
On the approximation of functions by Fourier

Stieltjes Series ∗

Chengbo Lu Dansheng Yu†

Abstract

Recently, Leindler [2] introduced the sequences of Head Bounded Vari-
ation (HBVS) and the sequences of Rest Bounded Variation (RBVS), which
are nontrivial generalizations of nondecreasing sequences and nonincreasing
sequences respectively. In the present paper, we generalize a classical result
of Mazhar([1]) on the approximation by means of Fourier Stieltjes series by
using the HBVS and RBVS.

1 Introduction

Let F(x) be a function of bounded variation on [0, 2π]. Then the Fourier Stieltjes
Series of dF and its conjugate series are defined by

dF(x) ∼
+∞

∑
v=−∞

cveivx, (1.1)

and

−i
+∞

∑
v=−∞

(sign v)cveivx, (1.2)
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where

cv =
1

2π

∫ 2π

0
e−ivtdF(t) (v = 0,±1,±2, . . .).

It is convenient to define F(x) for all values of x by F(x + 2π) − F(x) =
F(2π) − F(0). This enables us to integrate, in the formula for cv, over any in-
terval of length 2π.

Write
Fx(t) = F(x + t)− F(x − t)− 2tF′(x),

Gx(t) = F(x + t) + F(x − t)− 2F(x),

and denote the total variation of f (t) over the interval [0, t] by Vt
0( f ).

Let Λ = (λn,k), n = 0, 1, 2, . . . ; k = 0, 1, · · · , n be a triangular matrix, {sk} be a
given sequence of numbers. Then the so called Λ−mean of {sk} is defined as

σn =
n

∑
k=0

λn,ksk, n = 1, 2, · · · .

In what follows we assume that C is a positive constant not necessarily the
same at each occurrence.

There are a lot of papers on the degree of approximation by means of Fourier
Stieltjes Series. Among them, Mazhar [1] proved the following.

Theorem A. Let {λn,k} satisfy the following conditions

λn,k ≥ 0 and
n

∑
k=0

λn,k = 1, (1.3)

λn,k ≥ λn,k+1, (k = 0, 1, . . . , n − 1; n = 0, 1, . . .). (1.4)

And let tn(x) and t̃n(x) denote respectively the Λ-means of series (1.1) and (1.2). Then

|tn(x)− F′(x)| ≤ C
n

∑
k=0

V
π

k+1
0 (Fx)

k

∑
ν=0

λn,n−ν; (1.5)

∣

∣

∣

∣

∣

t̃n(x)−

{

−
1

π

∫ π

π
n+1

Gx(t)dt

(2sint/2)2

}
∣

∣

∣

∣

∣

≤ C
n

∑
k=0

V
π

k+1
0 (Gx)

k

∑
ν=0

λn,n−ν. (1.6)

Recently, Leindler [2] introduced the sequences of Head Bounded Variation
(HBVS) and the sequences of Rest Bounded Variation (RBVS), which are non-
trivial generalizations of nondecreasing sequences and nonincreasing sequences
respectively.

For a fixed n, αn := {αn,k}
∞
k=0 of nonnegative numbers tending to zero is called

of Head bounded variation, or briefly αn ∈ HBVS, if there is a constant C(αn) only
depend on αn such that

m−1

∑
k=0

|∆an,k| :=
m−1

∑
k=0

|an,k − an,k+1| ≤ C(αn)an,m (1.7)

for all natural numbers m, or only for all m ≤ N if the sequence λn has only finite
nonzero terms, and the last nonzero term is an,N .
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For a fixed n, αn = {αn,k}
∞
k=0 of nonnegative numbers tending to zero is called

of Rest bounded variation, or briefly αn ∈ RBVS, if there is a constant C(αn) only
depend on αn such that

∞

∑
k=m

|∆an,k| ≤ C(αn)an,m (1.8)

for all natural numbers m.
It should be noted that, in (1.7) and (1.8), a sequence of monotone sequences

αn := {an,k}
∞
k=0 are involved. Thus, it is natural to assume that {C(αn)}∞

n=0 is
bounded, that is an absolute constant C such that

0 ≤ C(αn) ≤ C

holds for all n.

It is clear that every monotone increasing sequence is an HBVS, but not con-
versely. Similarly every monotone decreasing null-sequence is an RBVS, but not
conversely ([2]).

In the present paper, we show that the monotonic condition of {λn,k} in Theo-
rem A can be essentially relaxed to HBVS. And we further get some new results
when the sequence {λn,k} belongs to the class RBVS. In fact, we have the follow-
ing:

Theorem 1. If (λn,k) satisfies the condition (1.3) and (λn,k) ∈ HBVS, then (1.5)
and (1.6) still hold.

Theorem 2. If (λn,k) satisfies the condition (1.3) and (λn,k) ∈ RBVS, then

|tn(x)− F′(x)| ≤ C
n

∑
k=0

V
π

k+1
0 (Fx)

k

∑
ν=0

λn,ν; (1.9)

∣

∣

∣

∣

∣

t̃n(x)−

{

−
1

π

∫ π

π
n+1

Gx(t)dt

(2sint/2)2

}
∣

∣

∣

∣

∣

≤ C
n

∑
k=0

V
π

k+1
0 (Gx)

k

∑
ν=0

λn,ν. (1.10)

2 Auxiliary Lemmas

We need some Lemmas.

Lemma 1. ([2]) If {λn} ∈ HBVS, then

λn ≤ Cλm (2.1)

holds for any m ≥ n ≥ 0.

Lemma 2. ([2]) If {λn} ∈ RBVS, then

λm ≤ Cλn (2.2)

holds for any m ≥ n ≥ 0.
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Lemma 3. Let (λn,k) satisfy (1.3) and {λn,k}
∞
k=0 ∈ HBVS, then

1

n + 1

n

∑
ν=0

λn,n−ν ≤
C

k + 1

k

∑
ν=0

λn,n−ν. (2.3)

Proof. By Lemma 1, for any ν ≥ k + 1, we have

λn,n−ν ≤ C
1

k + 1

k

∑
ν=0

λn,n−ν,

and thus
n

∑
ν=k+1

λn,n−ν ≤ C
n − k

k + 1

k

∑
ν=0

λn,n−ν. (2.4)

By (2.4), we deduce that

1

n + 1

n

∑
ν=0

λn,n−ν =
1

n + 1

k

∑
ν=0

λn,n−ν +
1

n + 1

n

∑
ν=k+1

λn,n−ν

≤
1

n + 1

k

∑
ν=0

λn,n−ν

(

1 + C
n − k

k + 1

)

≤
C

n + 1

k

∑
ν=0

λn,n−ν ·
k + 1 + n − k

k + 1

=
C

k + 1

k

∑
ν=0

λn,n−ν.

Similarly, we can get

Lemma 4. Let (λn,k) satisfy (1.3) and {λn,k}
∞
k=0 ∈ RBVS, then

1

n + 1
≤

C

k + 1

k

∑
ν=0

λn,ν. (2.5)

Let γn(t) be a linear function on [k, k + 1] such that γn(k) = λn,n−k,
k = 0, 1, 2, . . . , n, and let

Γn(t) =
∫ t

0
γn(u)du, t ≥ 0. (2.6)

By (1.3) and Lemma 1, one can prove the following.
Lemma 5. Let {λn,k}

∞
k=0 ∈ HBVS, then

Γn(k) ∼ Γn(k + 1) ∼
k

∑
ν=0

λn,n−ν, (2.7)

where A ∼ B means that there exists positive constants K1 and K2 such that:

K1B ≤ A ≤ K2B.
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Lemma 6. Let {λn,k}
∞
k=0 ∈ HBVS. Then

∣

∣

∣

∣

∣

n

∑
k=0

λn,n−ksin(n − k)t

∣

∣

∣

∣

∣

≤ C (Γn(π/t)) .

Proof. By Lemma 5, it is element to deduce that

∣

∣

∣

∣

∣

n

∑
k=0

λn,n−ksin(n − k)t

∣

∣

∣

∣

∣

≤
τ

∑
k=0

λn,n−k + O

(

1

t

)

·

(

λn,n−τ +
n−1

∑
k=τ

|∆λn,n−k|+ λn,0

)

(

τ :=
[π

t

])

≤
τ

∑
k=0

λn,n−k + O

(

1

t

)

· (λn,n−τ + λn,0)

= O

(

τ

∑
k=0

λn,n−k

)

(λn,n−τ = O(λn,n−k), k = 0, 1, 2, . . . , τ)

= O(Γn(τ)) (By(2.7))

= O (Γn(π/t)) . (2.8)

Let φn(t) be a linear function on [k, k+ 1] such that φn(k) = λn,k, k = 0, 1, 2, . . . , n,
and let

Φn(t) =
∫ t

0
φn(u)du, t ≥ 0. (2.9)

Similar to Lemma 5 and Lemma 6, we have

Lemma 7. If {λn,k}
∞
k=0 ∈ RBVS, then

Φn(k) ∼ Φn(k + 1) ∼
k

∑
v=0

λn,v.

Lemma 8. If {λn,k}
∞
k=0 ∈ RBVS, then

∣

∣

∣

∣

∣

n

∑
k=0

λn,ksinkt

∣

∣

∣

∣

∣

= O
(

Φn

(π

t

))

. (2.10)

3 Proofs of Results

Proof of (1.5). We will follow the ideas of Mazhar [1].

Write Kn(t) =
n

∑
k=0

λn,kDk(t), with Dk(t) =
sin(k+ 1

2 t)

2sin t
2

and denote by sn(x) the

n-th partial sum of (1.1), we have
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tn(x) =
n

∑
k=0

λn,ksk(x) =
n

∑
k=0

λn,k
1

π

∫ π

−π
Dk(x − t)dF(t)

=
1

π

∫ π

0

n

∑
k=0

λn,kDk(t)d[F(x + t)− F(x − t)]

=
1

π

∫ π

0
Kn(t)d[F(x + t)− F(x − t)].

and hence

tn(x)− F′(x) =
1

π

∫ π

0
Kn(t)d[F(x + t)− F(x − t)− 2tF′(x)]

=
1

π

∫ π

0
Kn(t)dFx(t) =

1

π

(

∫ π
n+1

0
+
∫ π

π
n+1

)

Kn(t)dFx(t) := I1 + I2.

Since |Kn(t)| ≤ 2n uniformly in t, we have

|I1| ≤
1

π

∫ π
n+1

0
2n|dFx(t)| ≤

2n

π
V

π
n+1

0 (Fx)

≤ C
1

n + 1
V

π
n+1

0 Fx

n

∑
k=0

(k + 1) = CV
π

n+1
0 Fx

n

∑
k=0

(k + 1)
1

n + 1

n

∑
ν=0

λn,n−ν

≤ CV
π

n+1
0 Fx

n

∑
k=0

(k + 1)
1

k + 1

k

∑
ν=0

λn,n−ν (By Lemma 3)

≤ C
n

∑
k=0

V
π

n+1
0 Fx

k

∑
ν=0

λn,n−ν. (3.1)

|I2| ≤
1

π

∫ π

π
n+1

|Kn(t)||dFx(t)| ≤ C
∫ π

π
n+1

|dFx(t)|
Γn(π/t)

t
(By (2.8))

= C
∫ π

π
n+1

Γn(π/t)

t
dVt

0(Fx)

= C

{

[

Γ(π/t)

t
Vt

0(Fx)

]π

π
n+1

+
∫ π

π
n+1

Vt
0(Fx)

Γ(π/t)

t2
dt +

∫ π

π
n+1

πVt
0(Fx)

γn(π/t)

t3
dt

}

=
C

π
Γn(1)V

π
0 (Fx)−

(n + 1)C

π
Γn(n + 1)V

π
n+1

0 (Fx)

+
C

π

∫ n+1

1
Vπ/t

0 (Fx)Γn(t)dt +
C

π

∫ n+1

1
tVπ/t

0 (Fx)γn(t)dt

≤ Can,nVπ
0 (Fx) + C(n + 1)V

π
n+1

0 (Fx) + C
n

∑
k=1

∫ k+1

k
Vπ/t

0 (Fx)Γn(t)dt

+ C
n

∑
k=1

∫ k+1

k
Vπ/t

0 (Fx)tγn(t)dt
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≤ C
n

∑
k=0

V
π

k+1
0 (Fx)

k

∑
ν=0

λn,n−ν (By Lemma 3 again)

+ C
n

∑
k=1

V
π
k

0 (Fx)Γn(k + 1) + C
n

∑
k=1

V
π
k

0 (Fx)(k + 1)

(

γn(k) + γn(k + 1)

2

)

≤ C
n

∑
k=0

V
π

k+1
0 (Fx)λn,n−ν + C

n

∑
k=1

V
π
k

0 (Fx)(k + 1)λn,n−k

≤ C
n

∑
k=0

V
π

k+1
0 (Fx)

k

∑
ν=0

λn,n−ν. (3.2)

We obtain (1.5) by combining (3.1) and (3.2).

Proof of (1.6). It is obvious that

t̃n(x) = −
1

π

∫ π

−π
K̃n(t)dF(x + t),

where

K̃n(t) =
n

∑
ν=0

λn,kD̃k(t),

and

D̃k(t) =
k

∑
ν=1

sin νt =
cos t/2 − cos(k + 1

2)t

2 sin t/2
.

Since

t̃n(x) = −
1

π

∫ π

0
K̃n(t)d[F(x + t) + F(x − t)] = −

1

π

∫ π

0
K̃n(t)dGx(t),

then

t̃n(x)−

(

−
1

π

∫ π

π
n+1

Gx(t)

(2 sin t/2)2

)

= −
1

π

∫ π
n+1

0
K̃n(t)dGx(t)

+
1

π

[

−
Gx(t)

2 tan t/2

]π

π
n+1

+
1

π

∫ π

π
n+1

{

1

2 tan t/2
− K̃n(t)dt

}

dGx(t)

:= L1 + L2 + L3.

Since |K̃n(t)| ≤ n, as shown in (3.1) we have

|L1| ≤
n

π

∫ π
n+1

0
|dGx(t)| ≤ C

n

∑
k=0

V
π

k+1
0 (Gx)

k

∑
ν=0

λn,n−ν. (3.3)

Also

|L2| =
1

π

∣

∣

∣

∣

Gx

(

π

n + 1

)

− Gx(0)

∣

∣

∣

∣

1

2 tan π
2(n+1)

≤
(n + 1)

π2
V

π
n+1

0 (Gx) ≤ C
n

∑
k=0

V
π

k+1
0 (Gx)

k

∑
ν=0

λn,n−ν. (3.4)
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By (2.8), we have

∣

∣

∣

∣

1

2 tan t/2
− K̃n(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n

∑
k=0

λn,k

{

1

2 tan t/2
−

cos t/2 − cos(k + 1
2)t

2 sin t/2

}∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n

∑
k=0

λn,n−k

cos
(

n − k + 1
2

)

t

2 sin t/2

∣

∣

∣

∣

∣

∣

≤
C

t
Γn

(π

t

)

,

thus

|L3| ≤ C
∫ π

π
n+1

1

t
Γn

(π

t

)

|dGx(t)| ≤ C
n

∑
k=0

V
π

k+1
0 (Gx)

k

∑
ν=0

λn,n−ν. (3.5)

as shown in I2.
We get (1.6) by combining (3.3)−(3.5).

Proof of Theorem 2. By using Lemma 4 and Lemma 8 instead of Lemma 3 and
Lemma 6, in a similar way to the proof of Theorem 1, one can prove Theorem 2,
we omit the details here.
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