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Abstract

Our starting point is a very simple one, namely that of a setL4 of four mu-
tually skew lines in PG(7, 2). Under the natural action of the stabilizer group
G(L4) < GL(8, 2) the 255 points of PG(7, 2) fall into four orbits ω1, ω2, ω3, ω4,
of respective lengths 12, 54, 108, 81. We show that the 135 points ∈ ω2 ∪ ω4

are the internal points of a hyperbolic quadric H7 determined by L4, and that
the 81-set ω4 (which is shown to have a sextic equation) is an orbit of a nor-
mal subgroup G81

∼= (Z3)4 of G(L4). There are 40 subgroups ∼= (Z3)3 of G81,
and each such subgroup H < G81 gives rise to a decomposition of ω4 into a
triplet {RH ,R′

H,R′′
H} of 27-sets. We show in particular that the constituents

of precisely 8 of these 40 triplets are Segre varieties S3(2) in PG(7, 2). This
ties in with the recent finding that each S = S3(2) in PG(7, 2) determines
a distinguished Z3 subgroup of GL(8, 2) which generates two sibling copies
S ′,S ′′ of S .

1 Introduction

We work for most of the time over F2 = GF(2), and so we can then identify a
projective point 〈x〉 ∈ PG(n − 1, 2) with the nonzero vector x ∈ V(n, 2). In fact
we will be dealing with vector space dimension n = 8, and we will start out from
a(ny) direct sum decomposition

V8 = Va ⊕ Vb ⊕ Vc ⊕ Vd (1)

of V8 := V(8, 2) into 2-dimensional spaces Va, Vb, Vc, Vd. For h ∈ {a, b, c, d} we
will write

Vh = {uh(∅), uh(0), uh(1), uh(2)}, with uh(∅) = 0.
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(The reason for this labelling of the four elements of Vh is that in a later section
we wish to use 0, 1, 2 as the elements of the Galois field F3.) So PV8 = PG(7, 2) is
the span of the four projective lines

Lh := PVh = {uh(0), uh(1), uh(2)}, h ∈ {a, b, c, d}. (2)

It is surprising, but gratifying, that from such a simple starting point so many
interesting and intricate geometrical aspects quickly emerge, as we now describe.

1.1 H7-tetrads of lines in PG(7, 2)

For vh ∈ Vh let (va, vb, vc, vd) := va ⊕ vb ⊕ vc ⊕ vd denote a general element of V8.
Setting Uijkl := (ua(i), ub(j), uc(k), ud(l)) then the 255 points of PG(7, 2) are

{Uijkl| i, j, k, l ∈ {∅, 0, 1, 2}, ijkl 6= ∅∅∅∅}. (3)

First observe that the subgroup G(L4) of GL(8, 2) which preserves the direct sum
decomposition (1), and hence the foregoing tetrad

L4 := {La, Lb, Lc, Ld} (4)

of lines, has the semi-direct product structure

G(L4) = N ⋊ Sym(4), where N := GL(Va)× GL(Vb)× GL(Vc)× GL(Vd),

and where Sym(4) = Sym({a, b, c, d}). Hence |G(L4)| = 64 × 24 = 31, 104.
The G(L4)-orbits of points are easily determined. In addition to the weight

wt(p) = wtB(p) of a point p ∈ PG(7, 2) with respect to a basis B for V8, let us
also define its line-weight lw(p) as follows:

lw(Uijkl) = r whenever precisely r of i, j, k, l are in {0, 1, 2}.

Then the 255 points of PG(7, 2) clearly fall into just four G(L4)-orbits ω1, ω2, ω3,
ω4, where

ωr = {p ∈ PG(7, 2)| lw(p) = r}. (5)

The lengths of these orbits are accordingly

|ω1| = 12, |ω2| = (4
2)× 32 = 54, |ω3| = (4

3)× 33 = 108, |ω4| = 34 = 81.

Next take note that there is a unique Sp(8, 2)-geometry on V8 := V(8, 2), given by
a non-degenerate alternating bilinear form B, such that the subspaces Va, Vb, Vc, Vd

are hyperbolic 2-dimensional spaces which are pairwise orthogonal.
If B = {ei}i∈{1,2,3,4,5,6,7,8} is any basis such that

V8 = Va ⊥ Vb ⊥ Vc ⊥ Vd = ≺e1, e8≻ ⊥ ≺e2, e7≻ ⊥ ≺e3, e6≻ ⊥ ≺e4, e5≻ (6)

then the symplectic product x · y := B(x, y) is determined by its values on basis
vectors:

e1 · e8 = e2 · e7 = e3 · e6 = e4 · e5 = 1,

ei · ej = 0 for other values of i, j, (7)
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and so has the coordinate expression

x · y = (x1y8 + x8y1) + (x2y7 + x7y2) + (x3y6 + x6y3) + (x4y5 + x5y4).

Perhaps less obvious is the fact that the tetrad (4) also determines a particular
non-degenerate quadric Q in PG(7, 2). For, as we now show, such a quadric Q is
uniquely determined by the two conditions

(i) it has equation Q(x) = 0 such that the quadratic form Q polarizes to give
the foregoing symplectic form B : Q(x + y) + Q(x) + Q(y) = x · y;

(ii) the 12-set of points

P(L4) := ω1 = La ∪ Lb ∪ Lc ∪ Ld ⊂ PG(7, 2)

supporting the tetrad L4 is external to Q.

For it follows from (i) that the terms of degree 2 in Q must be P2(x) = x1x8 +
x2x7 + x3x6 + x4x5, and then the eight conditions Q(ei) = 1 entail that the linear
terms in Q must be P1(x) = ∑

8
i=1xi, so that

Q(x) = P2(x) + P1(x) = x1x8 + x2x7 + x3x6 + x4x5 + u · x, (8)

where u := ∑
8
i=1 ei. Further Q in (8) is seen to satisfy also the four conditions

Q(ei + ej) = 1, ij ∈ {18, 27, 36, 45}, so indeed Q(p) = 1 for all p ∈ ω1.

Theorem 1. The quadric Q is a hyperbolic quadric H7; moreover H7 = ω2 ∪ ω4.

Proof. There exist just two kinds, E7 and H7, of non-degenerate quadrics in
PG(7, 2). An elliptic quadric E7 has 119 points and a hyperbolic quadric H7 has
135 points; see [7, Theorem 5.21], [9, Section 2.2]. Since Q is uniquely determined,
its internal points must be a union of the G(L4)-orbits ω2, ω3, ω4, of respective
lengths 54, 108, 81. So the only possibility is that Q is a hyperbolic quadric
H7 = ω2 ∪ ω4, having 54 + 81 = 135 points. (So we will term such a tetrad
L4 of lines in PG(7, 2) a H7-tetrad.)

Corollary 2. G(L4) is a subgroup of the isometry group G(Q) ∼= O+(8, 2) < Sp(8, 2)
of the hyperbolic quadric H7.

Remark 3. In fact G(L4) is a maximal subgroup of O+(8, 2) = O+
8 (2) · 2; see

[3, p. 85], where it is recorded as S3 wr S4.

1.2 G(L4)-invariant polynomials

The tetrad L4 = {La, Lb, Lc, Ld} determines the following G(L4)-invariant sets of
flats in PG(7, 2) :

(i) four 5-flats : 〈La, Lb, Lc〉, 〈La, Lb, Ld〉, 〈La, Lc, Ld〉, 〈Lb, Lc, Ld〉;

(ii) six 3-flats : 〈La, Lb〉, 〈La, Lc〉, 〈La, Ld〉, 〈Lb, Lc〉, 〈Lb, Ld〉, 〈Lc, Ld〉;

(iii) four 1-flats : La, Lb, Lc, Ld.
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Let (i) Fhkl = 0 be the quadratic equation of the 5-flat 〈Lh, Lk, Ll〉, (ii) Fhk = 0 be
the quartic equation of the 3-flat 〈Lh, Lk〉 and (iii) Fh = 0 be the sextic equation
of the line Lh. (See [11, Lemma 2].) Consequently the tetrad L4 determines the
G(L4)-invariant polynomials Q2, Q4, Q6, of respective degrees 2, 4, 6, defined as
follows:

(i) Q2 = Fabc + Fabd + Facd + Fbcd,

(ii) Q4 = Fab + Fac + Fad + Fbc + Fbd + Fcd,

(iii) Q6 = Fa + Fb + Fc + Fd.

Theorem 4. The 81-set ω4 has the sextic equation Qω4
(x) = 0, where Qω4

:= Q6 +
Q4 + Q2.

Proof. Setting ψQ := {p ∈ PG(7, 2)| Q(p) = 0}, the last entry in the following
table follows from the three preceding entries.

Q(p) if p ∈
Q deg Q ω1 ω2 ω3 ω4 ψQ |ψQ|
Q2 2 1 0 1 0 ω2 ∪ ω4 135
Q4 4 1 1 0 0 ω3 ∪ ω4 189
Q6 6 1 0 0 0 ω2 ∪ ω3 ∪ ω4 243

Q2 + Q4 + Q6 6 1 1 1 0 ω4 81

Remark 5. Of course Q2 = 0 is, see Eq. (8), the H7 quadric Q of Theorem 1. Also
Q4 was denoted Q′

4 in [11, Theorem 17] and Q6 was denoted Q′
6 in [11, Example

20]. The sextic terms in Q6 are readily found, since

Q6 = Πi 6=1,8(1 + xi) + Πi 6=2,7(1 + xi) + Πi 6=3,6(1 + xi) + Πi 6=4,5(1 + xi).

Consequently, in terms of the sextic monomials x̂jxk := Πi/∈{j,k}xi, we see that

Q6 = x̂1x8 + x̂2x7 + x̂3x6 + x̂4x5 + (terms of degree < 6). (9)

Remark 6. A sextic polynomial Q determines, via complete polarization, an al-
ternating multilinear form ×6V8 → F2, and hence an element b ∈ ∧6V∗

8
∼= ∧2V8.

(See [10, Section 1.1].) Since Q6 is G(L4)-invariant, and since there is a unique
nonzero G(L4)-invariant element of ∧2V∗

8
∼= Alt(×2V8, F2), namely B in Eq. (7),

it follows, in the case Q = Q6, that b must be the ∧2V8 image of B ∈ ∧2V∗
8 , namely

b = e1 ∧ e8 + e2 ∧ e7 + e3 ∧ e6 + e4 ∧ e5. (10)

It follows from (10) that the sextic terms in Q6 must be the four monomials in (9).
So the result (9) could in fact have been deduced in this alternative manner.

From the foregoing it is not too difficult to find by hand the explicit coordinate
form of the sextic polynomial Qω4

. In fact we used Magma, see [2], to obtain the
result below. At times writing 1′ = 8, 2′ = 7, 3′ = 6, 4′ = 5, let us define the
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following polynomials:

P1 = ∑1≤i≤8xi, P2 = ∑1≤i<j≤8xixj, P3 = ∑1≤i<j<k≤8xixjxk,

P4 = ∑1≤k<l≤4xkxk′xlxl ′,

P′
4 = ∑

1≤m≤4

xmxm′Pmm′ , where Pmm′ = ∑
k<l, l 6=k′

k,l /∈{m,m′}

xkxl ,

P5 = ∑
1≤k<l≤4

m/∈{k,k′,l,l ′}

xkxk′xlxl ′xm,

P6 = ∑1≤k<l<m≤4xkxk′xlxl ′xmxm′ = x̂1x8 + x̂2x7 + x̂3x6 + x̂4x5 .

Then, assisted by Magma, we found that

Qω4
= P6 + P5 + P4 + P′

4 + P3 + P2 + P1.

2 The eight distinguished spreads {L
ijk
85}i,j,k∈{1,2}

Next we show that the partial spread L4 of four lines determines a privileged set
of eight extensions to a complete spread L85 of 85 lines in PG(7, 2). To this end,
for each h ∈ {a, b, c, d} let us choose that element ζh ∈ GL(Vh) of order 3 which
effects the cyclic permutation (uh(0)uh(1)uh(2)) of the points of Lh. Consider the
eight Z3-subgroups {Zijk}i,j,k∈{1,2} of G(L4) defined by

Zijk = 〈Aijk〉, where Aijk := (ζa)
i ⊕ (ζb)

j ⊕ (ζc)
k ⊕ ζd . (11)

When working using the basis B we will make the following choices for the four
ζh in (11):

ζa : e1 7→ e8 7→ e1 + e8, ζb : e7 7→ e2 7→ e2 + e7,

ζc : e3 7→ e6 7→ e3 + e6, ζd : e5 7→ e4 7→ e4 + e5. (12)

We will also choose the uh(0) so that U0000 is the unit point u of the basis B. Since
(Aijk)

2 + Aijk + I = 0, each Zijk acts fixed-point-free on PG(7, 2) and gives rise to

a spread L
ijk
85 of lines in PG(7, 2), with a point p ∈ PG(7, 2) lying on the line

Lijk(p) := {p, Aijkp, (Aijk)
2p} ∈ L

ijk
85 . (13)

Note that if in (11) one or more of the ζh is replaced by the identity element
Ih ∈ GL(Vh) then, although a Z3-subgroup of G(L4) which preserves the lines
is generated, it is not fixed-point-free on PG(7, 2). So there exist precisely eight
extensions of L4 to a Desarguesian spread of 85 lines in PG(7, 2). Observe that in
the case where p is the unit vector u := ∑

8
i=1 ei of the basis B then the eight lines

(13) are distinct: for, using ijkl as shorthand for ei + ej + ek + el, they are explicitly

L111(u) = {u, 1357, 2468}, L122(u) = {u, 1256, 3478},

L212(u) = {u, 5678, 1234}, L221(u) = {u, 2358, 1467},

L222(u) = {u, 2568, 1347}, L211(u) = {u, 3578, 1246},

L121(u) = {u, 1235, 4678}, L112(u) = {u, 1567, 2348}. (14)
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Lemma 7. For p ∈ PG(7, 2) the eight lines Lijk(p) are distinct if and only if p ∈ ω4.

Proof. We have in (14) just seen that the eight lines are distinct for the point
u ∈ ω4, and hence for all p ∈ ω4. Consider a point p = (0, vb, vc, vd) of line-
weight 3. Since A1jk p = A2jk p, and so L1jk(p) = L2jk(p), the lines Lijk(p) coincide
in pairs. Similarly for other points p ∈ ω3. For a point p ∈ ω2 of line-weight 2 the
analogous reasoning shows that only two of the lines Lijk(p) are distinct. And of
course if p ∈ ω1, that is if p ∈ Lh for some h ∈ {a, b, c, d}, then Lijk(p) = Lh for all
eight values of ijk.

Recall that on a H7 quadric there exist two systems of generators, see [8, Section
22.4], elements of either system being solids (3-flats). Consequently it follows
from the next theorem that the foregoing eight Z3-subgroups of G(L4) divide naturally
into two sets of size four, namely Z and Z

∗ where

Z = {Z111, Z122, Z212, Z221}, Z
∗ = {Z222, Z211, Z121, Z112}. (15)

Theorem 8. For p ∈ ω4 let Π(p) denote the flat spanned by the four lines Lijk(p),
ijk ∈ {111, 122, 212, 221}, and let Π∗(p) denote the flat spanned by the four lines
Lijk(p), ijk ∈ {222, 211, 121, 112}. Then Π(p) and Π∗(p) are generators of H7 which
moreover belong to different systems.

Proof. The flat Π(p) = 〈L111(p), L122(p), L212(p), L221(p)〉 for the point
p = (va, vb, vc, vd) ∈ ω4 is seen, upon using (ζh)

2 + ζh = Ih, to consist of the
nine points L111(p) ∪ L122(p) ∪ L212(p) ∪ L221(p) of line-weight 4 together with
the following six points of line-weight 2:

(va, vb, 0, 0), (va, 0, vc, 0), (va, 0, 0, vd),

(0, 0, vc, vd), (0, vb, 0, vd), (0, vb, vc, 0). (16)

By Theorem 1, for each p ∈ ω4, the flat Π(p) is in fact a solid on the quadric
H7. Similarly the same applies to the flat Π∗(p), whose six points of line-weight
2 moreover coincide with those of Π(p). So Π(p) ∩ Π∗(p) is the isotropic plane
consisting of p = (va, vb, vc, vd) together with the six points (16). Consequently,
see [8, Theorem 22.4.12, Corollary], for each p ∈ ω4 the generators Π(p) and
Π∗(p) belong to different systems.

3 The normal subgroup G81 of G(L4)

Let Zh denote that Z3 subgroup of G(L4) which fixes pointwise each of the three
lines L4 \ Lh, h ∈ {a, b, c, d}. Then clearly the elementary abelian group

G81 := Za × Zb × Zc × Zd
∼= Z3 × Z3 × Z3 × Z3

is a normal subgroup of N = GL(Va) × GL(Vb) × GL(Vc) × GL(Vd) and also
of G(L4) = N ⋊ Sym(4). Observe that ω4 is a single G81-orbit. One easily sees
that G81 is equally well the direct product Z111 × Z122 × Z212 × Z221 of the four
members of Z, and also the direct product Z222 × Z211 × Z121 × Z112 of the four
members of Z

∗.
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Consider now any Z3 × Z3 × Z3 subgroup H < G81. If G81 = H ∪ H′ ∪ H′′

denotes the decomposition of G81 into the cosets of H then we define subsets
R := RH ,R′ := R′

H,R′′ := R′′
H of ω4 by

R = {hu, h ∈ H}, R′ = {h′u, h′ ∈ H′}, R′′ = {h′′u, h′′ ∈ H′′}. (17)

In particular R = RH is the orbit of u under the action of the group H. Each such
subgroup H < G81 gives rise to a decomposition ω4 = R∪R′ ∪R′′ of ω4 into a
triplet of 27-sets.

As we will now demonstrate, the study of such triplets is greatly simplified by
viewing G81 in a GF(3) light.

3.1 A GF(3) view of G81

For i, j, k, l ∈ F3 = GF(3) = {0, 1, 2} define

Aijkl := (ζa)
i ⊕ (ζb)

j ⊕ (ζc)
k ⊕ (ζd)

l .

Note that if i, j, k ∈ {1, 2} then Aijk1 = Aijk, as previously defined in (11). In the

following we will view ijkl as shorthand for the element (i, j, k, l) ∈ (F3)
4. Since

Aσ Aτ = Aσ+τ, σ, τ ∈ (F3)
4, (18)

observe that A : σ 7→ Aσ, σ ∈ (F3)
4, is an isomorphism mapping the additive

group (F3)
4 onto the multiplicative group G81. Now the orbit of any point p ∈ ω4

under the action of the group G81 is the whole of ω4. In particular this is so for
the unit point u := ∑

8
i=1 ei of the basis B. Consequently the 81-set ω4 is in bijective

correspondence with (F3)
4 as given by the map θu : (F3)

4 → ω4 defined by

θu(σ) = pσ := Aσu, σ ∈ (F3)
4. (19)

Observe that the choices made in (2) and (12) imply that θu(ijkl) = Uijkl for all

ijkl ∈ (F3)
4.

In the GF(3) space V(4, 3) = (F3)
4 we will chiefly employ the basis

Bε := {ε1, ε2, ε3, ε4}, where

ε1 = 1000, ε2 = 0100, ε3 = 0010, ε4 = 0001, (20)

and then write a general element ξ = ∑
4
r=1ξrεr ∈ V(4, 3) as ξ = ξ1ξ2ξ3ξ4. We

denote the weight of ξ ∈ (F3)
4 in the basis Bε by wtε(ξ).

Let us now study subgroups of G81 by viewing them in the light of their corresponding
subspaces in the vector space V(4, 3) = (F3)

4.
A Z3 subgroup of G81 is of the form {I, Aσ, A2σ} for some non-zero

σ ∈ V(4, 3). So G81 contains 40 subgroups ∼= Z3 which are in bijective correspondence
with the 40 points of the projective space PG(3, 3) = PV(4, 3). If we denote by Ξ ∪ Ξ∗

the following eight elements of (F3)
4 :

Ξ : α = 1111, β = 1221, γ = 2121, δ = 2211,

Ξ∗ : α∗ = 2221, β∗ = 2111, γ∗ = 1211, δ∗ = 1121, (21)
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then observe that Aα, Aβ, . . . , Aδ∗ are the respective generators of the eight
Z3-subgroups Z111, Z122, . . . , Z112 ∈ Z ∪ Z

∗ considered in (15). Now under the
action by conjugacy of G(L4) on G81 the particular 4-set {Za, Zb, Zc, Zd} = {〈Aε1

〉,
〈Aε2〉, 〈Aε3〉, 〈Aε4

〉} of Z3 subgroups is fixed, whence

Tε := {〈ε1〉, 〈ε2〉, 〈ε3〉, 〈ε4〉}

is a G(L4)-distinguished tetrahedron of reference in PG(3, 3). Consequently take note
that the eight Z3 subgroups {〈Aρ〉}ρ∈Ξ∪Ξ∗ considered in (15) are picked out as the only
Z3 subgroups 〈Aρ〉 of G81 for which wtε(ρ) = 4.

Next let us consider subgroups H ∼= Z3 × Z3 × Z3 of G81.

Theorem 9. The normal subgroup G81 < G(L4) contains precisely 40 subgroups H ∼=
Z3 × Z3 × Z3. These fall into four conjugacy classes C0, C1, C2, C3 of G(L4), of respective
sizes 8, 16, 12, 4.

Proof. Each subgroup 〈Aρ, Aσ, Aτ〉 ∼= Z3 × Z3 × Z3 arises as

{Aλ| λ ∈ V3 := ≺ρ, σ, τ≻}

from a corresponding projective plane PV3 = 〈〈ρ〉, 〈σ〉, 〈τ〉〉 in PG(3, 3). Now
there exist precisely 40 planes in PG(3, 3), and these fall into four kinds P0, P1,
P2, P3, where Pr denotes those planes in PG(3, 3) which contain precisely r of
the vertices 〈εi〉 of the tetrahedron of reference Tε. There are 8 planes of kind P0,
namely those with one of the 8 equations

ξ4 = c1ξ1 + c2ξ2 + c3ξ3, c1, c2, c3 ∈ {1, 2}. (22)

Similarly we see that there are, respectively, 16, 12, 4 planes of kinds P1, P2, P3.
The theorem now follows, since planes of the same kind are seen to correspond
to conjugate Z3 × Z3 × Z3 subgroups.

Finally let us consider subgroups H ∼= Z3 ×Z3 of G81. Such a subgroup 〈Aρ, Aσ〉
arises from a corresponding line 〈〈ρ〉, 〈σ〉〉 ⊂ PG(3, 3), and so we need to clas-
sify lines with respect to the G(L4)-distinguished basis Bε. If nw points of a line
L ⊂ PG(3, 3) have weight w, w ∈ {1, 2, 3, 4}, with respect to the basis Bε then we
will say that L has weight pattern πε(L) = (n1, n2, n3, n4).

Theorem 10. The normal subgroup G81 < G(L4) contains precisely 130 subgroups
∼= Z3 × Z3. These fall into seven conjugacy classes K1, . . . ,K7 of G(L4), of respective
sizes 6, 24, 16, 12, 16, 48, 8.

Proof. Each subgroup 〈Aρ, Aσ〉 ∼= Z3 × Z3 arises from a corresponding line
〈〈ρ〉, 〈σ〉〉 ⊂ PG(3, 3), and there exist precisely 130 lines in PG(3, 3). With respect
to the G(L4)-distinguished tetrahedron of reference Tε the 130 lines L are of seven
kinds Λ1, . . . , Λ7 as described in the following table.

πe(L) |Λi|
L ∈ Λ1 (2, 2, 0, 0) 6
L ∈ Λ2 (1, 1, 2, 0) 24
L ∈ Λ3 (0, 3, 1, 0) 16
L ∈ Λ4 (0, 2, 0, 2) 12
L ∈ Λ5 (1, 0, 1, 2) 16
L ∈ Λ6 (0, 1, 2, 1) 48
L ∈ Λ7 (0, 0, 4, 0) 8

(23)
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The theorem now follows since lines of the same kind correspond to conjugate
Z3 × Z3 subgroups.

3.2 The 27-set ‘denizens’ of ω4

It follows from Theorem 9 that the 81-set ω4 is populated by 40 triplets {R,R′,R′′}
of 27-set ‘denizens’, as in (17), and that these triplets, and the 120 denizens of
ω4, can be classified into four kinds C0, C1, C2, C3. One of our aims is to show
that precisely eight of these triplets are triplets of Segre varieties S3(2). So it helps to
remind ourselves at this point about certain aspects of a Segre variety S = S3(2)
in PG(7, 2), and to relate our present concerns to those in [4], [5] and [11].

First of all, S defines a (273, 273) configuration, each of the 27 points of S lying
on precisely 3 lines ⊂ S , namely three of the 27 generators of S . Moreover the
stabilizer group GS of S contains as a normal subgroup a group 〈A1, A2, A3〉 ∼=
Z3 × Z3 × Z3 which acts transitively on the 27 points of S , the three generators of
S through a point p ∈ S being the lines

Lr(p) := {p, Ar p, (Ar)
2 p}, r = 1, 2, 3. (24)

Here Ar satisfies (Ar)2 + Ar + I = 0, each Z3 group 〈Ar〉 acting fixed-point-free
on PG(7, 2). Further, as noted in [11, Theorem 5], S determines a distinguished
Z3-subgroup 〈W〉 which also acts fixed-point-free on PG(7, 2), the distinguished
tangent, see [11, Section 2.1], at p ∈ S being the line {p, Wp, W2p}. Moreover,
see [11, Section 4.2], under the action of the distinguished Z3-subgroup 〈W〉 the
Segre variety S gave rise to a triplet {S , S ′ = W(S), S ′′ = W2(S)} of Segre
varieties. In [4, p. 82] (although without proof and using a different notation),
[5, Proposition 5] and [11, Section 4.1] the five GS -orbits O1,O2,O3,O4,O5 of
points were described, with O5 = S and O4 = S ′ ∪ S ′′. These are related to the
four G(L4)-orbits (5) in the following simple manner:

ω1 = O1, ω2 = O2, ω3 = O3, ω4 = O4 ∪O5 = S ∪ S ′ ∪ S ′′. (25)

So ω4 is a single orbit under the action of the group 〈A1, A2, A3, W〉 ∼= (Z3)
4, this

last thus being the group G81 in our present context.

Lemma 11. If p ∈ ω4 and λ ∈ (F3)
4, λ 6= 0000, then Lλ

p := {p, Aλ p, A2λ p} is a line
in ω4 if and only if ±λ ∈ Ξ ∪ Ξ∗.

Proof. We already know, see (13), that Lλ
p is a line if λ ∈ Ξ ∪ Ξ∗ or if −λ ∈ Ξ ∪

Ξ∗. Also, as noted after equation (21), if ±λ /∈ Ξ ∪ Ξ∗ then wtε(λ) < 4, and so
λ = mnrs where at least one of m, n, r, s is 0. For example, suppose λ = mnr0,
where m, n, r ∈ F3. Then (I + Aλ + A2λ)Uijkl = U∅∅∅l 6= 0.

Remark 12. A partial affine space, see [1, p. 35] or [6, p. 794], is an affine space from
which some parallel classes have been removed. For example, the affine space
on (F3)

4 turns into a partial affine space if we consider only affine lines with a
direction vector ±λ ∈ Ξ ∪ Ξ∗ and restrict the parallelism of (F3)

4 to the set of
those lines. Lemma 11 shows that ω4 arises as the point set of an isomorphic
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partial affine space in the following way: The lines in ω4 are of the form Lλ
p with

±λ ∈ Ξ ∪ Ξ∗. Two lines are parallel if they belong to the same distinguished

spread L
ijk
85 .

Theorem 13. A triplet of 27-sets {RH ,R′
H,R′′

H} in (17) which arises from a (Z3)
3

subgroup H = {Aλ| λ ∈ V3} will consist of Segre varieties S3(2) if and only if the
projective plane P = PV3 ⊂ PG(3, 3) is of kind P0. So the 81-set ω4 contains precisely
24 copies of a Segre variety S3(2).

Proof. Since each point of a Segre S = S3(2) lies on precisely three generators of S ,
see (24), it follows from the preceding lemma that in order for RH to be a S3(2) the
subgroup H must be of the form 〈Aλ, Aµ, Aν〉 for precisely three element λ, µ, ν ∈
Ξ ∪ Ξ∗. But a straightforward check shows that planes of the kinds P0,P1,P2,P3

contain, respectively, precisely 3, 2, 4, 0 points 〈λ〉 with λ ∈ Ξ ∪ Ξ∗. So only in the
eight cases where the Z3 subgroup H < G81 is of kind C0 can RH be Segre variety
S3(2). By (25) for one such subgroup a Segre variety arises and, by Theorem 9,
the same holds for the remaining subgroups of kind C0.

Remark 14. It is easy to check that if all three of λ, µ, ν are in Ξ, or if all three are
in Ξ∗, then P(≺λ, µ, ν≻) is a plane in PG(3, 3) of kind P0, thus accounting for all
eight planes of kind P0. But if λ, µ, ν are split 2, 1 or 1, 2 between Ξ, Ξ∗, then we
see that H = 〈Aλ, Aµ, Aν〉 contains a fourth Z3 subgroup 〈Aρ〉 with ρ ∈ Ξ ∪ Ξ∗ :
for example, observe results such as

≺α, β, α∗≻ = ≺α, β, α∗, β∗≻, and ≺α, β, γ∗≻ = ≺α, β, γ∗, δ∗≻. (26)

So such a (Z3)
3 subgroup H is of kind C2, not C0, and RH gives rise to a (274, 363)

configuration in contrast to the (273, 273) configuration arising from a S3(2).

It was proved in [11, Theorem 18] that a Segre variety S3(2) in PG(7, 2) has a
sextic equation. In fact, from our results in Section 1.2 we can deduce that if S is
any of the 24 copies of a Segre variety S3(2) in ω4 then S has a sextic equation of
the form QS(x) = 0 where, for some polynomial FS of degree < 6,

QS = x̂1x8 + x̂2x7 + x̂3x6 + x̂4x5 + FS . (27)

For recall from (25) that ω4 = O4 ∪O5 where O5 = S . Now, see [11, Theorem 17],
the 201-set (O4)

c := ω1 ∪ ω2 ∪ ω3 ∪ S has a quartic equation, say F′
S = 0, and,

see Theorem 4, O4 ∪ S has sextic equation Q6 + Q4 + Q2 = 0. It follows that S
has equation Q6 + Q4 + Q2 + F′

S = 0 which, see (9), is of the form (27).

3.3 Non-Segre triplets in ω4

When the authors first considered 27-sets such as Rαβγ∗ = {Aρu}ρ∈≺α,β,γ∗≻ they
were briefly misled into thinking that Rαβγ∗ was a Segre S3(2). Upon discovering
their error, see (26), they decided that all the ‘deceitful’ non-Segre 27-sets in ω4

should be termed ‘rogues’. In this terminology we can summarize our foregoing
results as follows.
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The 81-set ω4 is populated by 120 denizen 27-sets which occur as
40 triplets {R,R′,R′′} such that R∪R′ ∪R′′ = ω4. Of these triplets
eight are of Segre varieties S3(2), sixteen are of rogues of kind C1,
twelve are of rogues of kind C2 and four are of rogues of kind C3.

Since a Segre variety S3(2) spans PG(7, 2), the next two theorems confirm in
a more vivid manner that rogues of kinds C2 and C3 are not Segre varieties.

Theorem 15. Suppose that a 27-set R ⊂ ω4 is a rogue of kind C2. Then 〈R〉 is a 5-flat
in PG(7, 2).

Proof. Six of the twelve planes of kind P2 are those having equations of the kind
ξr = ξs and the other six are those having equations of the kind ξr = 2ξs. Consider
a plane P = PV3 in the first six, say with equation ξ3 = ξ4. Then, see (3), the subset
θu(V3) consists of the 27 points

R := {Uijkk| i, j, k ∈ F3 = {0, 1, 2}}. (28)

Now any two elements a, b of a line Lh ∈ L4 satisfy a · b = 1 if a 6= b and a · b = 0
if a = b. So the three points of the line

LR := {U∅∅00, U∅∅11, U∅∅22} ⊂ 〈Lc, Ld〉

are perpendicular to every point of R. However this is not the case for any other
point of PG(7, 2), and so 〈R〉 is the 5-flat (LR)

⊥. A plane P = PV3 in the second
six, say with equation ξ3 = 2ξ4 = −ξ4, can be treated similarly, with the subset
θu(V3) consisting of the 27 points

R∗ := {Uijkk| i, j, k ∈ F3 = {0, 1, 2}}, (29)

where, for k ∈ F3, k denotes −k(= 2k). If R∗ is as in (29) then we see that 〈R∗〉 is
the 5-flat (LR∗)

⊥ where

LR∗ := {U∅∅00, U∅∅12, U∅∅21} ⊂ 〈Lc, Ld〉.

Remark 16. Consider the triplet {R,R′,R′′} of kind C2 which contains R as in
(28). Then R′ = Aµ(R) and R′′ = A2µ(R) for suitable µ ∈ (F3)

4, for example
µ = 0001. Consequently

LR′ := {U∅∅01, U∅∅12, U∅∅20}, LR′′ := {U∅∅02, U∅∅10, U∅∅21}.

Similarly, in the case of the triplet {R∗,R′
∗,R′′

∗} of kind C2 which contains R∗ as
in (29) we see that

LR′
∗

:= {U∅∅01, U∅∅10, U∅∅22}, LR′′
∗

:= {U∅∅02, U∅∅11, U∅∅20}.

So the three lines {LR, LR′ , LR′′} are a regulus in the 3-flat 〈Lc, Ld〉, and the three
lines {LR∗ , LR′

∗
, LR′′

∗
} are the opposite regulus, the 9-set supporting the two reguli

being that hyperbolic quadric H3 in the 3-flat 〈Lc, Ld〉 which has Lc and Ld as its
two external lines. Of course similar considerations apply to all twelve of the
planes in PG(3, 3) of kind P2. Thus each of the six pairs of lines in L4 gives rise to
a pair of opposite reguli and hence to a set of 6 × 2 × 3 = 36 lines L ⊂ ω2. Each
such L gives rise to a rogue R of kind C2, namely to R = L⊥ ∩ ω4.
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Theorem 17. Suppose that a 27-set R ⊂ ω4 is a rogue of kind C3. Then 〈R〉 is a 6-flat
in PG(7, 2).

Proof. By Theorem 9 there are four triplets in ω4 of kind C3, which arise from the
four planes ξr = 0, r ∈ {1, 2, 3, 4}. Consider the plane P = PV3 with equation
ξ4 = 0. Then, see (3), it gives rise to the following triplet of 27-sets

R := {Uijk0}, R′ := {Uijk1}, R′′ := {Uijk2}, i, j, k ∈ F3 = {0, 1, 2}.

It quickly follows that 〈R〉, 〈R′〉 and 〈R′′〉 are 6-flats, namely

〈R〉 = 〈U∅∅∅0〉
⊥, 〈R′〉 = 〈U∅∅∅1〉

⊥, 〈R′′〉 = 〈U∅∅∅2〉
⊥,

where {U∅∅∅0, U∅∅∅1, U∅∅∅2} = Ld. Of course the other three triplets in ω4 of
kind C3 are associated in a similar way with the other three lines La, Lb, Lc ∈
L4.

4 Intersection properties

4.1 Introduction

If ∆1 and ∆2 are any two distinct triplets of 27-set denizens of ω4 note that

N (∆1, ∆2) := {R1 ∩ R2 : R1 ∈ ∆1, R2 ∈ ∆2} (30)

is an ennead of 9-sets which provides a partition of ω4. For suppose that H1 and H2

are two (Z3)
3 subgroups of G81 whose orbits in ω4 yield the triplets ∆1 and ∆2.

Then the (Z3)
2 subgroup H = H1 ∩ H2 yields one member {hu, h ∈ H} of the

ennead of 9-sets (30), the other members of the ennead being the other orbits of
H in ω4.

Since the origin of the present research arose from our interest in Segre va-
rieties S3(2) in PG(7, 2), let us at least look at the different kinds of intersection
S ∩R of a Segre variety S ⊂ ω4 with another 27-set denizen R of ω4. Such an
intersection we will term a section of the Segre S . Recall from Theorem 13 that
a Segre variety S ⊂ ω4 arises as SH := {hu, h ∈ H} from a (Z3)

3 subgroup
H < G81 which is of class C0, being the image, under the isomorphism A in (18),
of a 3-dimensional subspace V3 such that the projective plane P = PV3 ⊂ PG(3, 3)
is of kind P0.

Lemma 18. Suppose that P = PV3 ⊂ PV(4, 3) is a projective plane of kind P0. Then
the 13 lines L ⊂ P fall into three G(L4)-orbits:

(i) 3 lines of kind Λ4;

(ii) 6 lines of kind Λ6;

(iii) 4 lines of kind Λ3.
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Proof. Without loss of generality we may, see Remark 14, consider the particular
plane

P = PVβγδ, where Vβγδ = ≺β, γ, δ≻ ⊂ V(4, 3) = (F3)
4.

Observe that the 13 lines in the plane P are as follows:
(i) the 3 lines P≺β, γ≻, P≺β, δ≻, P≺γ, δ≻ of weight pattern (0, 2, 0, 2);
(ii) the 6 lines P≺β, γ ± δ≻, P≺γ, β ± δ≻, P≺δ, β ± γ≻ of weight pattern
(0, 1, 2, 1);
(iii) the 4 lines P≺β ± γ, β ± δ≻ of weight pattern (0, 3, 1, 0).
Hence, see (23), the stated result holds.

Equivalently expressed, the thirteen Z3 × Z3 subgroups of 〈Aβ, Aγ, Aδ〉 < G81

comprise: (i) three of class K4 (ii) six of class K6 (iii) four of class K3.

4.2 Sections of a Segre variety S ⊂ ω4

Without loss of generality we may consider the particular Segre variety
Sβγδ := SH where H = 〈Aβ, Aγ, Aδ〉:

Sβγδ = θu(Vβγδ), where Vβγδ = ≺β, γ, δ≻ ⊂ (F3)
4.

In detail the 27 elements of Vβγδ are:

0000 1221 2112
2121 0012 1200
1212 2100 0021

Tδ−→

2211 0102 1020
1002 2220 0111
0120 1011 2202

Tδ−→

1122 2010 0201
0210 1101 2022
2001 0222 1110

. (31)

In the display (31) the rows of each 9-set are orbits of 〈Tβ〉 and the columns of each

9-set are orbits of 〈Tγ〉, where Tλ denotes the translation which maps µ ∈ (F3)
4

to λ + µ ∈ (F3)
4; of course (Tλ)

2 = T2λ. Incidentally observe from (31) that, in
conformity with (22), Vβγδ is that 3-dimensional subspace of V(4, 3) having the
equation

ξ1 + ξ2 + ξ3 + ξ4 = 0.

Using the basis B, with ζh as in (12), we see, in the shorthand notation of Eq. (14),
that Sβγδ thus consists of the following 27 points:

u 1256 3478
5678 56u 78u
1234 12u 34u

Aδ−→

2358 25u 38u
58u 137u 246u
23u 468u 157u

Aδ−→

1467 16u 47u
67u 248u 135u
14u 357u 268u

. (32)

Observe that each 9-set in (32) is a Segre variety S2(2), whose generators are the
rows and columns in the display, these being orbits of, respectively, 〈Aβ〉 and
〈Aγ〉.

Acting upon Sβγδ with a Z3 subgroup of G81 which is not in 〈Aβ, Aγ, Aδ〉, for
example with 〈Aα〉, will produce the siblings S ′

βγδ, S ′′
βγδ of Sβγδ, these siblings

being the images under θu of the two affine subspaces in V(4, 3) = (F3)
4 which

are translates of Vβγδ.
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Recalling the proof of Lemma 18, let us make the following choices of repre-
sentatives for the three kinds of 2-dimensional subspaces V2 ⊂ Vβγδ:

(i) ≺β, γ≻, (ii) ≺δ, β + γ≻, (iii) ≺β − γ, β − δ≻.

For the choice (i) the nine elements of V2 = ≺β, γ≻ are those in the first 9-set
in (31). The corresponding section θu(V2) of Sβγδ is the first of the three S2(2)
varieties in (32).

For the choice (ii) the nine elements of V2 = ≺δ, β + γ≻ satisfy ξ1 = ξ2 and
are those underlined in:

0000 1221 2112
2121 0012 1200
1212 2100 0021

Tδ−→

2211 0102 1020
1002 2220 0111
0120 1011 2202

Tδ−→

1122 2010 0201
0210 1101 2022
2001 0222 1110

.

We will term the resulting section θu(V2) of the S3(2) a 3-generator set: it consists
of three parallel generators of S3(2) which meet a ‘perpendicular’ S2(2) in three
points no two of which lie on the same generator of the S2(2).

Finally the nine elements of V2 = ≺β − γ, β − δ≻ satisfy ξ4 = 0 and are those
underlined in:

0000 1221 2112
2121 0012 1200
1212 2100 0021

Tδ−→

2211 0102 1020
1002 2220 0111
0120 1011 2202

Tδ−→

1122 2010 0201
0210 1101 2022
2001 0222 1110

.

We will term the resulting section θu(V2) of the S3(2) a fan:

Definition 19. A subset F of nine points of a S3(2) is a fan (= f ar-apart nine) if no
two points of F lie on the same generator. (So if F is a fan for a S3(2) then the 3
generators through each of the 9 points of F account for all 3× 9 = 27 generators
of S3(2).)

We may summarize the foregoing as follows.

Theorem 20. A section of a Segre variety S3(2) in ω4 is either (i) a S2(2), or (ii) a
3-generator set, or (iii) a fan.

4.3 Hamming distances and troikas

In the GF(3) space V(4, 3) = (F3)
4 we have been employing the basis

Bε := {ε1, ε2, ε3, ε4}, see (20). Using this basis it helps at times to make use of
the associated Hamming distance hdε(ρ, σ) between two elements σ, τ ∈ (F3)

4, as
defined by

hdε(ρ, σ) = wtε(ρ − σ).

Remark 21. If ρ, σ belong to the same row in (21) observe that hdε(ρ, σ) = 2,
while if ρ, σ belong to different rows then hdε(ρ, σ) is odd.

The next lemma demonstrates that some aspects of orthogonality in the GF(2)
space PG(7, 2) can be neatly dealt with in GF(3) terms.
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Lemma 22. Two points pρ, pσ ∈ ω4 are orthogonal or non-orthogonal according as
hdε(ρ, σ) is even or odd.

Proof. For two points uh(i), uh(j) ∈ Lh we have uh(i) · uh(j) = 1 + δij. Hence if
ρ = ijkl and σ = i′ j′k′l′ it follows that pρ · pσ = δii′ + δjj′ + δkk′ + δll ′, whence the
stated result.

A description of the different sections of a Segre variety S ⊂ ω4 can sometimes
be helped by the use of the alternative basis BΞ := {β, γ, δ, α} for V(4, 3) = (F3)

4.
Here, as in (21), β = 1221, γ = 2121, δ = 2211, α = 1111. The change of basis
equations are therefore:

β = ε1 − ε2 − ε3 + ε4, γ = − ε1 + ε2 − ε3 + ε4,

δ = − ε1 − ε2 + ε3 + ε4, α = ε1 + ε2 + ε3 + ε4,

ε1 = β − γ − δ + α, ε2 = − β + γ − δ + α,

ε3 = − β − γ + δ + α, ε4 = β + γ + δ + α. (33)

Observe that the chosen ordering of the elements of the basis BΞ results in the
change of basis matrix M having the simple properties Mt = M = M−1.

So in V(4, 3) we now have available the Hamming distance in the basis BΞ,
namely

hdΞ(ρ, σ) := wtΞ(ρ − σ), ρ, σ ∈ (F3)
4,

where wtΞ(λ) denotes the weight of an element λ ∈ V(4, 3) in the basis BΞ.

Lemma 23.

wtΞ(λ) = 2 ⇐⇒ wtε(λ) = 2, wtΞ(λ) = 3 ⇐⇒ wtε(λ) = 3,

wtΞ(λ) = 1 ⇐⇒ wtε(λ) = 4, wtΞ(λ) = 4 ⇐⇒ wtε(λ) = 1. (34)

Proof. The results (34) follow immediately from (33).

Let us also define the Hamming distance hd(pρ, pσ) between two points
pρ, pσ ∈ ω4 to be

hd(pρ, pσ) := hdΞ(ρ, σ).

Observe that this definition does not depend upon the choice of the point u used
in the bijective correspondence θu in (19), due to the invariance of hdΞ under
translations: hdΞ(λ + ρ, λ + σ) = hdΞ(ρ, σ). Suppose that we confine our atten-
tion to points p, p′, . . . on a particular Segre variety in ω4, say S = S βγδ in (32).
Then observe that hd(p, p′) = d, d ∈ {1, 2, 3}, provided that p′ can be obtained
from p only by the use of at least d of the generating subgroups 〈Aβ〉, 〈Aγ〉, 〈Aδ〉
of S . In particular distinct points p and p′ lie on the same generator of S if and
only if hd(p, p′) = 1. This Hamming distance on S appears also in [5].

Definition 24. (i) A troika on a given S3(2) variety S in ω4 is a set of three points
of S which are hdΞ = 3 apart.

(ii) The centre of a troika t = {p1, p2, p3} is the point c(t) = p1 + p2 + p3.

For example, the three points u, 246u, 357u ∈ Sβγδ in (32) are hdΞ = 3 apart
and so form a troika. Alternatively this follows from (34) since 0000, 0111, 0222 in
(31) are hdε = 3 apart.
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Theorem 25. (i) A fan F for a Segre variety S in ω4 can be uniquely expressed as the
union F = t ∪ t′ ∪ t′′ of a triplet of troikas.

(ii) The three troikas t, t′, t′′ in F share the same centre, say cF .
(iii) Moreover a fan F for S determines uniquely a triplet T = {F ,F ′,F ′′} of fans

such that F ∪ F ′ ∪ F ′′ = S . Further, L(T ) := {cF , cF ′ , cF ′′} is one of the lines of the
H7-tetrad L4.

Proof. Suppose that S = θu(V3) and that F ⊂ S is a fan which contains u.
(i) So F = θu(V2), V2 ⊂ V3, where the projective line L = PV2 is of kind Λ3,

with line pattern (0, 3, 1, 0). Consequently L has a unique point 〈λ〉 with wt(λ) =
3. Hence the element 0000 ∈ (F3)

4 has the unique extension V1 := {0000, λ, 2λ}
to a 3-set of elements of V2 which are Hamming distance 3 apart. So the point
u belongs to a unique troika t ⊂ F , namely t := θu(V1) = {u, Aλu, A2λu}.
If V2 = ≺λ, µ≻, the two translates Tµ(V1), T2µ(V1) of V1 in V2 yield two other
troikas t′ = Aµt, t′′ = A2µt, giving rise to the claimed unique decomposition
F = t ∪ t′ ∪ t′′.

(ii) Since wt(λ) = 3, precisely one of the coordinates of λ in the basis Bε is
zero. First suppose λ satisfies ξ4 = 0. Then for PV2 = P(≺λ, µ≻) to be of kind
Λ3 the element µ must also satisfy ξ4 = 0. So a point p ∈ F must be of the form
Uijk0. Hence that troika {p, Aλ p, A2λ p} ⊂ F which contains p has centre

c = (I + Aλ + (Aλ)
2)Uijk0 = U∅∅∅0. (35)

So the same point c = U∅∅∅0, which lies on the line Ld ∈ L4, is the centre of each
of the three troikas in F . Of course, if instead λ satisfies ξi = 0 for i = 1, 2, 3 then
the analogous reasoning shows that the common centre of the three troikas in F
is U0∅∅∅ ∈ La, U∅0∅∅ ∈ Lb or U∅∅0∅ ∈ Lc, according as i = 1, 2 or 3.

(iii) We are dealing with S = θu(V3) where V3 is of the form V3 = V2 ⊕
≺ν≻, V2 = ≺λ, µ≻, and where we may choose ν to have wtε = 4. The fan
F = θu(V2) determines a triplet T = {F ,F ′,F ′′} of fans, where F ′ = Aν(F )
and F ′′ = A2ν(F ), such that F ∪ F ′ ∪ F ′′ = S . Moreover if cF = U∅∅∅0 as in
(35) then cF ′ = AνcF , cF ′′ = A2νcF will be the other two points U∅∅∅1, U∅∅∅2

of the line Ld. Similarly for the other three cases considered in (ii) above, where
{cF , cF ′ , cF ′′} is one of the other lines of the tetrad L4.

In the paper [11] the fact that a Segre variety S = S3(2) in PG(7, 2) determines
a distinguished tetrad L4 of lines which span PG(7, 2) only emerged rather late,
see [11, Section 4.1]. One of the motivations for the present paper was to come to
a clearer understanding of the relationship between S and L4. This can now be
achieved: see the next theorem, where it is shown how to obtain the same tetrad
L4 from any of the 24 copies of a Segre variety S3(2) in the 81-set ω4.

Theorem 26. A Segre variety S in ω4 determines precisely four triplets Ti, i ∈ (1, 2, 3, 4)
of fans; further the resulting four lines Li := L(Ti) are the four lines of the H7-tetrad L4.

Proof. A Segre variety in ω4 is of the form S = θu(V3) where the projective
plane P = PV3 ⊂ PG(3, 3) is of kind P0. Now, see (31), there are precisely 8
elements of V3 of weight 3, and these form 4 pairs, say {±λ1}, {±λ2}, {±λ3},
{±λ3}. Consequently the element 0000 ∈ V3 has precisely 4 extensions, namely
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{0000, λi,−λi}, i = 1, 2, 3, 4, to a 3-set of elements of V3 which are Hamming
distance 3 apart. Hence the point u = θu(0000) lies in precisely 4 troikas and,
by Theorem 25(i), in precisely 4 fans Fi, i = 1, 2, 3, 4. By Theorem 25(iii) each of
the resulting 4 triplets Ti = {Fi,F

′
i ,F ′′

i } of fans determines a line L(Ti) of the
tetrad L4. Further, from the proof of Theorem 25(iii), we see that these lines are
distinct.

4.4 Future research

We are of the opinion that some further investigation of the denizens of ω4, and
of their interactions, should prove worthwhile. Moreover such an investigation
should not be confined to the 27-set denizens arising from Theorem 9, since at
least some of the 9-set denizens of ω4 arising from Theorem 10 deserve atten-
tion. In particular the 9-sets in ω4 which arise from those lines in the table (23)
which have weight pattern (0, 0, 4, 0) are certainly noteworthy. For suppose that
V(2, 3) ⊂ V(4, 3) is such that L = PV(2, 3) is of kind Λ7, and so wtε(ρ) = 3 for
every nonzero element ρ ∈ V(2, 3). It follows that any pair of distinct elements
ρ, σ of V(2, 3) are Hamming distance 3 apart, and hence, by Lemma 22, the points
pρ, pσ are non-perpendicular: pρ · pσ = 1. In this easy manner we have constructed a
9-cap N = {pρ}ρ∈V(2,3) on the quadric H7. Moreover under the action on N of G81

we will obtain a partition of the 81-set ω4 into an ennead of quadric 9-caps.
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