f (z)− P(z)

)

+ m

(

r,
L[P(z)] − P(z)

f (z)− P(z)

)

+ O(1)

≤ O(log r + log T(r, f )),

as |z| = r 6∈ E is large. Combining this with the standard reasoning of remov-
ing exceptional set (see [17, Lemma 1.1.2]), we can find that there exists some
sufficiently large positive number r0 such that

m(r, eα1) ≤ O(log r + log T(2r, f ) + log 2), (3.4)

as r ≥ r0. From (3.4) and Definition 1.1 we get

ρ(eα1) = µ(eα1) ≤ µ2( f ) ≤ ρ2( f ). (3.5)

We consider the following two cases:

Case 1. Suppose that
µ( f ) < ∞. (3.6)

Then, from (3.6) and Definition 1.1 we get µ2( f ) = 0, this together with (3.5)
implies that eα1 is a constant. Therefore, from (3.1) we can get

f (γP+k+1) + ak−1 f (γP+k) + · · ·+ a1 f (γP+2) + (a0 − eα1) f (γP+1) = 0, (3.7)

where γP is the degree of P. From (3.7) and Lemma 2.3 we deduce ρ( f ) ≤ 1.
Hence µ2( f ) = ρ2( f ) = ρ(eα1) = 0, and so the conclusion of Theorem 1.1 holds.

Case 2. Suppose that
µ( f ) = ∞. (3.8)

From (3.8) and Lemma 2.4 we get

lim inf
r−→∞

logν(r, f )

logr
> 1. (3.9)

Noting that f is a transcendental entire function, we have

M(r, f ) −→ ∞, (3.10)

as r −→ ∞. Let
M(r, f ) = | f (zr)|, (3.11)

where zr = reiθ(r), θ(r) ∈ [0, 2π). This together with (3.11) and Lemma 2.5 implies

that there exist subsets Ej ⊂ (1, ∞) with finite logarithmic measure, i.e.,
∫

Ej

dt
t <

∞, where 1 ≤ j ≤ k, such that

f (j)(zr)

f (zr)
=

(

ν(r, f )

zr

)j

(1 + o(1)), (3.12)
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as r 6∈ Ej and r −→ ∞. By (3.11) and the Cauchy’s inequality we have

P(zr)

f (zr)
−→ 0, (3.13)

as |zr| −→ ∞. From (1.1) we have

L[ f (z)] − P(z)

f (z)− P(z)
=

L[ f (z)]
f (z)

− P(z)
f (z)

1 − P(z)
f (z)

. (3.14)

From (1.1), (3.9), (3.12)-(3.14) we get

L[ f (zr)]− P(zr)

f (zr)− P(zr)
=

(

ν(r, f )

zr

)k

(1 + o(1)), (3.15)

as |zr| = r 6∈ ∪n
j=1Ej and r −→ ∞. From (3.1) and (3.15) we have

(

ν(r, f )

zr

)k

(1 + o(1)) = eα1(zr), (3.16)

as |zr| = r 6∈ ∪n
j=1Ej and r −→ ∞. From (3.16) we get

(

ν(r, f )

|zr|

)k

≤ 2M(r, eα1), (3.17)

as |zr| = r 6∈ ∪n
j=1Ej and r −→ ∞. By rewriting (3.17) we get

{ν(r, f )}k ≤ 2rkM(r, eα1), (3.18)

as |zr| = r 6∈ ∪n
j=1Ej and r −→ ∞. By (3.18) and the standard reasoning of

removing exceptional set (see[17, Lemma 1.1.2]) we know that there exists some
sufficiently large positive number r0 such that

{ν(r, f )}k ≤ 2rkβM(rβ, eα1), (3.19)

as r ≥ r0, where β > 1 is an arbitrary positive number. From (3.19) we get

lim inf
r→∞

log log ν(r, f )

log r
= lim inf

r→∞

log log {ν(r, f )}k

log r

≤ lim inf
r→∞

log log
{

2rkβM(rβ, eα1)
}

log r

= β lim inf
r→∞

log log M(rβ, eα1)

log rβ
. (3.20)

From (3.20), Definition 1.1 and Lemma 2.4 we get

µ2( f ) ≤ βµ(eα1 ). (3.21)
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By letting β → 1+ on two sides of (3.21) we have

µ2( f ) ≤ µ(eα1). (3.22)

Similarly, from (3.19), Definition 1.1 and Lemma 2.6 we can get

ρ2( f ) ≤ ρ(eα1). (3.23)

Noting that µ2( f ) ≤ ρ2( f ) and µ(eα1) = ρ(eα1), we can get from (3.22) and (3.23)
that

µ2( f ) ≤ ρ2( f ) ≤ µ(eα1) = ρ(eα1). (3.24)

From (3.5) and (3.24) we get the conclusion of Theorem 1.1.

Theorem 1.1 is thus completely proved.

Proof of Theorem 1.2. By the conditions of Theorem 1.2 we have

L[ f (z)] − P(z)

f (z)− P(z)
=

eα2(z)

(z − ω1)k(z − ω2)k · · · (z − ωn−1)k(z − ωn)k
, (3.25)

where α2 is an entire function. Let

h(z) =
eα2(z)

(z − ω1)k(z − ω2)k · · · (z − ωn−1)k(z − ωn)k
. (3.26)

Then, from (3.26) we know that (3.25) can be rewritten as

L[ f ]− P

f − P
= h. (3.27)

From (3.26) we have
µ(eα2) = ρ(eα2) = µ(h) = ρ(h). (3.28)

Proceeding as in the proof of Theorem 1.1, we can get from (3.27)

µ(h) = ρ(h) ≤ µ2( f ) ≤ ρ2( f ). (3.29)

Next we let
F = P0 f , (3.30)

where P0 is a nonconstant polynomial such that P0 and 1/ f share 0 CM. Then, F
is a transcendental entire function. By calculating we get from (3.30) that

f (k)

f
=

F(k)

F
+

kR′
0

R0
·

F(k−1)

F
+ · · ·+

(

k

l

)

R
(l)
0

R0
·

F(k−l)

F
+ · · ·+

kR
(k−1)
0

R0
·

F′

F
+

R
(k)
0

R0
,

(3.31)

where and in what follows,

R0 =
1

P0
. (3.32)

By calculating we get from (3.32) and the definition of P0 that

R′
0(z)

R0(z)
=

m1

z − ω1
+

m2

z − ω2
+ · · ·+

mn

z − ωn
, (3.33)
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where m1, m2, · · · , mn are negative integers. By mathematical induction we get
from (3.33) that

R
(j)
0 (z)

R0(z)
=

{(−1)j−1(j − 1)!
n

∑
l=1

ml}(1 + o(1))

zj
, (3.34)

as |z| −→ ∞, where j is a positive integer satisfying 1 ≤ j ≤ k. Noting that F is a
transcendental entire function, we know from Lemma 2.7 and the proposition of
the central index in [15, P.33-35] that

ν(r, F) −→ +∞. (3.35)

Let
M(r, F) = |F(zr)|, (3.36)

where zr = reiθ(r), and that θ(r) ∈ [0, 2π) is some nonnegative real number. From
(3.36) and Lemma 2.5 we know that there exists some subset Ej ⊂ (1, ∞) with

finite logarithmic measure, i.e.,
∫

Ej

dt
t < ∞, such that for some point zr = reiθ(r),

θ(r) ∈ [0, 2π), as |zr| = r 6∈ Ej and M(r, F) = |F(zr)|, we have

F(j)(zr)

F(zr)
=

(

ν(r, F)

zr

)j

{1 + o(1)}. (3.37)

From (3.31), (3.34)-(3.37) we get

f (k)(zr)

f (zr)
=

F(k)

F
+

kR′
0

R0
·

F(k−1)

F
+ · · ·+

(

k

l

)

R
(l)
0

R0
·

F(k−l)

F
+ · · ·+

kR
(k−1)
0

R0
·

F′

F
+

R
(k)
0

R0

∣

∣

∣

∣

∣

z=zr

=

{ν(r, F)}k{1 + o(1)}+ Nn

k−1

∑
l=1

(k
l)

k−1

∑
l=1

(−1)l−1(l − 1)!{ν(r, F)}k−l{1 + o(1)}

zk
r

=

(

ν(r, F)

zr

)k

{1 + o(1)}, (3.38)

as r 6∈ ∪k
j=1Ej and r −→ ∞, where Nn =

n

∑
l=1

ml. Similarly

f (j)(zr)

f (zr)
=

(

ν(r, F)

zr

)j

{1 + o(1)}, (3.39)

as r 6∈ ∪k
j=1Ej and r −→ ∞, where 1 ≤ j ≤ k − 1. From (1.1) we have

L[ f (z)] − P(z)

f (z)− P(z)
=

f (k)(z)
f (z)

+ ak−1 ·
f (k−1)(z)

f (z)
+ · · ·+ a1 ·

f ′(z)
f (z)

+ a0 −
P(z)
f (z)

1 − P(z)
f (z)

. (3.40)
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From (3.30), (3.36) and the Cauchy’s inequality we get

P(zr)

f (zr)
=

P0(zr)P(zr)

F(zr)
−→ 0, (3.41)

as |zr| = r −→ ∞. We discuss the following two cases:

Case 1. Suppose that

lim inf
r−→∞

logν(r, F)

logr
> 1. (3.42)

From (3.25)-(3.27) and (3.38)-(3.42) we have

(

ν(r, F)

2|zr|

)k

≤

∣

∣

∣

∣

∣

(

ν(r, F)

zr

)k

{1 + o(1)}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

f (k)(z)
f (z)

+ ak−1 ·
f (k−1)(z)

f (z)
+ · · ·+ a1 ·

f ′(z)
f (z)

+ a0 −
P(z)
f (z)

1 − P(z)
f (z)

∣

∣

∣

∣

∣

∣

z=zr

= |h(zr)|

≤ 2
∣

∣

∣
eα2(zr)

∣

∣

∣

≤ 2M(r, eα2), (3.43)

as |zr| = r 6∈ ∪k
j=1Ej and r −→ ∞. From (3.43) we have

{ν(r, F)}k ≤ 2k+1rkM(r, eα2). (3.44)

as |zr| = r 6∈ ∪k
j=1Ej and r −→ ∞. By (3.44) and the standard reasoning of re-

moving exceptional set (see[17, Lemma 1.1.2]) we know that there exists some
positive number r0 such that

{ν(r, F)}k ≤ 2k+1rkβM(rβ, eα2), (3.45)

as r ≥ r0, where β > 1 is an arbitrary positive number. This together with Defini-
tion 1.1, Lemma 2.4 and Lemma 2.6 gives

µ2(F) ≤ ρ2(F) ≤ µ(eα2) = ρ(eα2). (3.46)

By (3.30) we have µ2( f ) = µ2(F) and ρ2( f ) = ρ2(F). This together with (3.46)
gives

µ2( f ) ≤ ρ2( f ) ≤ ρ(eα2). (3.47)

From (3.28), (3.29) and (3.47) we get the conclusion of Theorem 1.2.

Case 2. Suppose that

lim inf
r−→∞

logν(r, F)

logr
≤ 1. (3.48)
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From (3.48) and Lemma 2.4 we have µ(F) ≤ 1, and so µ2(F) = 0. Combining this
with (3.30), we get µ2(F) = µ2( f ) = 0. This together with (3.29) implies that eα2

is a constant. Hence
µ2( f ) = ρ(h) = 0. (3.49)

We discuss the following two subcases:

Subcase 2.1. Suppose that there exists some subset I ⊂ R+ with logarithmic
measure log mesI = +∞, such that

lim
r→∞
r∈I

log ν(r, F)

log r
> 1. (3.50)

Then, from (3.50) we can see that there exist some sequence of positive number
rn ∈ I \ ∪k

j=1Ej, such that

lim
rn→∞

ν(rn, F)

rn
= +∞. (3.51)

Proceeding as in the proof of (3.43), we can get from (3.25)-(3.27) and (3.51) that

(

ν(rn, F)

2rn

)k

≤ 2
∣

∣

∣
eα2(zrn )

∣

∣

∣
, (3.52)

From (3.51) and (3.52) we deduce

lim
rn→∞

∣

∣

∣
eα2(zrn )

∣

∣

∣
= +∞,

which contradicts the fact that eα2 is a constant.

Subcase 2.2. Suppose that there exists some subset E ⊂ R
+ with logarithmic

measure log mesE < +∞, such that

lim sup
r→∞
r 6∈E

log ν(r, F)

log r
≤ 1. (3.53)

Then, from (3.53) we have
ν(r, F) ≤ r2, (3.54)

as r −→ ∞ and r 6∈ E. By (3.54) and the standard reasoning of removing excep-
tional set (see[17, Lemma 1.1.2]) we know that there exists some positive number
r0 such that

ν(r, F) ≤ r2β, (3.55)

as r ≥ r0, where β > 1 is an arbitrary positive number. From (3.55) and Lemma
2.7 we deduce ρ( f ) ≤ 2, which implies that ρ2( f ) = 0. This together with (3.28),
(3.29) and (3.49) reveals the conclusion of Theorem 1.2.

Theorem 1.2 is thus completely proved.

Proof of Theorem 1.3. First of all, by Lemma 2.8 and the condition that f is
a transcendental meromorphic function we have

T(r, f ) ≤ N(r, f )+ N

(

r,
1

f (z)− z

)

+ N

(

r,
1

L′[ f ](z) − z

)

+O(log r+ log T(r, f )),

(3.56)
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as r 6∈ E and r → ∞, where E ⊂ R
+ is some subset with linear measure mesE <

+∞.
Let z0 be a zero of f (z)− z with multiplicity≥ 2. Then f (z0) = z0 and f ′(z0) =

1. Combining this with the condition that f (z)− z and L[ f (z)] − z share 0 IM, we
have L[ f (z0)] = z0. Hence 1 + a0z0 = z0, and so f (z) − z has at most one zero
with multiplicity≥ 2. Therefore

N

(

r,
1

f (z)− z

)

= N

(

r,
1

f (z) − z

)

+ O(log r) (3.57)

= N

(

r,
1

L[ f (z)] − z

)

+ O(log r). (3.58)

By the condition that L[ f (z)] − z and L′[ f (z)] − z share 0 CM, we have

N

(

r,
1

L′[ f ](z) − z

)

= N

(

r,
1

L[ f ](z) − z

)

. (3.59)

Noting that f is a transcendental meromorphic function that has at most finitely
many poles, we can get from (3.56), (3.58) and (3.59) that

T(r, f ) ≤ 2N

(

r,
1

L[ f ](z) − z

)

+ O(log r + log T(r, f ))

≤ 2T(r, L[ f ]) + O(log r + log T(r, f ))

≤ 4T(r, f ) + O(log r + log T(r, f )), (3.60)

as r 6∈ E and r → ∞.
From (3.60) and the condition that f is a transcendental meromorphic function

we can see that L[ f ] is a transcendental meromorphic function. Moreover, by
(3.60), Definition 1.1 and the standard reasoning of removing exceptional set (see
[17, Lemma 1.1.1]) we can get

µ2( f ) = µ2(L[ f ]) and ρ2( f ) = ρ2(L[ f ]). (3.61)

We consider the following two cases:

Case 1. Suppose that f has at least one pole in the complex plane, say η1, η2,
· · · , ηn−1 and ηn are n distinct poles of f in the complex plane, where n ≥ 1 is a
positive integer. Then, by the condition that L[ f (z)] − z and L′[ f (z)] − z share 0
CM we have

L′[ f (z)] − z

L[ f (z)] − z
=

eα3(z)

(z − η1)(z − η2) · · · (z − ηn−1)(z − ηn)
, (3.62)

where α3 is an entire function. By (3.61), (3.62) and Theorem 1.2 we have

µ2( f ) = ρ2( f ) = ρ(eα3). (3.63)

From (3.63) and the condition that ρ2( f ) < ∞ is not a positive integer we can see
that eα3 =: c is a constant. Therefore, (3.62) can be rewritten as

L′[ f (z)] − z

L[ f (z)] − z
=

c

(z − η1)(z − η2) · · · (z − ηn−1)(z − ηn)
. (3.64)
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Next we let
F1 = P1L[ f ], (3.65)

where P1 is a nonconstant polynomial such that P1 and 1/L[ f ] share 0 CM. Then,
F1 is a transcendental entire function. By calculating we get from (3.65) that

L′[ f ]

L[ f ]
=

F′
1

F1
+

R′
1

R1
, (3.66)

where and in what follows,

R1 =
1

P1
. (3.67)

By calculating we get from (3.67) and the definition of P1 that

R′
1(z)

R1(z)
=

p1

z − η1
+

p2

z − η2
+ · · ·+

pn

z − ηn
=

n

∑
l=1

pl

z
{1 + o(1)}, (3.68)

as |z| −→ ∞, where p1, p2, · · · , pn are negative integers. Noting that F1 is a
transcendental entire function, we know from Lemma 2.7 and the proposition of
the central index in [15, P.33-35] that

ν(r, F1) −→ +∞, (3.69)

as r → ∞. Let
M(r, F1) = |F1(zr)|, (3.70)

where zr = reiθ(r), and that θ(r) ∈ [0, 2π) is some nonnegative real number. From
(3.70) and Lemma 2.5 we know that there exists some subset E ⊂ (1, ∞) with
finite logarithmic measure, i.e.,

∫

E
dt
t < ∞, such that

F′
1(zr)

F1(zr)
=

ν(r, F1)

zr
{1 + o(1)}, (3.71)

as |zr| = r 6∈ E and r −→ ∞. From (3.66), (3.68)-(3.71) we have

L′[ f (zr)]

L[ f (zr)]
=

F′
1(zr)

F1(zr)
+

R′
1(zr)

R1(zr)
=

ν(r, F1) +
n

∑
l=1

pl

zr
· {1 + o(1)} =

ν(r, F1)

zr
{1 + o(1)},

(3.72)
as r 6∈ E and r −→ ∞. From (3.65), (3.70) and the Cauchy’s inequality we get

zr

L[ f (zr)]
=

zrP1(zr)

F1(zr)
−→ 0, (3.73)

as |zr| = r −→ ∞. Noting that

L′[ f (z)] − z

L[ f (z)] − z
=

L′[ f (z)]
L[ f (z)]

− z
L[ f (z)]

1 − z
L[ f (z)]

,
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we can get from (3.72) and (3.73) that

L′[ f (zr)]− zr

L[ f (zr)]− zr
=

ν(r, F1)

zr
{1 + o(1)} −

zr

L[ f (zr)]
{1 + o(1)}, (3.74)

as |zr| = r 6∈ E and r −→ ∞. From (3.64) and (3.74) we have

ν(r, F1)

2
≤

∣

∣

∣

∣

czr

(zr − η1)(zr − η2) · · · (zr − ηn−1)(zr − ηn)

∣

∣

∣

∣

+

∣

∣

∣

∣

2z2
r

L[ f (zr)]

∣

∣

∣

∣

=

∣

∣

∣

∣

czr

(zr − η1)(zr − η2) · · · (zr − ηn−1)(zr − ηn)

∣

∣

∣

∣

+

∣

∣

∣

∣

2z2
r P1(zr)

F1(zr)

∣

∣

∣

∣

,

as |zr| = r 6∈ E and r −→ ∞. This together with (3.65), (3.70) and the Cauchy’s
inequality gives

ν(r, F1) = O(1), (3.75)

as |zr| = r 6∈ E and r −→ ∞, which contradicts (3.69).

Case 2. Suppose that f is a transcendental entire function. Then, in the same
manner as in the proof of (3.64) we have

L′[ f (z)] − z

L[ f (z)] − z
≡ d, (3.76)

where d 6= 0 is a constant. We discuss the following three subcases.

Subcase 2.1. Suppose that a0 = 0. Then it follows from (1.2) that (3.76) can
be rewritten as

f ′′(z)− d f ′(z) = (1 − d)z. (3.77)

From (3.77) we deduce

f (z) = d1edz +
d − 1

2d
z2 +

d − 1

d2
z + d2, (3.78)

where d1 6= 0 and d2 are constants. Thus,

f (z)− z = d1edz +
d − 1

2d
z2 +

d − 1 − d2

d2
z + d2, (3.79)

L[ f (z)] − z = d1dedz −
1

d
z +

d − 1

d2
. (3.80)

Assume that d 6= 1. From (3.79), (3.80), Lemma 2.9 and the condition that f (z)− z
and L[ f ]− z share 0 IM, we can get a contradiction. Thus d = 1, and so it follows
from (3.79) and (3.80) that f (z) − z = d1ez − z + d2 and L[ f (z)] − z = d1ez −
z. Combining this with the condition that f (z) − z, L[ f (z)] − z share 0 IM we
deduce d2 = 0, and so it follows that f (z) = d1ez, which reveals the conclusion of
Theorem 1.3.

Subcase 2.2. Suppose that a0 6= 0 and a0 = −d. Then it follows from (1.2)
and (3.76) that

f ′′(z)− 2d f ′(z) + d2 f (z) = (1 − d)z. (3.81)
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From (3.81) we deduce

f (z) = (d3z + d4)e
dz +

1 − d

d2
z +

2(1 − d)

d3
,

where d3 and d4 are constants satisfying d3z + d4 6≡ 0. Thus,

f (z)− z = (d3z + d4)e
dz +

1 − d − d2

d2
z +

2(1 − d)

d3
, (3.82)

L[ f (z)] − z = d3edz −
1

d
z +

d − 1

d2
. (3.83)

By Lemma 2.9, (3.82) and (3.83) we can get a contradiction.

Subcase 2.3. Suppose that a0 6= 0 and a0 6= −d. Then it follows from (1.2)
and (3.76) that

f ′′(z) + (a0 − d) f ′(z)− a0d f (z) = (1 − d)z. (3.84)

From (3.84) we deduce

f (z) = d5e−a0z + d6edz +
d − 1

a0d
z +

(a0 − d)(d − 1)

a2
0d2

,

where d5 and d6 are constants satisfying d5e−a0z + d6edz 6≡ 0. Thus,

f (z) − z = d5e−a0z + d6edz + P1(z), (3.85)

L[ f (z)] − z = d6(d + a0)e
dz + P2(z), (3.86)

where

P1(z) =
d − 1 − a0d

a0d
z +

(a0 − d)(d − 1)

a2
0d2

,

P2(z) = −
1

d
z +

d − 1

d2
.

If d5 = 0, then d6 6= 0. By (3.85), (3.86) and Lemma 2.9 we get a contradiction. If
d6 = 0, then d5 6= 0. From (3.85) and (3.86) we obtain a contradiction. Next, we
suppose that d5 6= 0 and d6 6= 0.

Let z0 be a zero of L[ f (z)] − z. From (3.86) we obtain

d6(d + a0)e
dz0 + P2(z0) = 0. (3.87)

Since f (z)− z and L[ f (z)] − z share 0 IM, from (3.85) we deduce

d5e−a0z0 + d6edz0 + P1(z0) = 0. (3.88)

From (3.87) and (3.88) we have

d5(d + a0)e
−a0z0 + (d + a0)P1(z0)− P2(z0) = 0. (3.89)



Certain meromorphic functions sharing a polynomial 35

Noting that z0 is a zero of L[ f (z)] − z, from (3.87) and (3.89) we obtain

N(r,
1

d6(d + a0)edz + P2(z)
) ≤ N(r,

1

d5(d + a0)e−a0z + (d + a0)P1(z)− P2(z)
).

(3.90)
It is easy to see that

T(r, edz) = N(r,
1

d6(d + a0)edz + P2(z)
) + O(log r), (3.91)

T(r, e−a0z) = N(r,
1

d5(d + a0)e−a0z + (d + a0)P1(z)− P2(z)
) + O(log r). (3.92)

From (3.90)-(3.92) we deduce

T(r, edz) ≤ T(r, e−a0z) + O(log r). (3.93)

Since

T(r, edz) =
|d|r

π
and T(r, e−a0z) =

|a0|r

π
,

from (3.93) we get |d| ≤ |a0|. Noting that d 6= −a0, by (3.85), (3.86) and Lemma
2.10 we know that there exists some constant A > 1 such that

AT(r, L[ f ]) ≤ T(r, f ) + O(log r). (3.94)

On the other hand, from (3.86) we have

T(r, L[ f (z)]) = N

(

r,
1

L[ f (z)] − z

)

+ O(log r). (3.95)

By (3.85), (3.86) and the condition that f (z) − z and L[ f (z)] − z share 0 IM, we
deduce P1(z) 6≡ 0. Combining this with Lemma 2.11 we get

T(r, f (z)) = N

(

r,
1

f (z)− z

)

+ O(log r). (3.96)

From (3.57) and (3.96) we obtain

T(r, f (z)) = N

(

r,
1

f (z)− z

)

+ O(log r). (3.97)

Since f (z)− z and L[ f (z)] − z share 0 IM, we have

N

(

r,
1

f (z) − z

)

= N

(

r,
1

L[ f (z)] − z

)

. (3.98)

From (3.95), (3.97) and (3.98) we obtain

T(r, L[ f ]) = T(r, f ) + O(log r). (3.99)

Noting that f is a transcendental entire function, from (3.94) and (3.99) we get a
contradiction.

Theorem 1.3 is thus completely proved.
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4 Concluding Remarks

We recall the following example:

Example 4.1. Let f (z) = (ez − 1)2 and L[ f ](z) = f (3)(z)− 3 f ′′(z) + 5
2 f ′(z)−

f (z). Then it is easy to see that L[ f ](z) − 1 = ( f (z) − 1)e−z and ρ2( f ) + 1 =
ρ( f ) = ρ(e−z) = 1. Moreover, by f ′(z) = 2ez(ez − 1) we can see that f ′(z) has
infinitely many zeros in the complex plane, and so f (z) 6∈ B.

From Example 4.1, Theorems 1.1 and 1.2, we give the following conjecture:

Conjecture 4.1. If the nonconstant polynomial P in Theorems 1.1 and 1.2 is
replaced with a finite value a 6= 0, then Theorems 1.1 and 1.2 still hold.

Acknowledgement. The authors wish to express their thanks to the referee
for his/her valuable suggestions and comments.
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