On locally convex weakly Lindelof X-spaces
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Abstract

A family {A, : « € NN} of sets covering a set E is called a resolution for E
if Ay € Agwhenevera < B. Alocally convex space (lcs) E is said to belong to
class & if there is a resolution { A, : « € NN} for (E/,o(E’, E)) such that each
sequence in any A, is equicontinuous. The class & contains ‘almost all” use-
fullocally convex spaces (including (LF)-spaces and (DF)-spaces). We show
that (i) every semi-reflexive lcs E in class & is a Lindelof X-space in the weak
topology (this extends a corresponding result of Preiss-Talagrand for WCG
Banach spaces) and the weak* dual of E is both K-analytic and has countable
tightness, (ii) a barrelled space E has a weakly compact resolution if and only
if E is weakly K-analytic, and (iii) if E is barrelled or bornological then E’ has
a weak* compact resolution if and only if it is weak* K-analytic. As an ad-
ditional consequence we provide another approach to show that the weak*
dual of a quasi-barrelled space in class ® is K-analytic. These results sup-
plement earlier work of Talagrand, Preiss, Cascales, Ferrando, Kakol, Lépez
Pellicer and Saxon.

1 Introduction

As mentioned in the abstract, a family {A, : « € NN} of sets covering a set E
is called a resolution for E if A, C Ag whenever « < B, o, € INN. This paper
deals with the two following general problems: (i) for any locally convex space E,
characterize in terms of E the existence of a non-empty set £ in N™N and an upper
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semi-continuous compact-valued map T from ¥ into (E, o (E, E')) covering E, i.e.
such that J{T («) : « € £} = E, and (ii) provide sufficient conditions on E to en-
sure that the existence of a compact resolution for (E, o (E, E")) (for (E’,o (E’,E)))
guarantees that (E,o (E, E")) (resp. (E',o (E’, E))) is K-analytic. There are several
results motivating these problems. For example, concerning to the first one, in [3,
Corollary 1.6] Cascales proved the following

Theorem 1 (Cascales). For a semi-reflexive Ics E the following conditions are equiva-
lent.

1. E has a bounded resolution, i.e. a resolution consisting of bounded sets.

2. E endowed with the weak topology o (E, E") is a K-analytic space.

3. (E,o(E, E")) is a quasi-Suslin space.

On the other hand, relative to the second problem, in [11, Theorem 1] it is
shown that

Theorem 2 (Ferrando-Kakol-Lopez Pellicer-Saxon). Let E bean Ics. If (E/, o (E', E))
is quasi-Suslin, the following are equivalent.

The weak space (E,o(E,E")
The weak* dual (E',oc(E', E
The weak* dual (E',o(E', E)) is K-analytic.
The weak dual (E',o(E', E)) is Lindeldf.
The Mackey space (E, u(E, E")) is barrelled.

is countably tight.

) is realcompact.

M
—_ — ~—

A simple example of an lcs with a bounded resolution is provided by any lcs E
admitting a stronger metrizable locally convex topology 7. Indeed, if {U,, : n € N}
is a decreasing base of T-neighborhoods of the origin, for any & = (1) € NN de-
fine Ay = mzozl leuk.

In this paper we provide partial solutions concerning the above problems, see
Theorem 11 and the consequences mentioned in the abstract.

Let X be a subset of NN, where IN is equipped with the discrete topology, and
let A := {A, : « € £} be a family of subsets of a set X. Foreacha € X andn € N

define
Alaln) := | {Ap: B € L, B(i) = a(i),1 <i < n}.

Clearly Ay C A(a|n) for each n € IN and A(a|n +1) C A(aln) for all (a,n) €
Y. x IN. Since A(a|n) = A(B|n) whenever a(i) = B(i) for 1 < i < n, the family
E:={A(a|n) : « € ¥, n € N} (called the envelope of A) is countable. It is easy to
see that if © = NN and {A, : « € NN} is a bounded resolution, i.e. a resolution
consisting of bounded sets in a locally convex space E, then for each « € IN and
each neighborhood of zero U in E there exists n € IN such that A(a|n) C nlU.
Indeed, otherwise there exist a neighborhood of zero V in E, B in NN and a
sequence {x,} . _; with x, € A(B|n) \ nV for all n € IN. Choose a sequence
{Bn}n_ inINN with B, (i) = B(i) for1 <i < nsuchthatx, € Ag, foreachn € N.

IN
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Then there exists v € INN such that Bn < 7y for each n € IN. Hence x,, € Ag, C
A, for all n € IN. Since A, C mV for some m € IN, we reach a contradiction.
This motivates the following useful concept. Following [9] we will say that the
envelope £ of a family A = {A, : « € X} of subsets of an Ics E covering E
(a X-covering henceforth) is limited if for each « € X and a neighborhood of zero
U in E there exists n € IN such that A(«|n) C nlU.

Recall that a completely regular Hausdorff topological space X is called
Lindelof ¥ (or K-countably determined) if there is an upper semi-continuous com-
pact-valued map T from a non-empty subset ¥ of the product space N into
X (actually into the set P (X) of all subsets of X) covering X, i.e. such that
U{T () :« € Z} = X, see [1]. If the same holds for & = NN, then X is called
K-analytic. On the other hand, X is called quasi-Suslin if there exists a set-valued
map T (called a quasi-Suslin map) from IN¥ into X covering X which is quasi-
Suslin, i.e. such that if &, — a in NN and x,, € T(a;,) then {x4})"_; has a cluster
point in T(«a), see [23]. Alternatively, a completely regular space X is Lindelof
Y. if and only if there is a compact-valued mapping T from a subspace ¥ of NN
into X such that {T («) : « € 2} covers X and if a, — ain £ and x, € T (ay) for
all n € N the sequence {x,}, _; has a cluster point contained in T («). Note that
K-analytic < (Lindelof A quasi-Suslin), and K-analytic = Lindelof X.

In what follows all vector spaces are supposed to be real. For the benefit of the
reader we explicitly quote a number of results that will be used in what follows.

Theorem 3. ([1, Theorem IV.9.4]) If the realcompactification vX of a completely reqular
Hausdorff space X is a Lindelof X-space, then there exists a Lindel0f X.-space Z such that
Cp(X) C Z CRX.

Although the next theorem was formulated for the original topology of E, the
same proof yields the following

Theorem 4. ([9, Lemma 2]) If an Ics E admits a S-covering { Ay : « € £}, % C NN,
with limited envelope in the weak topology of E, then there exists a Lindelof X-space Z
such that (E',o (E',E)) C Z C RF, where RE is endowed with the product topology.

We shall also need the following facts about Lindel6f >-spaces.

Theorem 5. ([9, Proposition 10]) Let E be a linear subspace of an Ics F If there exists
a Lindelof X-space X such that E C X C F, then E admits a X-covering with limited
envelope.

Theorem 6. ([9, Theorem 3]) vX is a Lindelof X-space if and only if C, (X) admits a
X-covering with limited envelope.

Theorem 7. ([15, Proposition 9.15]) If X is quasi-Suslin, the space vX is K-analytic.

Let us recall that a topological space X is called web-compact if there is a map
T from a subspace = of NN into X such that J{T («) : « € £} = X and ifa,, — «
in X and x, € T (a,) for all n € N then {x,} has a cluster point in X (this def-
inition is equivalent to that given in [18, Definition]). Every Lindel6f X-space is
web-compact and Lindelsf, but RR is a simple example of a web-compact space
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which is not Lindelof. On the other hand a topological space X is angelic if rela-
tively countably compact sets in X are relatively compact and for every relatively
compact subset A of X each point of A is the limit of a sequence of A, [12]. The
following two additional results will be used later.

Theorem 8. ([18, Theorem 3]) If X is a web-compact space, then C, (X) is angelic.

Theorem 9. ([3, Corollary 1.1]) For an angelic space X the following are equivalent:

1. X has a compact resolution.
2. X is quasi-Suslin.

3. X is K-analytic.

Let us recall that a locally convex space E belongs to class & if there is a resolu-
tion {A, : & € NN} in the weak* dual (E’,c(E’, E)) of E such that each sequence
in any A, is equicontinuous, see [6]. Therefore every set A, is relatively o(E’, E)-
countably compact. The class & is indeed large and contains ‘almost all” impor-
tant locally convex spaces (including (LF)-spaces and (DF)-spaces). Furthermore
& is stable by taking subspaces, Hausdorff quotients and countable direct sums
and products.

Theorem 10. ([6, Theorem 13]) If E is an Ics of the class & that is weakly countably
determined (i.e. a weakly Lindelof X-space), then the density character of E is equal to the
density character of (E',o (E', E)).

2 Results

Before we state our first result let us recall that an Ics E is barrelled (quasi-barrelled)
if every weak* bounded (resp. strongly bounded) set in E’ is equicontinuous,
hence relatively weak* compact. Let us point out that every barrelled space is
quasi-barrelled; metrizable and bornological spaces are also examples of quasi-
barrelled spaces.

Theorem 11. Let E be a locally convex space such that every weak* bounded set in E' is
relatively weak* compact. The space (E, o (E, E")) has a X-covering with limited envelope
ifand only if (E',o (E', E)) is a Lindeldf -space.

Proof. If (E,o(E, E')) has a X-covering with limited envelope, by Theorem 4 there
exists a Lindelof -space Z such that (E/,o (E/,E)) € Z C RE. Hence there is
A C NN and a compact-valued upper semi-continuous map S : A — Z such
that U{S (a) :a € A} = Z. Given a € A, the compactness of S («) ensures that
S () N E'is a closed bounded setin (E’, o (E’, E)), so according to the hypotheses
S(a)NE’ is weak* compact.

SetX={ac€A:S(a)NE # @} and defineT: X — (E',c (E/,E)) by

T(a)=S(a)NE.
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Clearly T is compact-valued and J{T («) : « € £} = E’. Let us show that T is
upper semi-continuous.

Let {ay}, | be a sequence in ¥ such that o, — a in ¥ and let u, € T (a,) for
each n € IN. Since u, € S («,) for every n € IN and S is upper semi-continuous
there is a cluster point u of {u,},. ; in Z such that u € S(«). We claim that
{un : n € N} is a bounded set in (E’,o (E’, E)). Otherwise there is an absolutely
convex neighborhood of the origin U in (E’,o (E/,E)) and a strictly increasing
sequence {ny} of positive integers such that u,, ¢ kU for all k € IN. Let V be
a neighborhood of the origin in IRE such that VN E’ = U. Since &, — «, then
{uy, } has a cluster point v € S (x). Let m € IN be such that S (¢) C mV. Since
mV N Z is a neighborhood of v in Z, for each k € IN there is K € N with k' > k
such that u,,, € mV. Particularly u, , € mV N E’ = mU. But since m’ > m then
un, , € mU C m’U, a contradiction.

The weak* boundedness of {u,:n€N} in E' implies that

- k*
K={u,:n¢€ N}Wea is a weak* compact set in E’, hence a compact set in Z.

Therefore K contains all cluster points of {u,} in Z. This is tantamount to saying
thatu € K C E’ and, consequently, thatu € T («). So T is upper semi-continuous,
which proves that (E/, o (E’, E)) is a Lindelof X-space, as stated.

For the converse set X := (E’,o (E/,E)) and apply Theorem 6 to show that
Cp(X) has a X-covering {A,:a € X} with limited envelope. Then
{AyNE:a € X}isaX-covering of (E,o (E, E')) with limited envelope. ]

Example 12. Theorem 11 fails for quasibarrelled spaces E.

Proof. Let X := [0,w7). Then X is sequentially compact non-compact and un-
der (CH) it even has a compact resolution, see [21, Theorem 3.6]. Since vX is
K-analytic, by [8, Theorem 3] the space E := C,(X) admits a X-covering with
limited envelop. According to [8, Corollary 2] the weak* dual L, (X) of Cp(X) is
quasi-Suslin but not K-analytic. Hence L,(X) cannot be a Lindel6f X-space. On
the other hand C,(X) is always quasibarrelled, see [14, Corollary 11.7.3]. ]

Corollary 13. Let E be a barrelled space. The following conditions hold
1. If (E,o(E, E")) is a Lindelof X-space, then (E',o(E’,E)) is a Lindelof X-space.
2. (E',o(E',E)) is quasi-Suslin if and only if (E',c(E', E)) is K-analytic.

Proof. (1) If (E,o(E,E")) is a Lindelof X-space, by Theorem 5 it has a X-covering
with limited envelope. Since very weak* bounded set in E’ is relatively weak*
compact, Theorem 11 ensures that (E’, o (E’, E)) is a Lindelof X-space. (2) It suf-
tices to show that E has a X-covering with limited envelope, since in this case the
statement is consequence of Theorem 11. In fact, if Y = (E/,0(E’,E)) is quasi-
Suslin then, according to Theorem 7, the space vY is K-analytic. Thus by The-
orem 3 there exists a Lindel6f Z-space Z such that C,(Y) € Z C RY. Since
(E,o(E,E')) C Cp(Y), applying Theorem 5 with X = Z and F = RY, we get that
E has a X-covering with limited envelope. m

Clearly the converse in Corollary 13 (1) fails in general; any infinite dimen-
sional Banach space which is not weakly Lindel6f provides such an example.
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Condition (2) of Corollary 13 does not hold if E is only a quasi-barrelled space as
the example 12 shows. The following result provides a variant of Theorem 1 for
weakly Lindel6f >-spaces.

Proposition 14. Let E be a semi-reflexive locally convex space. Then (E,c(E,E")) is a
Lindelof X-space if and only if (E, o (E, E')) admits a ¥-covering with limited envelope.

Proof. If (E,o (E,E’)) admits a -covering with limited envelope, by Theorem 4
there exists a Lindelof X-space Z such that (E/, o (E, E)) € Z C RE. So, according
to Theorem 5, the space (E’,o (E’,E)) has a X-covering with limited envelope.
Since E = (E/,o (E',E))’ is semi-reflexive, Theorem 11 ensures that (E, o (E, E'))
is a Lindelof X-space. For the converse apply Theorem 5 with E = X = F =
(E,o(E,E")). n

According to Talagrand [20] every Weakly Compactly Generated (WCG) Ba-
nach space is weakly Lindelof. This fails however for (WCG) Ics in general, see
[2]. Our next result provide a large class of weakly Lindelof locally convex spaces.

Proposition 15. Let E be an Ics in class &. If E is semi-reflexive then the following
conditions hold.

1. E is a Lindeldf X-space in the weak topology o (E, E") of E.
2. The weak* dual of E is a K-analytic space with countable tightness.
3. dens (E,c(E,E")) = dens (E’,o(E',E)), where dens ( - ) means the density.

Proof. If E belongs to class & its weak* dual Y = (E’,0(E’,E)) is quasi-Suslin,
see [11, Theorem 4]. Hence, according to Theorem 7, the space vY is K-analytic.
By Theorem 3 there is a Lindel6f Z-space Z such that C,(Y) C Z C RY. Since
E C Cp(Y), applying again Theorem 5 with X = Z and F = RY, we get that E
has a X-covering with limited envelope.

(1) Since E is semi-reflexive and admits a X-covering with limited envelope,
part (1) follows from Proposition 14.

(2) By the previous condition X := (E,o(E,E’)) is a Lindel6f X-space, so
Cp (X) is angelic by virtue of Theorem 8. Since (E’,o (E’,E)) is linearly embed-
ded in C, (X), it follows that (E’, o (E’, E)) is angelic too. On the other hand, due
to the fact that E belongs to class ® we know that its weak* dual (E’,o (E’,E))
is quasi-Suslin. Therefore (E’,o (E', E)) being quasi-Suslin and angelic, it is K-
analytic by virtue of Theorem 9. Concerning the second statement, according to
Condition 1 any finite product (E,c(E, E'))" is a Lindelof space. So, applying [1,
Theorem II.1.1], which ensures that if X", for X completely regular, is a Lindelof
space for each n then C;, (X) has countable tightness, we get that C,(E,c(E, E’))
has countable tightness. Since (E, o(E’, E)) is embedded into C,(E, o (E, E’)), the
conclusion follows.

(3) According to Condition 1 the space E is weakly Lindelof ¥, so we may
apply Theorem 10. The proof is complete. n

The proof of Proposition 15 uses the fact that E in class & admits a X-covering
with limited envelope. The converse statement is not true.
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Example 16. A locally convex space admitting a X-covering with limited envelope which
does not belong to the class &. If X = RN then C,(X) has a Z-covering with limited
envelope (see [9, Example 17]) but C,(X) is not in class & since X is uncountable

[5].

Remark 17. Proposition 14 easily implies Theorem 1. Let us see the only nontrivial
implication 1 = 2. In fact, if E has a bounded resolution {A, : « € NN} then
clearly (E,o (E,E’)) admits a X-covering with limited envelope. So, if E is in
addition semi-reflexive, Proposition 14 guarantees that (E, o (E, E’)) is a Lindel6f

Y-space. The semi-reflexivity of E also guarantees that {ZZ(E’E) ca € NNlisa
weakly compact resolution (i.e. consisting of weakly compact sets) for E, so that
(E,o (E, E")) is quasi-Suslin [3, Proposition 1]. Since every quasi-Suslin Lindel6f
space is K-analytic, we are done.

Theorem 11 easily applies to provide another proof of the following results
from [4, Theorem 4.6].

Proposition 18. Let E be either a quasi-barrelled (DF)-space or an (LF)-space. Then
the space (E',o(E', E)) is K-analytic. In general, this holds for every quasi-barrelled Ics
in class &.

Proof. Let E be a quasi-barrelled (DF)-space and let { B, : n € IN} be a fundamen-
tal sequence of absolutely convex closed bounded sets in E = |J;,_; B,. Let F be
the completion of E and denote by K;, the closure of B, in F for all n € IN. Since
E is quasi-barrelled, then by [19, Proposition 8.2.27] we have F = (J;_; K, and
{Ky; : n € N} is a fundamental sequence of bounded sets in the barrelled (DF)-
space F (recall that the completion of a quasi-barrelled space is barrelled). By
Theorem 11 the space (E’,c(E’, F)) is a Lindelof X-space, hence Lindelof. On the
other hand, (E’, o(E', E)) is quasi-Suslin by [11]; hence (E’, o(E’, F)) is K-analytic.
Since ¢(E’,E) < ¢(E', F), the space (E’,c(E’,E)) is K-analytic.

Let E be an (LF)-space, i.e. the inductive limit of a sequence (E,, {n)n of
metrizable and complete Ics such that ¢, 1|E, < &, foralln € IN. Foreachn € N
let (U} ) be a countable basis of absolutely convex neighborhoods of zero in E,

such that U}! C U,Z’H for all k,n € N, see [7] or [24]. For each « = (j) € NN
set A7 = N2q k. Then {A? : a € NN} is a bounded resolution in each

(En,Cn). Fora = (p1,j1,j2,---) € NN set B, := AZ‘ll,jz,...)' It is easy to see that

{B, : « € NN} is a bounded resolution in E. Since F is barrelled and (E’, o (E/, F))
is quasi-Suslin, see [11, Theorem 4], we apply the same argument as above to
show that (E’,o(E’, F)) is K-analytic, which yields the conclusion.
Finally, assume that E is a quasi-barrelled Ics in class &. Since the completion
F of E also belongs to class &, the space F is a barrelled space in class &. Then
Y = (E/,0(E’, F)) is quasi-Suslin, see again [11, Theorem 4]. Hence, according to
Corollary 13 the space Y is K-analytic, consequently (E’,c(E’, E)) is K-analytic.
]

Let us recall that an Ics E is called ¢*-barrelled if every weak* bounded se-
quence in E’ is equicontinuous. Each barrelled space is {*-barrelled and each
metrizable /*-barrelled space, as well as each separable /*-barrelled space, is
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barrelled. There are locally convex spaces E equipped with the Mackey topology
i (E, E") which are ¢*-barrelled but not barrelled [22].

Proposition 19. Let E be an {*-barrelled space. If E has a weak X-covering with limited
envelope, then E is weakly angelic.

Proof. 1f (E,o (E,E")) has a X-covering with limited envelope, a similar argu-
ment to that of the proof of Theorem 11 provides a Lindeldf X-space Z with
(E',o(E',E)) € Z C RF and a compact-valued upper semi-continuous map
S: A — Zwith A C NN such that U{S(a):a € A} = Z. Setting again ¥ =
{a € A:S(a)NE #@}and T («) = S («) N E' then clearly U{T («) :« € £} =
E’. We claim that (E’,o (E’,E)) is a web-compact space. Indeed, if {a,}, ; is
a sequence in X such that o, — a in X and u, € T (a,) for each n € N, then

{u, : n € N} isabounded setin (E',o (E',E)),sothat K = {u, : n € lN}WQ?lk isa
weak* compact set in E’. Consequently the sequence {u,},._; has a cluster point
in (E/,o (E',E)). Thus Y := (E',o (E',E)) is web-compact and hence C, (Y) is
angelic by Theorem 8, which implies that (E, o (E, E')) is also angelic. m

It is known that every K-analytic space admits a compact resolution, see [3].
The converse implication fails in general, although some positive results hold,
see [15] as a source of several information. The following result provides another
fact of this type.

Corollary 20. If E is an ¢*-barrelled Ics, particularly a barrelled space, the following
conditions are equivalent.

1. E has a weakly compact resolution.
2. E is weakly quasi-Suslin.

3. E is weakly K-analytic.

Proof. (1) = (2) is well known. Assume that E is weakly quasi-Suslin. Hence it
admits a bounded resolution, hence (E, o (E, E’)) admits a X-covering with lim-
ited envelope. By Proposition 19 the space (E,c(E,E’)) angelic. (E,o(E,E’))
being both quasi-Suslin and angelic, it is K-analytic by virtue of Theorem 9. This
shows (2) = (3). Finally, if E is weakly K-analytic, then E has a weakly compact
resolution. n

Remark 21. Last corollary applies to provide another proof of Khurana’s theorem [16],
stating that every (WCG) Fréchet space is weakly K-analytic. Tt suffices to show that
E admits a weakly compact resolution. If {C, : n € IN} is a sequence of weakly
compact sets with span (U;,_; C;) = E, define K,, = abx (U, C;) forn € N
and note by Krein’s theorem that each K, is a weakly compact subset of E. If
{U, : n € N} is a decreasing base of absolutely convex neighborhoods of the ori-

gin in E, setting A, := i~ (oc (1) Ky + UIQO) for « € NN, where U stands
for the bipolar on U in E”, then every A, is bounded in E and weak* closed
in E”, hence weak* compact in E”. Moreover A, C Ap whenever « < f and,

due to the fact that E is B (E”, E')-closed in E” and {U" :i € N} is a base of
neighborhoods of the origin in (E”, B (E”,E’)), we can see that A, C E for all
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a € NN, On the other hand, since |J*_; 7K}, is a dense linear subspace of E, for
x € Eandi € N thereisy € U;_;nK, with x —y € U;. Soif y € n;K,, then
x € niKy, + U;. Thus x € N2, (1 Ky, + U;) € A, with v = (ny,ny,...), which
shows that J{A : « € NN} =E.

A different approach to those used so far allows us to supplement Corollary
13 for bornological spaces. Recall that an Ics E is bornological if every bounded
linear mapping from E into any lcs F is continuous. Particularly every metrizable
Ics is bornological.

Proposition 22. If E is a bornological Ics, then (E',o(E', E)) is quasi-Suslin if and only
if (E',0(E',E)) is K-analytic.

Proof. Assume thatY := (E/,c (E, E)) is a quasi-Suslin space. Then by [8, Corol-
lary 4] each compact set in C, (Y) is Talagrand compact. Since (E,o (E,E)) is
linearly embedded into C, (Y), it follows that each weakly compact set of E is
Talagrand compact as well. If K (E) denotes the family of all weakly compact
subsets of E then the space C,, (K) is K-analytic for each K € K (E) equipped with
the relative weak topology of E. Hence each C, (K) is Lindel6f and consequently
[Tkek () Cp (K) is realcompact. Note that (E’,c (E’, E)) is realcompact. Indeed,
set X := (E,o (E,E’)) and consider the map f — { f|x : K € K (E)} from C, (X)
into [Tkex (k) Cp (K). Observe that this is an isomorphism (into) which embeds Y
into [Tkex(g) Cp (K). Indeed, if {y;: d € D} is a netin Y (viewed as a subspace
of [Tkex(g) Cp (K)), that converges to some {hx : K € K (E)} € [Tkex(r) Cp (K),
define u (x) = hg (x) whenever x € K. Given P,Q € K (E) such that PN Q #
@, it follows from the nature of the embedding of Y into [xex(g) Cp (K) that
Yalpng (%) = hpag (x), valp (x) — hp (x) and y4| (x) — hq (x) for each x €
PN Q. This ensures that hip (x) = hg (x) for each x € PN Q, which means that
u is well-defined. Furthermore, the fact that y;|y (x) — hx (x) = u(x)if x € K
implies that y; — u pointwise on E. Clearly u is a linear functional on E. Since
ulg = hg € C (K), we can see that u is a sequentially continuous linear functional
on E. Given that E is bornological, we get that u € Y. This shows that Y is (home-
omorphic to) a closed subspace of [ Txcic(g) Cp (K). Hence Y is realcompact. Since
Y is quasi-Suslin, it is K-analytic. m

Since every (LM)-space is bornological and its weak* dual is quasi-Suslin,
Proposition 22 nicely applies to complement Proposition 18.

Acknowledgement. We are grateful to the referee for helpful suggestions that
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