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Abstract

A family {Aα : α ∈ N
N} of sets covering a set E is called a resolution for E

if Aα ⊆ Aβ whenever α ≤ β. A locally convex space (lcs) E is said to belong to

class G if there is a resolution {Aα : α ∈ N
N} for (E′, σ(E′, E)) such that each

sequence in any Aα is equicontinuous. The class G contains ‘almost all’ use-
ful locally convex spaces (including (LF)-spaces and (DF)-spaces). We show
that (i) every semi-reflexive lcs E in class G is a Lindelöf Σ-space in the weak
topology (this extends a corresponding result of Preiss-Talagrand for WCG
Banach spaces) and the weak* dual of E is both K-analytic and has countable
tightness, (ii) a barrelled space E has a weakly compact resolution if and only
if E is weakly K-analytic, and (iii) if E is barrelled or bornological then E′ has
a weak* compact resolution if and only if it is weak* K-analytic. As an ad-
ditional consequence we provide another approach to show that the weak*
dual of a quasi-barrelled space in class G is K-analytic. These results sup-
plement earlier work of Talagrand, Preiss, Cascales, Ferrando, Ka̧kol, López
Pellicer and Saxon.

1 Introduction

As mentioned in the abstract, a family {Aα : α ∈ N
N} of sets covering a set E

is called a resolution for E if Aα ⊆ Aβ whenever α ≤ β, α, β ∈ N
N. This paper

deals with the two following general problems: (i) for any locally convex space E,
characterize in terms of E the existence of a non-empty set Σ in N

N and an upper
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semi-continuous compact-valued map T from Σ into (E, σ(E, E′)) covering E, i.e.
such that

⋃

{T (α) : α ∈ Σ} = E, and (ii) provide sufficient conditions on E to en-
sure that the existence of a compact resolution for (E, σ (E, E′)) (for (E′, σ (E′, E)))
guarantees that (E, σ (E, E′)) (resp. (E′, σ (E′, E))) is K-analytic. There are several
results motivating these problems. For example, concerning to the first one, in [3,
Corollary 1.6] Cascales proved the following

Theorem 1 (Cascales). For a semi-reflexive lcs E the following conditions are equiva-
lent.

1. E has a bounded resolution, i.e. a resolution consisting of bounded sets.

2. E endowed with the weak topology σ(E, E′) is a K-analytic space.

3. (E, σ(E, E′)) is a quasi-Suslin space.

On the other hand, relative to the second problem, in [11, Theorem 1] it is
shown that

Theorem 2 (Ferrando-Ka̧kol-López Pellicer-Saxon). Let E be an lcs. If (E′, σ (E′, E))
is quasi-Suslin, the following are equivalent.

1. The weak space (E, σ(E, E′)) is countably tight.

2. The weak* dual (E′ , σ(E′, E)) is realcompact.

3. The weak* dual (E′ , σ(E′, E)) is K-analytic.

4. The weak dual (E′, σ(E′, E)) is Lindelöf.

5. The Mackey space (E, µ(E, E′)) is barrelled.

A simple example of an lcs with a bounded resolution is provided by any lcs E
admitting a stronger metrizable locally convex topology τ. Indeed, if {Un : n ∈ N}
is a decreasing base of τ-neighborhoods of the origin, for any α = (nk) ∈ N

N de-
fine Aα :=

⋂∞
k=1 nkUk.

In this paper we provide partial solutions concerning the above problems, see
Theorem 11 and the consequences mentioned in the abstract.

Let Σ be a subset of N
N, where N is equipped with the discrete topology, and

let A := {Aα : α ∈ Σ} be a family of subsets of a set X. For each α ∈ Σ and n ∈ N

define
A(α|n) :=

⋃

{Aβ : β ∈ Σ, β(i) = α(i), 1 ≤ i ≤ n}.

Clearly Aα ⊆ A(α|n) for each n ∈ N and A(α|n + 1) ⊆ A(α|n) for all (α, n) ∈
Σ × N. Since A(α|n) = A(β|n) whenever α(i) = β(i) for 1 ≤ i ≤ n, the family
E := {A(α|n) : α ∈ Σ, n ∈ N} (called the envelope of A) is countable. It is easy to
see that if Σ = N

N and {Aα : α ∈ N
N} is a bounded resolution, i.e. a resolution

consisting of bounded sets in a locally convex space E, then for each α ∈ N and
each neighborhood of zero U in E there exists n ∈ N such that A(α|n) ⊆ nU.
Indeed, otherwise there exist a neighborhood of zero V in E, β in N

N, and a
sequence {xn}

∞
n=1 with xn ∈ A(β|n) \ nV for all n ∈ N. Choose a sequence

{βn}
∞
n=1 in N

N with βn(i) = β(i) for 1 ≤ i ≤ n such that xn ∈ Aβn
for each n ∈ N.
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Then there exists γ ∈ N
N such that βn ≤ γ for each n ∈ N. Hence xn ∈ Aβn

⊆
Aγ for all n ∈ N. Since Aγ ⊆ mV for some m ∈ N, we reach a contradiction.
This motivates the following useful concept. Following [9] we will say that the
envelope E of a family A = {Aα : α ∈ Σ} of subsets of an lcs E covering E
(a Σ-covering henceforth) is limited if for each α ∈ Σ and a neighborhood of zero
U in E there exists n ∈ N such that A(α|n) ⊆ nU.

Recall that a completely regular Hausdorff topological space X is called
Lindelöf Σ (or K-countably determined) if there is an upper semi-continuous com-
pact-valued map T from a non-empty subset Σ of the product space N

N into
X (actually into the set P (X) of all subsets of X) covering X, i.e. such that
⋃

{T (α) : α ∈ Σ} = X, see [1]. If the same holds for Σ = N
N, then X is called

K-analytic. On the other hand, X is called quasi-Suslin if there exists a set-valued
map T (called a quasi-Suslin map) from N

N into X covering X which is quasi-
Suslin, i.e. such that if αn → α in N

N and xn ∈ T(αn) then {xn}
∞
n=1 has a cluster

point in T(α), see [23]. Alternatively, a completely regular space X is Lindelöf
Σ if and only if there is a compact-valued mapping T from a subspace Σ of N

N

into X such that {T (α) : α ∈ Σ} covers X and if αn → α in Σ and xn ∈ T (αn) for
all n ∈ N the sequence {xn}

∞
n=1 has a cluster point contained in T (α). Note that

K-analytic ⇔ (Lindelöf ∧ quasi-Suslin), and K-analytic ⇒ Lindelöf Σ.
In what follows all vector spaces are supposed to be real. For the benefit of the

reader we explicitly quote a number of results that will be used in what follows.

Theorem 3. ([1, Theorem IV.9.4]) If the realcompactification υX of a completely regular
Hausdorff space X is a Lindelöf Σ-space, then there exists a Lindelöf Σ-space Z such that
Cp(X) ⊆ Z ⊆ R

X.

Although the next theorem was formulated for the original topology of E, the
same proof yields the following

Theorem 4. ([9, Lemma 2]) If an lcs E admits a Σ-covering {Aα : α ∈ Σ}, Σ ⊆ N
N,

with limited envelope in the weak topology of E, then there exists a Lindelöf Σ-space Z
such that (E′, σ (E′, E)) ⊆ Z ⊆ R

E, where R
E is endowed with the product topology.

We shall also need the following facts about Lindelöf Σ-spaces.

Theorem 5. ([9, Proposition 10]) Let E be a linear subspace of an lcs F If there exists
a Lindelöf Σ-space X such that E ⊆ X ⊆ F, then E admits a Σ-covering with limited
envelope.

Theorem 6. ([9, Theorem 3]) υX is a Lindelöf Σ-space if and only if Cp (X) admits a
Σ-covering with limited envelope.

Theorem 7. ([15, Proposition 9.15]) If X is quasi-Suslin, the space υX is K-analytic.

Let us recall that a topological space X is called web-compact if there is a map

T from a subspace Σ of N
N into X such that

⋃

{T (α) : α ∈ Σ} = X and if αn → α
in Σ and xn ∈ T (αn) for all n ∈ N then {xn} has a cluster point in X (this def-
inition is equivalent to that given in [18, Definition]). Every Lindelöf Σ-space is
web-compact and Lindelöf, but R

R is a simple example of a web-compact space
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which is not Lindelöf. On the other hand a topological space X is angelic if rela-
tively countably compact sets in X are relatively compact and for every relatively
compact subset A of X each point of A is the limit of a sequence of A, [12]. The
following two additional results will be used later.

Theorem 8. ([18, Theorem 3]) If X is a web-compact space, then Cp (X) is angelic.

Theorem 9. ([3, Corollary 1.1]) For an angelic space X the following are equivalent:

1. X has a compact resolution.

2. X is quasi-Suslin.

3. X is K-analytic.

Let us recall that a locally convex space E belongs to class G if there is a resolu-
tion {Aα : α ∈ N

N} in the weak* dual (E′, σ(E′, E)) of E such that each sequence
in any Aα is equicontinuous, see [6]. Therefore every set Aα is relatively σ(E′, E)-
countably compact. The class G is indeed large and contains ‘almost all’ impor-
tant locally convex spaces (including (LF)-spaces and (DF)-spaces). Furthermore
G is stable by taking subspaces, Hausdorff quotients and countable direct sums
and products.

Theorem 10. ([6, Theorem 13]) If E is an lcs of the class G that is weakly countably
determined (i.e. a weakly Lindelöf Σ-space), then the density character of E is equal to the
density character of (E′, σ (E′, E)).

2 Results

Before we state our first result let us recall that an lcs E is barrelled (quasi-barrelled)
if every weak* bounded (resp. strongly bounded) set in E′ is equicontinuous,
hence relatively weak* compact. Let us point out that every barrelled space is
quasi-barrelled; metrizable and bornological spaces are also examples of quasi-
barrelled spaces.

Theorem 11. Let E be a locally convex space such that every weak* bounded set in E′ is
relatively weak* compact. The space (E, σ(E, E′)) has a Σ-covering with limited envelope
if and only if (E′, σ (E′, E)) is a Lindelöf Σ-space.

Proof. If (E, σ(E, E′)) has a Σ-covering with limited envelope, by Theorem 4 there
exists a Lindelöf Σ-space Z such that (E′, σ (E′, E)) ⊆ Z ⊆ R

E. Hence there is
∆ ⊆ N

N and a compact-valued upper semi-continuous map S : ∆ → Z such
that

⋃

{S (α) : α ∈ ∆} = Z. Given α ∈ ∆, the compactness of S (α) ensures that
S (α)∩ E′ is a closed bounded set in (E′, σ (E′, E)), so according to the hypotheses
S (α) ∩ E′ is weak* compact.

Set Σ = {α ∈ ∆ : S (α) ∩ E′ 6= ∅} and define T : Σ → (E′, σ (E′, E)) by

T (α) = S (α) ∩ E′.
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Clearly T is compact-valued and
⋃

{T (α) : α ∈ Σ} = E′. Let us show that T is
upper semi-continuous.

Let {αn}
∞
n=1 be a sequence in Σ such that αn → α in Σ and let un ∈ T (αn) for

each n ∈ N. Since un ∈ S (αn) for every n ∈ N and S is upper semi-continuous
there is a cluster point u of {un}

∞
n=1 in Z such that u ∈ S (α). We claim that

{un : n ∈ N} is a bounded set in (E′, σ (E′, E)). Otherwise there is an absolutely
convex neighborhood of the origin U in (E′, σ (E′, E)) and a strictly increasing
sequence {nk} of positive integers such that unk

/∈ kU for all k ∈ N. Let V be
a neighborhood of the origin in R

E such that V ∩ E′ = U. Since αnk
→ α, then

{unk
} has a cluster point v ∈ S (α). Let m ∈ N be such that S (α) ⊆ mV. Since

mV ∩ Z is a neighborhood of v in Z, for each k ∈ N there is k′ ∈ N with k′ ≥ k
such that unk′

∈ mV. Particularly unm′ ∈ mV ∩ E′ = mU. But since m′ ≥ m then
unm′ ∈ mU ⊆ m′U, a contradiction.

The weak* boundedness of {un : n ∈ N} in E′ implies that

K = {un : n ∈ N}
weak*

is a weak* compact set in E′, hence a compact set in Z.
Therefore K contains all cluster points of {un} in Z. This is tantamount to saying
that u ∈ K ⊆ E′ and, consequently, that u ∈ T (α). So T is upper semi-continuous,
which proves that (E′, σ (E′, E)) is a Lindelöf Σ-space, as stated.

For the converse set X := (E′, σ (E′, E)) and apply Theorem 6 to show that
Cp (X) has a Σ-covering {Aα : α ∈ Σ} with limited envelope. Then
{Aα ∩ E : α ∈ Σ} is a Σ-covering of (E, σ (E, E′)) with limited envelope.

Example 12. Theorem 11 fails for quasibarrelled spaces E.

Proof. Let X := [0, ω1). Then X is sequentially compact non-compact and un-
der (CH) it even has a compact resolution, see [21, Theorem 3.6]. Since υX is
K-analytic, by [8, Theorem 3] the space E := Cp(X) admits a Σ-covering with
limited envelop. According to [8, Corollary 2] the weak* dual Lp(X) of Cp(X) is
quasi-Suslin but not K-analytic. Hence Lp(X) cannot be a Lindelöf Σ-space. On
the other hand Cp(X) is always quasibarrelled, see [14, Corollary 11.7.3].

Corollary 13. Let E be a barrelled space. The following conditions hold

1. If (E, σ(E, E′)) is a Lindelöf Σ-space, then (E′, σ(E′, E)) is a Lindelöf Σ-space.

2. (E′, σ(E′, E)) is quasi-Suslin if and only if (E′, σ(E′, E)) is K-analytic.

Proof. (1) If (E, σ(E, E′)) is a Lindelöf Σ-space, by Theorem 5 it has a Σ-covering
with limited envelope. Since very weak* bounded set in E′ is relatively weak*
compact, Theorem 11 ensures that (E′, σ (E′, E)) is a Lindelöf Σ-space. (2) It suf-
fices to show that E has a Σ-covering with limited envelope, since in this case the
statement is consequence of Theorem 11. In fact, if Y = (E′, σ(E′, E)) is quasi-
Suslin then, according to Theorem 7, the space υY is K-analytic. Thus by The-
orem 3 there exists a Lindelöf Σ-space Z such that Cp(Y) ⊆ Z ⊆ R

Y. Since

(E, σ(E, E′)) ⊆ Cp(Y), applying Theorem 5 with X = Z and F = R
Y, we get that

E has a Σ-covering with limited envelope.

Clearly the converse in Corollary 13 (1) fails in general; any infinite dimen-
sional Banach space which is not weakly Lindelöf provides such an example.
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Condition (2) of Corollary 13 does not hold if E is only a quasi-barrelled space as
the example 12 shows. The following result provides a variant of Theorem 1 for
weakly Lindelöf Σ-spaces.

Proposition 14. Let E be a semi-reflexive locally convex space. Then (E, σ(E, E′)) is a
Lindelöf Σ-space if and only if (E, σ (E, E′)) admits a Σ-covering with limited envelope.

Proof. If (E, σ (E, E′)) admits a Σ-covering with limited envelope, by Theorem 4
there exists a Lindelöf Σ-space Z such that (E′, σ (E′, E)) ⊆ Z ⊆ R

E. So, according
to Theorem 5, the space (E′, σ (E′, E)) has a Σ-covering with limited envelope.

Since E = (E′, σ (E′, E))′ is semi-reflexive, Theorem 11 ensures that (E, σ (E, E′))
is a Lindelöf Σ-space. For the converse apply Theorem 5 with E = X = F =
(E, σ(E, E′)).

According to Talagrand [20] every Weakly Compactly Generated (WCG) Ba-
nach space is weakly Lindelöf. This fails however for (WCG) lcs in general, see
[2]. Our next result provide a large class of weakly Lindelöf locally convex spaces.

Proposition 15. Let E be an lcs in class G. If E is semi-reflexive then the following
conditions hold.

1. E is a Lindelöf Σ-space in the weak topology σ(E, E′) of E.

2. The weak* dual of E is a K-analytic space with countable tightness.

3. dens (E, σ(E, E′)) = dens (E′, σ(E′, E)), where dens ( · ) means the density.

Proof. If E belongs to class G its weak* dual Y = (E′, σ(E′, E)) is quasi-Suslin,
see [11, Theorem 4]. Hence, according to Theorem 7, the space υY is K-analytic.
By Theorem 3 there is a Lindelöf Σ-space Z such that Cp(Y) ⊆ Z ⊆ R

Y. Since

E ⊆ Cp(Y), applying again Theorem 5 with X = Z and F = R
Y, we get that E

has a Σ-covering with limited envelope.
(1) Since E is semi-reflexive and admits a Σ-covering with limited envelope,

part (1) follows from Proposition 14.
(2) By the previous condition X := (E, σ(E, E′)) is a Lindelöf Σ-space, so

Cp (X) is angelic by virtue of Theorem 8. Since (E′, σ (E′, E)) is linearly embed-
ded in Cp (X), it follows that (E′, σ (E′, E)) is angelic too. On the other hand, due
to the fact that E belongs to class G we know that its weak* dual (E′, σ (E′, E))
is quasi-Suslin. Therefore (E′, σ (E′, E)) being quasi-Suslin and angelic, it is K-
analytic by virtue of Theorem 9. Concerning the second statement, according to
Condition 1 any finite product (E, σ(E, E′))n is a Lindelöf space. So, applying [1,
Theorem II.1.1], which ensures that if Xn, for X completely regular, is a Lindelöf
space for each n then Cp (X) has countable tightness, we get that Cp(E, σ(E, E′))
has countable tightness. Since (E′, σ(E′, E)) is embedded into Cp(E, σ(E, E′)), the
conclusion follows.

(3) According to Condition 1 the space E is weakly Lindelöf Σ, so we may
apply Theorem 10. The proof is complete.

The proof of Proposition 15 uses the fact that E in class G admits a Σ-covering
with limited envelope. The converse statement is not true.
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Example 16. A locally convex space admitting a Σ-covering with limited envelope which
does not belong to the class G. If X = R

N then Cp(X) has a Σ-covering with limited
envelope (see [9, Example 17]) but Cp(X) is not in class G since X is uncountable
[5].

Remark 17. Proposition 14 easily implies Theorem 1. Let us see the only nontrivial
implication 1 ⇒ 2. In fact, if E has a bounded resolution {Aα : α ∈ NN} then
clearly (E, σ (E, E′)) admits a Σ-covering with limited envelope. So, if E is in
addition semi-reflexive, Proposition 14 guarantees that (E, σ (E, E′)) is a Lindelöf

Σ-space. The semi-reflexivity of E also guarantees that {A
σ(E,E′)
α : α ∈ NN} is a

weakly compact resolution (i.e. consisting of weakly compact sets) for E, so that
(E, σ (E, E′)) is quasi-Suslin [3, Proposition 1]. Since every quasi-Suslin Lindelöf
space is K-analytic, we are done.

Theorem 11 easily applies to provide another proof of the following results
from [4, Theorem 4.6].

Proposition 18. Let E be either a quasi-barrelled (DF)-space or an (LF)-space. Then
the space (E′, σ(E′, E)) is K-analytic. In general, this holds for every quasi-barrelled lcs
in class G.

Proof. Let E be a quasi-barrelled (DF)-space and let {Bn : n ∈ N} be a fundamen-
tal sequence of absolutely convex closed bounded sets in E =

⋃∞
n=1 Bn. Let F be

the completion of E and denote by Kn the closure of Bn in F for all n ∈ N. Since
E is quasi-barrelled, then by [19, Proposition 8.2.27] we have F =

⋃∞
n=1 Kn and

{Kn : n ∈ N} is a fundamental sequence of bounded sets in the barrelled (DF)-
space F (recall that the completion of a quasi-barrelled space is barrelled). By
Theorem 11 the space (E′, σ(E′, F)) is a Lindelöf Σ-space, hence Lindelöf. On the
other hand, (E′, σ(E′, E)) is quasi-Suslin by [11]; hence (E′, σ(E′, F)) is K-analytic.
Since σ(E′, E) ≤ σ(E′, F), the space (E′, σ(E′, E)) is K-analytic.

Let E be an (LF)-space, i.e. the inductive limit of a sequence (En, ξn)n of
metrizable and complete lcs such that ξn+1|En ≤ ξn for all n ∈ N. For each n ∈ N

let (Un
k )k be a countable basis of absolutely convex neighborhoods of zero in En

such that Un
k ⊂ Un+1

k for all k, n ∈ N, see [7] or [24]. For each α = (jk) ∈ N
N

set An
α :=

⋂∞
k=1 jkUn

k . Then {An
α : α ∈ N

N} is a bounded resolution in each

(En, ξn). For α = (p1, j1, j2, . . . ) ∈ N
N set Bα := A

p1

(j1,j2,... )
. It is easy to see that

{Bα : α ∈ N
N} is a bounded resolution in E. Since F is barrelled and (E′, σ(E′, F))

is quasi-Suslin, see [11, Theorem 4], we apply the same argument as above to
show that (E′, σ(E′, F)) is K-analytic, which yields the conclusion.

Finally, assume that E is a quasi-barrelled lcs in class G. Since the completion
F of E also belongs to class G, the space F is a barrelled space in class G. Then
Y = (E′ , σ(E′, F)) is quasi-Suslin, see again [11, Theorem 4]. Hence, according to
Corollary 13 the space Y is K-analytic, consequently (E′, σ(E′, E)) is K-analytic.

Let us recall that an lcs E is called ℓ∞-barrelled if every weak* bounded se-
quence in E′ is equicontinuous. Each barrelled space is ℓ∞-barrelled and each
metrizable ℓ∞-barrelled space, as well as each separable ℓ∞-barrelled space, is
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barrelled. There are locally convex spaces E equipped with the Mackey topology
µ (E, E′) which are ℓ∞-barrelled but not barrelled [22].

Proposition 19. Let E be an ℓ∞-barrelled space. If E has a weak Σ-covering with limited
envelope, then E is weakly angelic.

Proof. If (E, σ (E, E′)) has a Σ-covering with limited envelope, a similar argu-
ment to that of the proof of Theorem 11 provides a Lindelöf Σ-space Z with
(E′, σ(E′, E)) ⊂ Z ⊂ R

E and a compact-valued upper semi-continuous map
S : ∆ → Z with ∆ ⊆ N

N such that
⋃

{S (α) : α ∈ ∆} = Z. Setting again Σ =
{α ∈ ∆ : S (α) ∩ E′ 6= ∅} and T (α) = S (α) ∩ E′ then clearly

⋃

{T (α) : α ∈ Σ} =
E′. We claim that (E′, σ (E′, E)) is a web-compact space. Indeed, if {αn}

∞
n=1 is

a sequence in Σ such that αn → α in Σ and un ∈ T (αn) for each n ∈ N, then

{un : n ∈ N} is a bounded set in (E′, σ (E′, E)), so that K = {un : n ∈ N}
weak*

is a
weak* compact set in E′. Consequently the sequence {un}

∞
n=1 has a cluster point

in (E′, σ (E′, E)). Thus Y := (E′, σ (E′, E)) is web-compact and hence Cp (Y) is
angelic by Theorem 8, which implies that (E, σ (E, E′)) is also angelic.

It is known that every K-analytic space admits a compact resolution, see [3].
The converse implication fails in general, although some positive results hold,
see [15] as a source of several information. The following result provides another
fact of this type.

Corollary 20. If E is an ℓ∞-barrelled lcs, particularly a barrelled space, the following
conditions are equivalent.

1. E has a weakly compact resolution.

2. E is weakly quasi-Suslin.

3. E is weakly K-analytic.

Proof. (1) ⇒ (2) is well known. Assume that E is weakly quasi-Suslin. Hence it
admits a bounded resolution, hence (E, σ (E, E′)) admits a Σ-covering with lim-
ited envelope. By Proposition 19 the space (E, σ(E, E′)) angelic. (E, σ(E, E′))
being both quasi-Suslin and angelic, it is K-analytic by virtue of Theorem 9. This
shows (2) ⇒ (3). Finally, if E is weakly K-analytic, then E has a weakly compact
resolution.

Remark 21. Last corollary applies to provide another proof of Khurana’s theorem [16],
stating that every (WCG) Fréchet space is weakly K-analytic. It suffices to show that
E admits a weakly compact resolution. If {Cn : n ∈ N} is a sequence of weakly

compact sets with span (
⋃∞

n=1 Cn) = E, define Kn = abx (
⋃n

i=1 Ci) for n ∈ N
and note by Krein’s theorem that each Kn is a weakly compact subset of E. If
{Un : n ∈ N} is a decreasing base of absolutely convex neighborhoods of the ori-

gin in E, setting Aα :=
⋂∞

i=1

(

α (i)Kα(i) + U00
i

)

for α ∈ N
N, where U00 stands

for the bipolar on U in E′′, then every Aα is bounded in E and weak* closed
in E′′, hence weak* compact in E′′. Moreover Aα ⊆ Aβ whenever α ≤ β and,

due to the fact that E is β (E′′, E′)-closed in E′′ and
{

U00
i : i ∈ N

}

is a base of
neighborhoods of the origin in (E′′, β (E′′, E′)), we can see that Aα ⊆ E for all
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α ∈ NN. On the other hand, since
⋃∞

n=1 nKn is a dense linear subspace of E, for
x ∈ E and i ∈ N there is y ∈

⋃∞
n=1 nKn with x − y ∈ Ui. So if y ∈ niKni

then
x ∈ niKni

+ Ui. Thus x ∈
⋂∞

i=1 (niKni
+ Ui) ⊆ Aγ with γ = (n1, n2, . . .), which

shows that
⋃

{Aα : α ∈ N
N} = E.

A different approach to those used so far allows us to supplement Corollary
13 for bornological spaces. Recall that an lcs E is bornological if every bounded
linear mapping from E into any lcs F is continuous. Particularly every metrizable
lcs is bornological.

Proposition 22. If E is a bornological lcs, then (E′, σ(E′, E)) is quasi-Suslin if and only
if (E′, σ(E′, E)) is K-analytic.

Proof. Assume that Y := (E′, σ (E′, E)) is a quasi-Suslin space. Then by [8, Corol-
lary 4] each compact set in Cp (Y) is Talagrand compact. Since (E, σ (E, E′)) is
linearly embedded into Cp (Y), it follows that each weakly compact set of E is
Talagrand compact as well. If K (E) denotes the family of all weakly compact
subsets of E then the space Cp (K) is K-analytic for each K ∈ K (E) equipped with
the relative weak topology of E. Hence each Cp (K) is Lindelöf and consequently

∏K∈K(E) Cp (K) is realcompact. Note that (E′, σ (E′, E)) is realcompact. Indeed,

set X := (E, σ (E, E′)) and consider the map f 7→ { f |K : K ∈ K (E)} from Cp (X)
into ∏K∈K(E) Cp (K). Observe that this is an isomorphism (into) which embeds Y

into ∏K∈K(E) Cp (K). Indeed, if {yd : d ∈ D} is a net in Y (viewed as a subspace

of ∏K∈K(E) Cp (K)), that converges to some {hK : K ∈ K (E)} ∈ ∏K∈K(E) Cp (K),
define u (x) = hK (x) whenever x ∈ K. Given P, Q ∈ K (E) such that P ∩ Q 6=
∅, it follows from the nature of the embedding of Y into ∏K∈K(E) Cp (K) that

yd|P∩Q (x) → hP∩Q (x), yd|P (x) → hP (x) and yd|Q (x) → hQ (x) for each x ∈

P ∩ Q. This ensures that hP (x) = hQ (x) for each x ∈ P ∩ Q, which means that
u is well-defined. Furthermore, the fact that yd|K (x) → hK (x) = u (x) if x ∈ K
implies that yd → u pointwise on E. Clearly u is a linear functional on E. Since
u|K = hK ∈ C (K), we can see that u is a sequentially continuous linear functional
on E. Given that E is bornological, we get that u ∈ Y. This shows that Y is (home-
omorphic to) a closed subspace of ∏K∈K(E) Cp (K). Hence Y is realcompact. Since
Y is quasi-Suslin, it is K-analytic.

Since every (LM)-space is bornological and its weak* dual is quasi-Suslin,
Proposition 22 nicely applies to complement Proposition 18.
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erty, Proc. Amer. Math. Soc. 131 (2003) 3623-3631.

[6] B. Cascales and J. Orihuela, On Compactness in Locally Convex Spaces, Math.
Z. 195 (1987), 365-381.

[7] N. De Grande-De Kimpe, J. Ka̧kol and C. Pérez-Garcı́a, Metrizability of com-
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