
Insertion and extension results for pointfree

complete regularity∗

Javier Gutiérrez Garćıa Jorge Picado

Abstract

There are insertion-type characterizations in pointfree topology that ex-
tend well known insertion theorems in point-set topology for all relevant
higher separation axioms with one notable exception: complete regularity.
In this paper we fill this gap. The situation reveals to be an interesting and
peculiar one: contrarily to what happens with all the other higher separation
axioms, the extension to the pointfree setting of the classical insertion result
for completely regular spaces characterizes a formally weaker class of frames
introduced in this paper (called completely c-regular frames). The fact that any
compact sublocale (quotient) of a completely regular frame is a C-sublocale
(C-quotient) is obtained as a corollary.

Introduction

When moving from classical topology to pointfree topology the role of the cat-
egory of topological spaces and continuous maps is taken by the category of
locales and localic maps (and its dual category of frames and frame homomor-
phisms). Accordingly, the space of reals is taken by the locale of reals L(R) ([2])
and the complete Boolean algebra of all subspaces of a space X is taken by the

∗Research supported by the CMUC/FCT, through program COMPETE/FEDER, the
UPV/EHU under grant UFI11/52, and the Ministry of Science and Innovation of Spain under
grant MTM2009-12872-C02-02.

Received by the editors in March 2012 - In revised form in September 2012.
Communicated by E. Colebunders.
2010 Mathematics Subject Classification : primary 06D22; secondary 54C30, 54D15.
Key words and phrases : Frame, locale, sublocale, completely separated sublocales, compact

sublocale, compact-like real function, complete regular frame, upper semicontinuous, lower semi-
continuous, insertion, insertion theorem, C-embedding, C∗-embedding.

Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 675–687



676 J. Gutiérrez Garcı́a – J. Picado

co-frame of all sublocales of a locale L (along this paper we shall make the latter
a frame, that is, turned upside down, that we shall denote by S(L); see Section 1
below for the details).

Among the important examples of sublocales are, for each a ∈ L, the closed
sublocales c(a) = ↑a = {b ∈ L | a ≤ b} and the open sublocales o(a) = {a → b | b ∈
L}. The class of all closed sublocales is usually denoted by cL and it is a subframe
of S(L) isomorphic to the given frame L via the mapping c : L → cL given by the
correspondence a 7→ c(a).

Now, the ℓ-ring F(L) of real functions on L ([7, 9]), that is, the ℓ-ring C(S(L))
of continuous real functions on S(L) (see [12] for more information), is formed
by all frame homomorphisms

L(R) → S(L),

and partially ordered by

f ≤ g ≡ f (r, —) ≤ g(r, —) for all r ∈ Q

⇔ g(—, r) ≤ f (—, r) for all r ∈ Q.

An f ∈ F(L) is lower (resp. upper) semicontinuous if f (r, —) ∈ cL (resp. f (—, r) ∈
cL) for every r ∈ Q and it is continuous if it is both lower and upper semicon-
tinuous, that is, if f (p, q) ∈ cL for every p, q ∈ Q. We shall denote by C(L),
LSC(L) and USC(L) the classes of continuous, lower semicontinuous, and upper
semicontinuous members of F(L), respectively.

An insertion-type theorem in pointfree topology has the following structure.
Let F , G , H ⊆ F(L). Assume f ∈ F , g ∈ G and f ≤ g. Then an insertion-type
assertion states that

there exists an h ∈ H such that f ≤ h ≤ g.

The particular case L = OX for the topology OX of a space X gives the corre-
sponding classical insertion theorem.

A fundamental example is the case F = USC(L), G = LSC(L), H = C(L) that
characterizes normal frames and extends the celebrated Katětov-Tong insertion
theorem for normal spaces (see [11], [8] and [7]; recall that a frame L is normal
if a ∨ b = 1 implies the existence of u, v ∈ L such that a ∨ u = 1 = b ∨ v and
u ∧ v = 0):

Theorem. The following are equivalent for a frame L:

(i) L is normal.

(ii) If f ∈ USC(L), g ∈ LSC(L) and f ≤ g, then there exists an h ∈ C(L) such that
f ≤ h ≤ g.

The corresponding extension theorem asserts that any closed sublocale (quo-
tient) of a normal frame is a C-sublocale (C-quotient).

For more examples, characterizing monotonically normal, completely normal,
perfectly normal, countably paracompact or extremally disconnected frames, con-
sult [7] and [4].
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Comparing this with the literature in classical topology there is one important
case missing: complete regularity. (We thank Prof. Robert Lowen for pointing
out this gap in a conversation with the second author.)

Indeed, we know from [5] that

A space is completely regular if and only if for any f , g : X → [0, 1], with
f compact-like (i.e. f−1([t, 1]) is compact for all t ∈ (0, 1]) and g lower
semicontinuous satisfying f ≤ g, there exists a continuous h : X → [0, 1]
such that f ≤ h ≤ g.

This characterization of complete regularity holds for a very simple peculiar rea-
son: every open U in X is the union of the compact subsets {x}, x ∈ U. Of
course, when dealing with general frames one cannot imitate that: we may not
have enough appropriate compact sublocales. The question naturally arises as
to whether this insertion result continues to hold true in general frames. In this
paper we address this question.

The case in frames reveals to be a peculiar one, with interesting ramifications:
we show that the foregoing insertion result extends to completely regular frames
but no longer characterizes complete regularity; among fit frames, it characterizes
a formally wider class of frames that we introduce as completely c-regular frames.
For that we need to revisit completely separated sublocales of a frame L (Sec-
tion 2) and to introduce compact-like real functions on L (Section 4). The corre-
sponding (Urysohn) separation-type lemma and (Tietze) extension-type theorem
are also obtained (sections 4 and 5 respectively).

1 Preliminaries

Useful references for frames and locales are [10] and the recent [12]. Here we fix
some notation and terminology and recall the relevant facts needed later on.

A frame L is a complete lattice with the distributive property

a ∧
∨

S =
∨
{a ∧ s | s ∈ S} (1.1)

for all a ∈ L and S ⊆ L; equivalently, it is a complete Heyting algebra with
Heyting operation → satisfying the standard equivalence a ∧ b ≤ c if and only if
a ≤ b → c. The pseudocomplement of an a ∈ L is the element a∗ = a → 0 =

∨
{b ∈

L | a ∧ b = 0}.
Frame homomorphisms are maps preserving all joins and all finite meets; the

resulting category of frames and frame homomorphisms will be denoted by Frm

and its opposite category is the category Loc of locales and localic maps. A typical
frame is the lattice OX of all open sets of a topological space; if f : X → Y is a
continuous map then (U 7→ f−1[U]) : OY → OX is obviously a frame homomor-
phism.

For any frame L, k ∈ L is compact if k ≤
∨

X implies k ≤ F for some finite
F ⊆ X , and L is called compact if its unit 1 is compact. L is algebraic if each
a ∈ L is a join of compact elements. Further, a frame L is called completely regular
if a =

∨
{b ∈ L | b≺≺ a} for each a ∈ L where b≺≺ a (the “completely below”
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relation) means that there are cr ∈ L (r ∈ Q ∩ [0, 1]) such that c0 = b, c1 = a and
cr ≺ cs (that is, cr

∗ ∨ cs = 1) whenever r < s.

Sublocales. The lattice of subobjects of a locale L in Loc may be described in
several equivalent ways (cf. [12]), most usually using congruences and nuclei.
Here we use the sublocale sets (briefly, sublocales), that is, subsets S ⊆ L such that

(S1) for every A ⊆ S,
∧

A is in S, and

(S2) for every s ∈ S and every x ∈ L, x→s is in S.

Each sublocale S ⊆ L is also determined by the frame surjection (quotient
map) cS : L→S given by cS(x) =

∧
{s ∈ S | s ≥ x} for all x ∈ L. E.g. the

quotient maps cc(a) and co(a) are given by cc(a)(x) = a ∨ x and co(a)(x) = a → x,
respectively.

Moreover, each sublocale S of L is itself a frame with the same meets as in
L, and since the Heyting operation → depends on the meet structure only, with
the same Heyting operation. However the joins in S and L will not necessarily
coincide:

S∨

i∈I

ai = cS

(∨

i∈I

ai

)
≥

∨

i∈I

ai.

It follows that 1S = 1 but in general 0S 6= 0. In particular

0c(a) = a, x
c(a)
∨ y = x ∨ y, 0o(a) = a∗ and x

o(a)
∨ y = a→(x ∨ y).

Intersections of sublocales are sublocales so we have a complete lattice which
is indeed a co-frame [12], i.e. a complete lattice satisfying a distributive law dual
to (1.1).

For notational reasons, we make this co-frame into a frame S(L) by consider-
ing the opposite ordering

S1 ≤ S2 ⇔ S2 ⊆ S1.

Thus, given {Si ∈ S(L) | i ∈ I}, we have

∨

i∈I

Si =
⋂

i∈I

Si and
∧

i∈I

Si =
{∧

A : A ⊆
⋃

i∈I

Si

}
.

Further, {1} is the top and L is the bottom in S(L) that we simply denote by 1
and 0.

The closure S of a sublocale S ∈ S(L) is the largest closed sublocale smaller
than S, and is given by the formula S = ↑(

∧
S). We shall denote the closed

sublocales of a sublocale S of L by c
S(a).

Facts 1.1. For every a, b ∈ L, A ⊆ L and S, T ∈ S(L), we have:

(1) c(a) ∧ c(b) = c(a ∧ b) and o(a) ∨ o(b) = o(a ∧ b).

(2)
∨

a∈A c(a) = c(
∨

A) and
∧

a∈A o(a) = o(
∨

A).
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(3) c(a) ∨ o(a) = 1 and c(a) ∧ o(a) = 0.

(4) o(a) ≥ c(b) if and only if a ∧ b = 0.

(5) o(a) ≤ c(b) if and only if a ∨ b = 1.

(6) 1 = 1, S ≤ S, S = S, and S ∧ T = S ∧ T.

(7) o(a) = c(a∗).

(8) c(a) ∨ S is the closed sublocale cS(cS(a)) of S.

(9) If T is a closed sublocale of S then T = c(x) ∨ S for some x ∈ S.

A sublocale S is said to be compact if it is compact as a frame. Equivalently:

Fact 1.2. A sublocale S of L is compact if and only if for each {ai}i∈I ⊆ L such that∧
i∈I o(ai) ≤ S, there exists a finite J ⊆ I such that

∧
i∈J o(ai) ≤ S.

Proof. Just notice that

∧

i∈I

o(ai) = o

(∨

i∈I

ai

)
≤ S ⇐⇒ 1 = c

(∨

i∈I

ai

)
∨ S = c

S
(

cS

(∨

i∈I

ai

))

⇐⇒ 1 = cS

(∨

i∈I

ai

)
=

S∨
i∈I

cS(ai).

Note that in the co-frame of sublocales this just says that a sublocale is compact
iff every open cover has a finite subcover.

Corollary 1.3. An element k ∈ L is compact iff the sublocale o(k) is compact.

Fact 1.4. If S is a compact sublocale of a frame L and T is a closed sublocale of S then T
is a compact sublocale of L.

Real functions. The frame L(R) of reals is the frame specified by generators
(p, —) and (—, q) for p, q ∈ Q, and defining relations

(R1) (p, —) ∧ (—, q) = 0 whenever p ≥ q,

(R2) (p, —) ∨ (—, q) = 1 whenever p < q,

(R3) (p, —) =
∨

r>p(r, —) and (—, q) =
∨

s<q(—, s), for every p, q ∈ Q,

(R4)
∨

p∈Q(p, —) = 1 =
∨

q∈Q(—, q).

For the alternative definition of L(R) by the generators (p, q) ∈ Q × Q and
appropriate relations, see [2] or [12, Chapter XIV]. Continuous real functions are
usually defined as frame homomorphisms ϕ : L(R) → L (see [2]). As proved in
[7], after the isomorphism c : L → cL, they can be identified with the elements of
C(L) = LSC(L) ∩USC(L). In what follows, we will freely refer to continuous real
function as both the real function f ∈ C(L) and the unique frame homomorphism
ϕ : L(R) → L such that c · ϕ = f .
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In order to define a continuous real function f ∈ C(L) it suffices to consider
two maps from Q to L that turn the defining relations (R1)–(R4) of L(R) into
identities in L. This can be easily stated via scales: a scale in L (see [7]) is a family
(sp)p∈Q of elements of L satisfying

(1) sq ≺ sp whenever p < q, and

(2)
∨

p∈Q sp = 1 =
∨

p∈Q sp
∗.

In fact, for each scale (sr)r∈Q the formulas f (p, —) =
∨

r>p sr and f (—, q) =∨
r<q sr

∗ (p, q ∈ Q) determine an f ∈ C(L). In the particular case of L = S(M)
for some frame M, if every sr is a closed (resp. open, resp. clopen) sublocale then
f ∈ LSC(M) (resp. f ∈ USC(M), resp. f ∈ C(M)).

Example 1.5 (Constant functions). Let r be a rational number. We denote by r the
real function defined for each p, q ∈ Q by

r(p, —) =

{
1 if p < r,

0 if p ≥ r,
and r(—, q) =

{
0 if q ≤ r,

1 if q > r.

Example 1.6 (Characteristic functions). Let c be a complemented element of L.
We denote by χc the real function defined for each p, q ∈ Q by

χc(p, —) =






1 if p < 0,

c∗ if 0 ≤ p < 1,

0 if p ≥ 1,

and χc(—, q) =






0 if q ≤ 0,

c if 0 < q ≤ 1,

1 if q > 1.

2 Complete regularity and completely separated sublocales

The notion of complete separation in pointfree topology was first introduced in
[1] in terms of quotient maps and cozero elements and equivalently reformulated
in [6] in terms of sublocales and continuous real functions.

Let S and T be sublocales of L. They are said to be completely separated if there
exists an f ∈ C(L) such that

f (0, —) ≤ S and f (—, 1) ≤ T.

Equivalently, this means that the corresponding quotient maps cS and cT are com-
pletely separated, i.e. there exists a frame homomorphism ϕ : L(R) → L such
that cS(ϕ(0, —)) = 0S and cT(ϕ(—, 1)) = 0T.

Remarks 2.1. (i) 0 and 1 are completely separated by χ0.
(ii) If S and T are completely separated, then any sublocales U ≥ S and V ≥ T
are completely separated as well.
(iii) Sublocales S and T are completely separated iff S and T are completely sepa-
rated.
(iv) If S and Ti (i = 1, 2) are completely separated, then S and T1 ∧ T2 are also
completely separated.
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The following theorem from [6, Thm. 4.2] will be crucial in our approach.

Theorem 2.2. Let L be a frame and let f , g ∈ F(L). Then the following are equivalent:

(i) There exists h ∈ C(L) such that f ≤ h ≤ g.

(ii) The sublocales f (—, q) and g(p, —) are completely separated for every p < q in
Q.

Proposition 2.3. Let S and T be sublocales of L. Then S and T are completely separated
if and only if there exists an f ∈ C(L) such that

χS ≤ f ≤ χ
T
∗

Proof. Let S and T be sublocales. Then

χS(—, q) =






0 if q ≤ 0,

S if 0 < q ≤ 1,

1 if q > 1,

and χ
T
∗(p, —) =






1 if p < 0,

T if 0 ≤ p < 1,

0 if p ≥ 1,

and the result follows immediately by Remarks 2.1 (i) and (iii) and Theorem 2.2.

The following is also included in [6] (Remark 3.5).

Remark 2.4. Let a, b ∈ L. Then b≺≺ a if and only if o(b) and c(a) are completely
separated.

From Proposition 2.3 and Remark 2.4 it follows immediately that:

Corollary 2.5. Let a, b ∈ L. Then b ≺≺ a if and only there exists an f ∈ C(L) such that
χ
o(b)

≤ f ≤ χo(a).

3 Variants of [complete] regularity in frames

Recall that a topological space (X,OX) is regular if for any U ∈ OX and each x ∈
U there exists V ∈ OX such that x ∈ V ⊆ V ⊆ U. The following characterizations
are easy to get:

(X,OX) is regular ⇐⇒ U =
⋃ {

V ∈ OX | V ⊆ U
}

for every U ∈ OX (∗)

⇐⇒ For every compact K ⊆ X and U ∈ OX such
that K ⊆ U, there exists V ∈ OX such that
K ⊆ V and V ⊆ U. (∗∗)

Note that it is the direct translation of condition (∗) from OX to an arbitrary
frame that is taken as the usual definition of a regular frame: a frame L is regular
if a =

∨
{b ∈ L | b ≺ a} for each a ∈ L, or, equivalently, if

o(a) =
∧
{o(b) | b ≺ a} for each a ∈ L.

What does the translation of condition (∗∗) to general frames produce? We
first note the following:
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Proposition 3.1. Let (X,OX) be a topological space. Then X is regular if and only if
for every compact sublocale S and every U ∈ OX satisfying o(U) ≤ S, there exists
VS ∈ OX such that o(VS) ≤ S and VS ≺ U.

Proof. Let S be a compact sublocale and U ∈ OX such that o(U) ≤ S. Then

∧
{o(V) | V ≺ U} = o(U) ≤ S

and a use of Fact 1.2 gives {Vi}
n
i=1 ⊆ L such that Vi ≺ U for every i ∈ {1, . . . , n}

and
∧n

i=1 o(Vi) ≤ S. Take VS =
⋃n

i=1 Vi. Then o(VS) =
∧n

i=1 o(Vi) ≤ S and
VS =

⋃n
i=1 Vi ⊆ U.

For the converse: First note that since X \ {x} is prime for each x ∈ X, it

follows from [12, III.10.1] that Sx = {X \ {x}, X} (the one-point sublocale corre-
sponding to the familiar homeomorphism OX → 2 determined by x ∈ X, given
by U 7→ 1 iff x ∈ U) is a compact sublocale of OX. Moreover, given U ∈ OX, we
have that

o(U) ≤ Sx ⇐⇒ X \ {x} ∈ o(U) ⇐⇒ U → X \ {x} = X \ {x}

⇐⇒ U 6≤ X \ {x} ⇐⇒ U ∩ {x} 6= ∅ ⇐⇒ x ∈ U.

Let U ∈ OX and x ∈ U. Then Sx is a compact sublocale such that o(U) ≤ Sx

and hence there exists Vx ∈ OX such that Vx ≺ U and o(Vx) ≤ Sx. It follows that
x ∈ Vx and Vx ⊆ U.

In the same vein (just replacing ≺ by ≺≺ ), we have also the following:

Proposition 3.2. Let (X,OX) be a topological space. Then X is completely regular if
and only if for every compact sublocale S and every U ∈ OX satisfying o(U) ≤ S, there
exists VS ∈ OX such that o(VS) ≤ S and VS ≺≺ U.

This suggests the following variant of [complete] regularity in frames:

Definition 3.3. Let L be a frame. L is said to be c-regular (resp. completely c-regular)
if for each compact sublocale S of L and each a ∈ L such that o(a) ≤ S, there exists
bS ∈ L such that o(bS) ≤ S and bS ≺ a (resp. bS ≺≺ a).

The following is almost obvious:

Proposition 3.4. Let L be a frame. If L is [completely] regular, then it is [completely]
c-regular.

Proof. The proof follows the lines of the first implication in Proposition 3.1.

What about the converse implication? As it follows from Propositions 3.1
and 3.2, it clearly holds for spatial frames. More generally, [complete] regularity
coincides with [complete] c-regularity whenever any a ∈ L satisfies

o(a) =
∧
{S ∈ S(L) | o(a) ≤ S and (S clopen or compact)}. (3.4.1)

Indeed, let L be c-regular and a ∈ L. If o(a) ≤ S and S is clopen (i.e. S =
c(x) = o(x∗) for some complemented x ∈ L), then x∗ ≺ a and thus by (3.4.1),
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S ≥
∧
{o(b) | b ≺ a} . On the other hand, for each compact sublocale S satisfying

o(a) ≤ S, by c-regularity there exists bS ∈ L such that o(bS) ≤ S and bS ≺ a. It
follows that S ≥ o(bS) ≥

∧
{o(b) | b ≺ a} . Hence

o(a) =
∧
{S ∈ S(L) | o(a) ≤ S and (S clopen or compact)}

≥
∧

{o(b) | o(a) ≤ b ≺ a}

and since the converse inequality is always true we conclude that a is regular. A
similar argument applies in the case of complete regularity.

Note that any complemented c ∈ L satisfies (3.4.1) since in that case o(c) is
clopen, and the join of any set of elements satisfying (3.4.1) also satisfies (3.4.1).
Therefore, each zero-dimensional frame (in particular, each Boolean frame) sat-
isfies (3.4.1). On the other hand, by Corollary 1.3, any compact element satisfies
(3.4.1). Consequently algebraic frames also satisfy (3.4.1).

Question 3.5. The question is left open whether every [completely] c-regular frame
is [completely] regular. As shown above, the two notions coincide for a wide class
of frames, namely the ones satisfying condition (3.4.1) for any a ∈ L — including
e.g. all spatial frames and algebraic frames—, but we believe this not to be the
case in general. However a proof of this has eluded us so far.

4 Insertion theorem: not quite like the classical case

Given a frame L, we say that an f ∈ F(L) is upper compact-like (resp. lower compact-
like) if f (—, p) (resp. f (p, —)) is a compact sublocale of L for every p ∈ Q. As a
first example we note the following obvious proposition:

Proposition 4.1. Let S be a complemented sublocale of a frame L. Then:

(i) χS is upper compact-like if and only if S is compact.

(ii) χS is lower compact-like if and only if S∗ is compact.

Proposition 4.2. (i) If L is compact, then all upper (resp. lower) semicontinuous func-
tions on L are upper (resp. lower) compact-like.

(ii) If L is Hausdorff or fit, then all upper (resp. lower) compact-like functions on L are
upper (resp. lower) semicontinuous.

Proof. (i) is a consequence of Fact 1.4 and (ii) follows immediately from the fact
that in any Hausdorff (or fit) frame, compact sublocales are closed [13].

In order to obtain our insertion result we need first the following Urysohn-
type separation result.

Lemma 4.3. The following statements are equivalent for any frame L:

(i) L is completely c-regular.

(ii) Every two sublocales S and T of L such that S ∨ T = 1, one of which is compact
and the other closed, are completely separated.



684 J. Gutiérrez Garcı́a – J. Picado

Proof. (i)⇒(ii): Let S and T be sublocales such that S ∨ T = 1, with S being com-
pact and T = c(a). Then we have S ∨ c(a) = 1 iff o(a) ≤ S and therefore, by
hypothesis, there exists bS ∈ L such that o(bS) ≤ S and bS ≺≺ a. By Proposi-
tion 2.4, o(bS) and T = c(a) are completely separated and, finally, by Remark 2.1
(ii) so are S and T.

(ii)⇒(i): Let a ∈ L and let S be a compact sublocale such that o(a) ≤ S. Since
c(a) ∨ S = 1, it follows by hypothesis that S and c(a) are completely separated.
Hence there exists h ∈ C(L) such that h(0, —) ≤ c(a) and h(—, 1) ≤ S and thus

h
(
—, 1

2

)
≤ h

(
1
2 , —

)∗
≤ h(—, 1) ≤ S. Let bS ∈ L such that h

(
1
2 , —

)∗
= o(bS). Then

o(bS) are c(a) are completely separated, i.e. bS ≺≺ a.

Remark 4.4. We point out that a proof that complete regularity implies the state-
ment (ii) above appears in [3, Lemma 2.1].

We can now prove our insertion-type result for completely c-regular frames:

Theorem 4.5. Let L be a completely c-regular frame. If f , g ∈ F(L), f is upper compact-
like, g is lower semicontinuous and f ≤ g, then there exists h ∈ C(L) such that
f ≤ h ≤ g.

The converse holds for frames in which every compact sublocale is complemented (in
particular, in any Hausdorff or fit frame).

Proof. Let f , g ∈ F(L) such that f is upper compact-like, g is lower semicontinu-
ous and f ≤ g. Then f (—, q) is compact, g(p, —) is closed and f (—, q) ∨ g(p, —) =
1 for each p < q in Q. It follows from Lemma 4.3 that f (—, q) and g(p, —) are
completely separated. We conclude from Theorem 2.2 that there exists h ∈ C(L)
such that f ≤ h ≤ g.

Conversely, let L be a frame in which every compact sublocale is comple-
mented. By Lemma 4.3 it suffices to check that any sublocales S and T such
that S ∨ T = 1, with S compact (hence complemented) and T = c(a) closed,
are completely separated. But S ≥ o(a) and so χS ≤ χo(a) with χS being upper
compact-like and χo(a) lower semicontinuous. It then follows that there exists

h ∈ C(L) such that χS ≤ h ≤ χo(a), that is h(—, 1) ≤ S and h(0, —) ≤ c(a).

Remark 4.6. Recall from [9] that there is a dual order-automorphism −(·) : F(L) →
F(L) defined by (− f )(—, r) = f (−r, —) and (− f )(r, —) = f (—,−r) for every
r ∈ Q, and that f ∈ F(L) is upper semicontinuous (resp. upper compact-like)
if and only if − f is lower semicontinuous (resp. lower compact-like). Using this,
one readily gets the following dual result:

If L is a completely c-regular frame and f , g ∈ F(L) are such that f is
upper semicontinuous, g is lower compact-like and f ≤ g, then there exists
h ∈ C(L) such that f ≤ h ≤ g.

Remark 4.7. It should be noted that the statement (ii) in the Urysohn-type separa-
tion lemma (Lemma 4.3) is just the particularization to characteristic functions of
the foregoing insertion statement.
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5 Extension theorem

Let S be a sublocale of L. Recall from [1] that a frame homomorphism ϕ : L(R) →
S is said to have an extension to L if there exists a frame homomorphism
ϕ̃ : L(R) → L such that the diagram

L

cS

��
L(R)

ϕ
//

ϕ̃

;;

S

commutes.
An f ∈ C(S) has a continuous extension to L if the associated frame homomor-

phism ϕ : L(R) → S (such that f = cS · ϕ) has an extension to L. The sublocale S
is then said to be C-embedded if every f ∈ C(S) has a continuous extension to L.

Theorem 5.1. Every compact closed sublocale of a completely c-regular frame L is
C-embedded in L.

Proof. Let S be a compact closed sublocale and let ϕ : L(R) → S be a frame ho-
momorphism. Clearly, there exist p, q ∈ Q such that ϕ(p, —) = 1 and ϕ(—, q) = 1
because S is compact and

∨
{(p, —) | p ∈ Q} = 1 =

∨
{(—, q) | q ∈ Q} in

L(R), and thus −n ≤ ϕ ≤ n for some natural n. Now, define an antitone
S = (Sr | r ∈ Q) ⊆ S(L) as follows:

Sr =





0 if r ≥ n,

c(ϕ(—,−r)) if − n ≤ r < n,

1 if r < −n.

Since each Sr is complemented and
∨

r∈Q Sr = 1 =
∨

r∈Q Sr
∗, it follows that S is a

scale that generates an f1 ∈ F(L). Let f = − f1. Then

f (p, —) = f1(—,−p) =
∨

s<−p

Ss
∗ =





0 if p ≥ n,∨

r>p

o(ϕ(—, r)) if − n ≤ p < n,

1 if p < −n,

and

f (—, q) = f1(−q, —) =
∨

s>−q

Ss =






1 if q > n,

c(ϕ(—, q)) if − n < q ≤ n,

0 if q ≤ −n.

Since S is closed then, for each −n < q ≤ n, f (—, q) = c(ϕ(—, q)) = c(ϕ(—, q)) ∨ S
is a closed sublocale of S. Further, since S is compact, by Fact 1.4 we may conclude
that f (—, q) is compact. Hence f is upper compact-like.

Moreover, T = (Tr | r ∈ Q) ⊆ S(L) defined by

Tr =





0 if r ≥ n,

c(ϕ(r, —)) if − n ≤ r < n,

1 if r < −n,
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is also a scale. The corresponding g ∈ F(L) is now given by

g(p, —) = Tp and g(—, q) =





1 if q > n,∨

r<q

o(ϕ(r, —)) if − n < q ≤ n,

0 if q ≤ −n,

and it is lower semicontinuous since g(p, —) is closed for every p.
Finally, ϕ(—, r) ∨ ϕ(p, —) = 1 for each −n ≤ p < r < n and thus o(ϕ(—, r)) ≤

c(ϕ(—, p)). Hence

f (p, —) =
∨

r>p

o(ϕ(—, r)) ≤ c(ϕ(—, p)) = g(p, —),

that is, f ≤ g.
It then follows from Theorem 4.5 that there exists h ∈ C(L) such that

f ≤ h ≤ g. Consequently, h(p, —) = 0 = c(ϕ(p, —)) for every p ≥ n, h(p, —) =
1 = c(ϕ(p, —)) for every p < −n and, for each −n ≤ p < n, we have

c(ϕ(p, —)) =
∨

r>p

c(ϕ(r, —)) ≤
∨

r>p

o(ϕ(—, r)) = f (p, —)

≤ h(p, —) ≤ g(p, —) = c(ϕ(p, —)).

Similarly, h(—, q) = 1 = c(ϕ(—, q)) for every q > n, h(—, q) = 0 = c(ϕ(—, q)) for
every q ≤ −n and, for each −n < q ≤ n,

c(ϕ(—, q)) =
∨

r<q

c(ϕ(—, r)) ≤
∨

r<q

o(ϕ(r, —)) = g(—, q)

≤ h(—, q) ≤ f (—, q) = c(ϕ(—, q)).

We then conclude that h = c · ϕ and hence ϕ̃ = c
−1 · h : L(R) → L is the desired

extension of ϕ.

Of course, when L is fit (or Hausdorff) and completely c-regular, Theorem 5.1
asserts that any compact sublocale of L is C-embedded in L. In particular:

Corollary 5.2. Every compact sublocale of a completely regular frame L is C-embedded
in L.
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