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Abstract

We constructively prove a decomposition theorem for order bounded
homogeneous orthogonally-additive polynomials on archimedean vector lat-
tices. In this way, we constructively generalize results of Sundaresan (1991),
D. Pérez-Garcia, and I. Villanueva, (2005), Y. Benyamini, S. Lassalle and
J. L. G. Llavona (2006), D. Carando, S. Lassalle and I. Zalduendo (2006 and
2012).

1 Introduction

Let A and B be vectors lattices. An order bounded map P : A → B is called
a homogeneous polynomial of degree n (or a n-homogeneous polynomial) if P (x) =
Ψ (x, ..., x) , where Ψ is an order bounded n-multilinear map from An = A × ... ×
A (n-times) into B. In this paper, we only deal with order bounded polynomials,
and we will therefore omit the adjective order bounded.
A subset D of An is called order bounded if there exist (a1, ..., an) and
(b1, ..., bn) ∈ An such that

(a1, ..., an) ≤ (x1, ..., xn) ≤ (b1, ..., bn)

for all (x1, ..., xn) ∈ An. A multilinear (or multimorphism ) Ψ : An → B is order
bounded if Ψ maps order bounded subsets of An onto order bounded subsets of B.
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A homogeneous polynomial (of degree n) P : A → B is said to be orthogonally-
additive if P(x + y) = P (x) + P (y) whenever x, y ∈ A are orthogonally
(i.e., |x| ∧ |y| = 0). We denote by P0 (

nA, B) the set of n-homogeneous ortho-
gonally-additive polynomials from A to B. Interest in orthogonally-additive poly-
nomials on Banach lattices originates in the work of K. Sundaresan [19], in which
it has been characterized the space of n-homogeneous orthogonally-additive poly-
nomials on Lp and ℓp. More precisely, K. Sundaresan proved that every n-homo-
geneous orthogonally-additive polynomial P : Lp → R is determined by some

g ∈ L
p

p−n via the formula P ( f ) =
∫

f ng dµ, for all f ∈ Lp. Very recently, D. Pérez-
Garcia, and I. Villanueva in [17], D. Carando, S. Lassalle and I. Zalduendo in
[11] proved the following analogous result for C (X) spaces: Let Y be a Banach
space, let P : C (X)→ Y be an orthogonally-additive n-homogeneous polynomial
and let Ψ : (C (X))n → Y be its unique associated symmetric multilinear oper-
ator. Then there exists a linear operator S : C (X) → Y such that ‖S‖ = ‖Ψ‖
and there exists a finitely additive measure ν : Σ → Y∗∗ such that for every
f ∈ C (X) , we have P ( f ) = S ( f n) =

∫

X f ng dν. Here, Σ is the Borel σ-algebra
on X. Using different techniques, Y. Benyamini, S. Lassalle and J. L. G. Llavona
[3] have proven the analogous result of K. Sundaresan for the classes of Banach
lattices of functions and Köthe Banach lattices. The disadvantage of the above
results is that their proofs rely heavily on the representation of vector lattices
as vector spaces of extended continuous functions, and that they are not appli-
cable to general vector lattices. Our main purpose is to prove constructively a
decomposition theorem for homogeneous orthogonally-additive polynomials on
archimedean vector lattices. In fact, the innovation of this paper consists in mak-
ing a relationship between orthogonally-additive homogeneous polynomials and
orthosymmetric multimorphisms which leads to a constructively generalization
of Sundaresan result (1991) and those of D. Pérez-Garcia, and I. Villanueva (2005),
Y. Benyamini, S. Lassalle and J. L. G. Llavona (2006), D. Carando, S. Lassalle and
I. Zalduendo (2006), .A. Ibort, P. Linares and J. G. Llavona on the representation
of orthogonally additive polynomials on ℓp and positive orthogonally additive
polynomials on vector lattices (2009 and 2012). Moreover, involving the vector

lattice Πn (A) =

{

n
Π

i=1
ai, ai ∈ A

}

(here the multiplication under consideration is

the f -algebra multiplication of the universal completion of A), the author proved
in [20] the following Theorem: Let A be a σ-Dedekind complete vector lattice,
B be an archimedean vector lattice and P : A → B be an orthogonally-additive
n-homogeneous polynomial . If P is continuous, with respect to the relatively
uniform topology then there exists a linear map T : Πn (A) → B such that
P (x) = T (xn) , for all x ∈ A.

By using the the notion of component,the calculus in σ-Dedekind complete
vector lattice is too easy, see [20]. So a natural question raised: what about order
bounded orthogonally-additive n-homogeneous polynomials on a vector lattice
A (not necessary σ-Dedekind complete)?

The answer is affirmative. Indeed, in this paper, we give an identification
of the space of orthogonally-additive n-homogeneous polynomials on a vector
lattice A.
We take it for granted that the reader is familiar with the notions of vector lattices
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(or Riesz spaces) and operators between them. For terminology, notations and
concepts that are not explained in this paper we refer to the standard monographs
[1], [13] , [15] and [18].

2 Definitions and notations

In order to avoid unnecessary repetitions, we will assume that all vector lattices
and ℓ-algebras under consideration are Archimedean.

Let us recall some of the relevant notions. Let A be a (real) vector lattice. A
vector subspace I of A is called order ideal (or o-ideal) whenever |a| ≤ |b| and
b ∈ I imply a ∈ I. Every o-ideal is a vector sublattice of A. The principal o-ideal
generated by 0 ≤ e ∈ A is denoted by Ae. An o-ideal I of A is called band if each
subset J of I such that sup J = x ∈ A implies x ∈ I. For each subset B of A, Bd

denotes the set {x ∈ A, |x| ∧ |y| = 0, ∀y ∈ B} and Bd is called the orthogonal band

of B. The set Bdd denotes
(

Bd
)d

and called the band generated by B. A band B of A

is called order dense in A if Bdd = A.
Let A be a vector lattice (or Riesz space). A subset S of the positive cone A+

is called an orthogonal system of A if 0 /∈ S and if u ∧ v = 0 for each pair (u, v) of
distinct elements of S. It is clear from Zorn’s lemma that every orthogonal system
of A is contained in a maximal orthogonal system. An element e of a vector lattice
A is called weak order unit (resp strong order unit) of A whenever {e} is a maximal
orthogonal system of A (resp Ae = A).

Let A be a vector lattice, let 0 ≤ v ∈ A, the sequence {an, n = 1, 2, ...} in A is
called (v) relatively uniformly convergent to a ∈ A if for every real number ε > 0,
there exists a natural number nε such that |an − a| ≤ εv for all n ≥ nε. This
will be denoted by an → a (v). If an → a (v) for some 0 ≤ v ∈ A, then the
sequence {an, n = 1, 2, ...} is called (relatively) uniformly convergent to a, which is
denoted by an → a(r.u). The notion of (v) relatively uniformly Cauchy sequence is
defined in the obvious way. A vector lattice is called relatively uniform complete if
every relatively uniformly Cauchy sequence in A has a unique limit. Relatively
uniformly limits are unique in archimedean vector lattices, see [14, Theorem 63.2].

A linear mapping T defined on a vector lattice A with values in a vector lattice
B is called positive if T(A+) ⊂ B+ ( notation T ∈ L+(A,B) or T ∈ L+(A) if A = B ).

A positive operator π on a vector lattice A is called positive orthomorphism if it
follows from x ∧ y = 0 that π (x) ∧ y = 0. The difference of two positive ortho-
morphisms is called an orthomorphism. The collection of all orthomorphisms on
A is denoted by Orth(A).
In the following lines, we recall definitions and some basic facts about f-algebras.
For more information about this field, we refer the reader to [1,16]. A (real) alge-
bra A which is simultaneously a vector lattice such that the partial ordering and
the multiplication in A are compatible, that is a, b ∈ A+ implies ab ∈ A+, is called
lattice-ordered algebra (briefly ℓ-algebra). In an ℓ-algebra A, we denote the collection
of all nilpotent elements of A by N(A). An ℓ-algebra A is referred to be semiprime
if N(A) = {0}. An ℓ-algebra A is called an f-algebra if A verifies the property that
a ∧ b = 0 and c ≥ 0 imply ac ∧ b = ca ∧ b = 0. Any f-algebra is automatically
commutative and has positive squares. Every unital f-algebra (i.e., an f-algebra
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with a unit element) is semiprime.
The next paragraph of this section deals with some facts about Dedekind com-

plete and universally complete vector lattices. A vector lattice A is called Dedekind
complete if for each non-void majorized set B ⊂ A, sup B exists in A. Every vector
lattice A has a Dedekind completion Ad, this means that there exists a Dedekind
complete vector lattice Ad containing A as a vector sublattice and such that

x′ = sup
{

x ∈ A, x ≤ x′
}

= inf
{

x ∈ A, x ≥ x′
}

holds for each x′ ∈ Ad. For more about this concept, see [14, chap IV].
A vector lattice A is called laterally complete if every orthogonal system in A

has a supremum in A and if A is Dedekind complete and laterally complete, A
is said to be universally complete. Every vector lattice A has a universal completion
Au, this means that there exists a unique (up to a lattice isomorphism) universally
complete vector lattice Au such that A can be identified as an order dense sublat-
tice of Au. For more properties about universal completion, see [1, Chap II].
We finish this section with some definitions about multilinear maps on vector lat-
tices. Let A and B be vector lattices. A multilinear map Ψ from An into B is said
to be positive whenever (a1, ..., an) ∈ (A+)

n
imply Ψ (a1, ..., an) ∈ B+. A bilinear

map Ψ from An into B is said to be orthosymmetric if for all (a1, ..., an) ∈ An such
that ai ∧ aj = 0 for some 1 ≤ i, j ≤ n implies Ψ (a1, ..., an) = 0, see [5,7].

3 A decomposition theorem

Our main purpose is to prove constructively a decomposition theorem for homo-
geneous orthogonally-additive polynomials on archimedean vector lattices. To
reach our goal, we need some prerequisites. The following proposition, which
is important for the context of this work, is already proven in [17, Proposition
2.2 ] for the special case B = R. In order to make this paper self contained, we
reproduce the same proof as in [17, Proposition 2.2]

Proposition 1. Let A and B be vector lattices, let P: A → B be a homogeneous poly-
nomial of degree n and let Ψ : An → B be its associated symmetric n-multilinear
operator. Then P is orthogonally-additive if and only if for every 1 < s ≤ n and
1 ≤ n1, ..., ns ≤ n − 1 such that n1 + ... + ns = n and for every mutually orthogo-
nal f1, ..., fs ∈ A, we have that

Ψ

(

n1

f1, ..., f1, ...,
nS

fs, ..., fs

)

= 0. (FFF)

Proof. One of the implications is clear. For the other, we fix 1 ≤ n1, ..., ns ≤ n − 1
such that n1 + ... + ns = n and mutually orthogonal f1, ..., fs ∈ A. Let us take
scalars λ1, ..., λs. The orthogonal additivity of the polynomial gives us that

P(λ1 f1 + ... + λs fs) = λn
1 P( f1) + ... + λn

s P( fs)

Moreover, we have that

Ψ (λ1 f1 + ... + λs fs, .., λ1 f1 + ... + λs fs) =
s

∑
i=1

λn
i Ψ( fi, .., fi).
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Using the symmetry of Ψ, we get

∑
1≤γ1+..+γs=n

λ
γ1
1 ..λ

γs
s Ψ(

γ1

f1, .., f1, ...,
γs

fs, .., fs) = 0.

Thus we have the polynomial Q in λ1, .., λs, with coefficients in B, given by

Q (λ1, .., λs) = ∑
1≤γ1+..+γs=n

λ
γ1
1 ..λ

γs
s Ψ(

γ1

f1, .., f1, ...,
γs

fs, .., fs) = 0.

We get then

Ψ

(

n1

f1, ..., f1, ...,
nS

fs, ..., fs

)

= 0

which gives the required result.

Lemma 1. Let A and B be vector lattices, let P: A → B be a homogeneous polynomial
of degree n, let Ψ : An → B be its associated symmetric n-multilinear operator and let
1 ≤ n1, n2, n3 ≤ n − 1 such that n1 + n2 + n3 = n. Then

Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2,
n3

g, ..., g

)

= 0.

for all f1, f2, g ∈ A such that f1 ∧ f2 = f1 ∧ g = 0.

Proof. Let f1, f2, g ∈ A such that f1 ∧ f2 = f1 ∧ g = 0. Since Ψ satisfies the
property (FFF), it follows that

Ψ

(

n1

f1, ..., f1,
n2+n3

f2 + g, ..., f2 + g

)

= 0.

Hence

∑
0≤i,j≤n2+n3
i+j=n2+n3

(n2 + n3)!

i!j!
Ψ

(

n1

f1, ..., f1,
i

f2, ..., f2,
j

g, ..., g

)

= 0. (1)

Again, since Ψsatisfies the property (FFF), it follows that

Ψ

(

n1

f1, ..., f1,
n2+n3

f2, ..., f2

)

= Ψ

(

n1

f1, ..., f1,
n2+n3
g, ..., g

)

= 0.

Then the equality (1) becomes

∑
1≤i,j≤n2+n3
i+j=n2+n3

(n2 + n3)!

i!j!
Ψ

(

n1

f1, ..., f1,
i

f2, ..., f2,
j

g, ..., g

)

= 0.

So

∑
1≤i,j≤n2+n3
i+j=n2+n3

i 6=1

(n2 + n3)!

i!j!
Ψ

(

n1

f1, ..., f1,
i

f2, ..., f2,
j

g, ..., g

)

= −
(n2 + n3)!

1! (n2 + n3 − 1)!
Ψ

(

n1

f1, ..., f1, f2,
n2+n3−1
g, ..., g

)

.
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Therefore, repeating the same argument with pg in place of g (0 < p ∈ N), one
finds from the last equality that

Ψ

(

n1

f1, ..., f1, f2,
n2+n3−1
g, ..., g

)

= 0.

Using the iterated process, we conclude that

Ψ

(

n1

f1, ..., f1, ,
i

f2, ..., f2,
j

g, ..., g

)

= 0

for all 0 ≤ i, j ≤ n2 + n3 such that i + j = n2 + n3, as required.

Lemma 2. Let A and B be vector lattices, let P: A → B be a homogeneous polynomial
of degree n, let Ψ : An → B be its associated symmetric n-multilinear operator and let
1 ≤ n1, n2, n3 ≤ n − 1 such that n1 + n2 + n3 = n. Then

Ψ

(

n1

f1, ..., f1, ,
n2

f2, ..., f2,
n3

g, ..., g

)

= 0.

for all f1, f2, g ∈ A such that f1 ∧ f2 = 0 and g ∈ { f1}
dd.

Proof. Let f1, f2, g ∈ A such that f1 ∧ f2 = 0 and g ∈ { f1}
dd. Since Ψ satisfies the

property (FFF), it follows that

Ψ

(

n1+n3

f1 + g, ..., f1 + g,
n2

f2, ..., f2

)

= 0.

Hence

∑
0≤i,j≤n1+n3
i+j=n1+n3

(n1 + n3)!

i!j!
Ψ

(

i
f1, ..., f1,

n2

f2, ..., f2,
j

g, ..., g

)

= 0. (2)

Again, since Ψ satisfies the property (FFF), it follows that

Ψ

(

n1+n3

f1, ..., f1,
n2

f2, ..., f2

)

= Ψ

(

n2

f2, ..., f2,
n1+n3
g, ..., g

)

= 0.

Then the equality (2) becomes

∑
1≤i,j≤n1+n3
i+j=n1+n3

(n1 + n3)!

i!j!
Ψ

(

i
f1, ..., f1,

n2

f2, ..., f2,
j

g, ..., g

)

= 0.

So

∑
1≤i,j≤n2+n3
i+j=n2+n3

i 6=1

(n1 + n3)!

i!j!
Ψ

(

i
f1, ..., f1,

n2

f2, ..., f2,
j

g, ..., g

)

= −
(n1 + n3)!

1! (n2 + n3 − 1)!
Ψ

(

f1,
n2

f2, ..., f2,
n2+n3−1
g, ..., g

)

.
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Therefore, repeating the same argument with pg in place of g (0 < p ∈ N), one
finds from the last equality that

Ψ

(

f1,
n2

f2, ..., f2,
n2+n3−1
g, ..., g

)

= 0.

Using the iterated process, we conclude that

Ψ

(

i
f1, ..., f1,

n2

f2, ..., f2,
j

g, ..., g

)

= 0

for all 0 ≤ i, j ≤ n2 + n3 such that i + j = n2 + n3, as required.

Lemma 3. Let A and B be vector lattices, let P: A → B be a homogeneous polynomial
of degree n, let Ψ : An → B be its associated symmetric n-multilinear operator and let
1 ≤ n1, n2, n3, n4 ≤ n − 1 such that n1 + n2 + n3 + n4 = n. Then

Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2,
n3

g1, ..., g1,
n3

g2, ..., g2

)

= 0.

for all f1, f2, g1, g2 ∈ A such that f1 ∧ f2 = 0 and g1, g2 ∈ { f1}
dd.

Proof. Let f1, f2, g ∈ A such that f1 ∧ f2 = 0 and g1, g2 ∈ { f1}
dd. Since Ψ satisfies

the property (FFF), it follows that

Ψ

(

n1+n3+n4

f1 + g1 + g2, ..., f1 + g1 + g2,
n2

f2, ..., f2

)

= 0.

Hence

∑
0≤i,j≤n1+n3+n4
i+j=n1+n3+n4

(n1 + n3 + n4)!

i!j!
Ψ

(

i
f1, ..., f1,

n2

f2, ..., f2,
j

g1 + g2, ..., g1 + g2

)

= 0. (3)

Again, since Ψ satisfies the property (FFF), it follows that

Ψ

(

n1+n3+n4

f1, ..., f1 ,
n2

f2, ..., f2

)

= Ψ

(

n2

f2, ..., f2,
n1+n3

g1 + g2, ..., g1 + g2

)

= 0

Then the equality (3) becomes

∑
1≤i,j≤n1+n3+n4
i+j=n1+n3+n4

(n1 + n3 + n4)!

i!j!
Ψ

(

i
f1, ..., f1,

n2

f2, ..., f2,
j

g1 + g2, ..., g1 + g2

)

= 0.

By using the previous lemma, we deduce that

Ψ

(

i
f1, ..., f1,

n2

f2, ..., f2,
j

g1 + g2, ..., g1 + g2

)

= 0
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for all 1 ≤ i, j ≤ n1 + n3 such that i + j = n1 + n3 + n4. It follows that

Ψ

(

n1

f1, ..., f1, ,
n2

f2, ..., f2,
n3+n4

g1 + g2, ..., g1 + g2

)

= 0.

So

∑
0≤i,j≤n2+n4
i+j=n3+n4

(n3 + n4)!

i!j!
Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2,
i

g1, ..., g1,
j

g2, ..., g2

)

= 0.

Since

Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2,
n3+n4

g1, ..., g1

)

= Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2,
n4+n3

g2, ..., g2

)

= 0,

the last equality becomes

∑
1≤i,j≤n3+n4
i+j=n3+n4

(n3 + n4)!

i!j!
Ψ

(

n1

f1, ..., f1, ,
n2

f2, ..., f2,
i

g1, ..., g1,
j

g2, ..., g2

)

= 0.

Thus

∑
1≤i,j≤n3+n4
i+j=n3+n4

i 6=1

(n3 + n4)!

i!j!
Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2,
i

g1, ..., g1,
j

g2, ..., g2

)

= −
(n3 + n4)!

(n3 + n4 − 1)!
Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2, g1,
n3+n4−1
g2, ..., g2

)

Therefore, repeating the same argument with pg2 in place of g2 (0 < p ∈ N), one
finds from the last equality that

Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2, g1,
n3+n4−1
g2, ..., g2

)

= 0.

Using the iterated process, we conclude that

Ψ

(

n1

f1, ..., f1, ,
n2

f2, ..., f2,
i

g1, ..., g1,
j

g2, ..., g2

)

= 0

for all 0 ≤ i, j ≤ n3 + n4 such that i + j = n3 + n4 and the proof is complete.

The following result is crucial for our main result.

Proposition 2. Let A and B be vector lattices and let Ψ be a symmetric n-multilinear
operator from An into B satisfying the property (FFF), then Ψ is inevitably orthosym-
metric.

Proof. Let Ψ be a symmetric positive n-multilinear mapping satisfying the prop-
erty (FFF), let 1 ≤ n1, n2 ≤ n − 2 such that n1 + n2 = n − 1, let f1, f2 ∈ A+ such
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that f1 ∧ f2 = 0 and let 0 ≤ g ∈ A. Let g1 = f1 − g ∧ f1 and g2 = g − g ∧ f1. It
follows that g = g2 + g ∧ f1, f1 = g1 + g ∧ f1 and g1 ∧ g2 = 0. Therefore

Ψ

(

n1

f1, ..., f1,
n2

f2, ... f2, g

)

= Ψ

(

n1

g1 + g ∧ f1, ..., g1 + g ∧ f1,
n2

f2, ... f2, g2 + g ∧ f1

)

= Ψ

(

g1,
n1−1

f1, ..., f1,
n2

f2, ..., f2, g2 + g ∧ f1

)

+ Ψ

(

g ∧ f1, f1, ..., f1,
n2

f2, ... f2, g2 + g ∧ f1

)

= Ψ

(

g1, f1, ..., f1,
n2

f2, ..., f2, g2

)

+ Ψ

(

g1,
n1−1

f1, ..., f1,
n2

f2, ..., f2, g ∧ f1

)

+ Ψ

(

g ∧ f1,
n1−1

f1, ..., f1,
n2

f2, ..., f2, g2

)

+ Ψ

(

g ∧ f1,
n1−1

f1, ., f1,
n2

f2, ..., f2, g ∧ f1

)

.

From the fact that g1, g ∧ f1 ≤ f1, it follows, by using the same idea as in Lemma
1, that

Ψ

(

g1,
n1−1

f1, ..., f1,
n2

f2, ..., f2, g ∧ f1

)

= 0

and

Ψ

(

g ∧ f1,
n1−1

f1, ..., f1,
n2

f2, ..., f2, g ∧ f1

)

= 0

Moreover, since f1 ∧ f2 = 0 for all i 6= 1 and g1 ≤ f1 then g1 ∧ f2 = 0, it follows,
by using Lemma 3, that

Ψ

(

n1
g1, ..., g1,

n2

f2, ..., f2, g2

)

= 0.

Accordingly

Ψ

(

g1,
n1−1

f1, ..., f1,
n2

f2, ..., f2, g2

)

= ∑
k+l=n1

l≥1

n1!

l!k!
Ψ

(

k
g1, ..., g1,

l
g ∧ f1, ..., g ∧ f1,

n2

f2, ..., f2, g2

)

.
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The previous inequalities enable us to get

Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2, g

)

= Ψ

(

g1,
n1

f1, ..., f1,
n2

f2, ..., f2, g2

)

+ Ψ

(

g ∧ f1,
n1−1

f1, ..., , f1,
n2

f2, ..., f2, g2

)

(4)

= ∑
k+l=n1

l≥1

n1!

l!k!
Ψ

(

k
g1, ..., g1,

l
g ∧ f1, ..., g ∧ f1,

n2

f2, ..., f2, g2

)

+ Ψ

(

g ∧ f1,
n1−1

f1, ..., f1,
n2

f2, ..., f2, g2

)

.

Since

Ψ

(

k
g1, ..., g1,

l
g ∧ f1, ..., g ∧ f1,

n2

f2, ..., f2, g2

)

=

Ψ

(

k
g1, ..., g1,

l
g ∧ f1, ..., g ∧ f1,

n2

f2, ..., f2, g

)

−

Ψ

(

k
g1, ..., g1,

l
g ∧ f1, ..., g ∧ f1,

n2

f2, ..., f2, g ∧ f1

)

and

Ψ

(

g ∧ f1,
n1−1

f1, ..., f1,
n2

f2, ..., f2, g2

)

= Ψ

(

g ∧ f1,
n1−1

f1, ..., f1,
n2

f2, ..., f2, g

)

+ Ψ

(

g ∧ f1,
n1−1

f1, ..., f1,
n2

f2, ..., f2, g ∧ f1

)

it follows, by using the same argument as in Lemma 1 and Lemma 3, that

Ψ

(

k
g1, ..., g1,

l
g ∧ f1, ..., g ∧ f1,

n2

f2, ..., f2, g ∧ f1

)

= Ψ

(

g ∧ f1,
n1−1

f1, ..., f1,
n2

f2, ..., f2, g ∧ f1

)

= 0

Therefore Equality (4) becomes

Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2, g

)

= ∑
k+l=n1

l≥1

n1!

l!k!
Ψ

(

k
g1, ..., g1,

l
g ∧ f1, ..., g ∧ f1,

n2

f2, ..., f2, g

)

+ Ψ

(

g ∧ f1,
n1−1

f1, ..., f1,
n2

f2, ..., f2, g

)

.
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Repeating the argument with
g
p in place of g redefined (0 < p ∈ N), one finds

that the latter equality still hold. So we deduce that

1

p
Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2, g

)

= ∑
k+l=n1

l≥1

n1!

l!k!
Ψ





k
g1, ..., g1,

l
g

p
∧ f1, ...,

g

p
∧ f1,

n2

f2, ..., f2,
g

p





+ Ψ

(

g

p
∧ f1,

n1−1

f1, ..., f1,
n2

f2, ..., f2,
g

p

)

.

Then

Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2, g

)

= ∑
k+l=n1

l≥1

n1!

l!k!
Ψ





k
g1, ..., g1,

l
g

p
∧ f1, ...,

g

p
∧ f1,

n2

f2, ..., f2, g





+ Ψ

(

g

p
∧ f1,

n1−1

f1, ..., f1,
n2

f2, ..., f2, g

)

.

If p → ∞, it follows that
g
p ∧ f1 → 0 (r.u) and g1 = f1 −

g
p ∧ f1 → f1 (r.u). Hence

Ψ





k
g1, ..., g1,

l
g

p
∧ f1, ...,

g

p
∧ f1,

n2

f2, ..., f2, g



→ 0 (r.u)

and

Ψ

(

g

p
∧ f1,

n1−1

f1, ..., f1,
n2

f2, ..., f2, g

)

→ 0 (r.u)

Therefore

Ψ

(

n1

f1, ..., f1,
n2

f2, ..., f2, g

)

= 0. (5)

By using the same argument, we find that

Ψ ( f1, f2, g, ..., g) = 0 (6)

for all g ∈ A. Now let f1 ∧ f2 = 0, let g1, g2 ∈ A+ and let n1, n2 ∈ N
∗ such that

n1 + n2 = n − 2. It follows that

Ψ

(

f1, f2,
n1+n2

g1 + g2, ..., g1 + g2

)

= 0. (7)

Since

Ψ

(

f1, f2,
n1+n2

g1, ..., g1

)

= Ψ

(

f1, f2,
n1+n2

g2, ..., g2

)

= 0

it follows that

Ψ

(

f1, f2,
n1+n2

g1 + g2, ..., g1 + g2

)

=

∑
1≤1i,j≤n1+n2

i+j=n1+n2

(n1 + n2)!

i!j!
Ψ

(

f1, f2,
i

g1, ..., g1,
j

g2, ..., g2

)

= 0
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Thus

∑
1≤i,j≤n1+n2
i+j=n1+n2

i 6=1

(n1 + n2)!

i!j!
Ψ

(

f1, f2,
i

g1, ..., g1,
j

g1, ..., g1

)

=

(n1 + n2)!

(n1 + n2 − 1)!
Ψ

(

f1, f2, g1,
n1+n2−1
g2, ..., g2

)

.

Repeating the argument with pg2 in place of g2 redefined (0 < p ∈ N), one finds
that the latter equality still hold. If p → ∞, we have

Ψ

(

f1, f2, g1,
n1+n2−1
g2, ..., g2

)

= 0.

By using the same argument, we deduce that

Ψ

(

f1, f2,
i

g1, ..., g1,
j

g2, ..., g2

)

= 0

for all 1 ≤ i, j ≤ n1 + n2 such that i + j = n1 + n2 and then

Ψ
(

f1, f2,
n1

g1, ..., g1,
n2

g2, ..., g2

)

= 0.

Using the iterated process, we conclude that if f1 ∧ f2 = 0 and g1, ..., gn−2 ∈ A+

then
Ψ ( f1, f2, g1, ..., gn−2) = 0,

which gives the desired result.

In order to reach our aim, we need the following definition.

Definition 1. Let A and B be vector lattices. An orthogonally-additive homogeneous
polynomial P: A → B is called positive orthosymmetric polynomial if its associated
symmetric n-multilinear operator Ψ : An → B is positive orthosymmetric.

Now, we present our decomposition theorem.

Theorem 1. Let A and B be vector lattices, let P: A → B be a homogeneous polynomial
of degree n and let Ψ : An → B be its associated symmetric n-multilinear operator.
Then P is an orthogonally-additive polynomial if and only if there exist two positive
orthosymmetric polynomials P1, P2: A → Bd(the Dedekind completion of B) such that

P = P1 − P2.

Proof. Let P: A → B be an orthogonally-additive homogeneous polynomial of
degree n and let Ψ : An → B be its associated symmetric n-multilinear operator.
Since Ψ is an orthosymmetric order bounded n-multilinear map, it follows that Ψ

is an order bounded variation, see ([8, Theorem 9] or [10, Theorem 3.4]). By using
([9, Theorem 3.1], we deduce that |Ψ| : An → Bd is defined by

|Ψ| ( f1, ..., fn) = sup

{

n1

∑
i1=1

n2

∑
i2=1

....
nn

∑
i2=1

∣

∣Ψ
((

x1,i1 , ..., xn,in

))∣

∣

}
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where supremum is taken over all n1, n2, ..., nn ∈ N, and all finite collections

x1,i1 , ..., xn,in
∈ A+ with

n1

∑
i1=1

x1,i1 = f1, ...,
nn

∑
i1=1

xn,in
= fn. It is an easy task to show

that |Ψ| ( f1, ..., fn) ≥ 0, for all 0 ≤ f1, ..., fn ∈ A and that |Ψ| is orthosymmetric.
Let Ψ1 = 1

2 (|Ψ|+ Ψ) and Ψ2 = 1
2 (|Ψ| − Ψ) . It is clear that Ψ1 and Ψ2 are positive

orthosymmetric n-multilinear maps, as required.

Let us denote ∆ (nA, B) by the set all n-multilinear orthosymmetric maps from
An into B. When examining Theorem 1, we shall prove that ∆ (n A, B) and
P0 (

n A, B) are mutually equivalent. Hence in what follows, we will study the
order aspects of the set ∆ (n A, B) .

Actually, when examining the proof of Theorem 1, we have proved the fol-
lowing corollary.

Corollary 1. Let A be a vector lattice and let B be a Dedekind complete vector lattice.
Then under the following ordering

Ψ1 ≤ Ψ2 if and only if Ψ1 ( f1, ..., fn) ≤ Ψ2 ( f1, ..., fn)

for all f1, .., fn ∈ A+ and for all Ψ1, Ψ2 ∈ ∆ (n A, B) , ∆ (n A, B) is a vector lattice.

It is well known that for any uniformly complete vector lattice A with strong
order unit e, there exists a unique multiplication in A such that A is an f -algebra
with a unit element e, see |16, Remark 19.5]. Next, we give a short proof of the
corresponding result for any universally complete vector lattice.

Lemma 4. Let A be a universally complete vector lattice and let e be a weak order unit of
A. Then there exists a unique multiplication in A such that A is an f-algebra with a unit
element e.

Proof. Since there exists a unique multiplication (denoted by juxtaposition) on Ae

in such a manner Ae becomes an f -algebra with a unit element e (see [16, Remark
19.5]). Let x ∈ Ae. Since every πx ∈ Orth (Ae) defined by πx (y) = xy is an order
continuous, it is not hard to prove that πx has a unique extension π∗ ∈ Orth (A) ,
then A becomes an f-algebra with a unit element e, which completes the proof.

Remark 1. We remark that any universally complete vector lattice can be seen as a uni-
versally complete unital f-algebra. So in the sequel we denote its f-algebra multiplication
by juxtaposition.

Recall that if A is a vector lattice, if Au is its universal completion and if
F (X1, .., Xn) ∈ R+ [X1, .., Xn] is a homogeneous polynomial of degree p

(0 < p ∈ N) then the element (F (u1, .., un))
1
p exists in (Au)+ for all u1, .., un ∈

(Au)+, see ([6], Corollary 4.11). Next we will show that any uniformly complete
vector sublattice of Au is closed under this property. The corresponding proof is
omitted because it is almost similar to ([6], Theorem 3.7 and Corollary 4.11).

Proposition 3. Let A be a universally complete vector lattice, let B be a relatively uni-
formly complete vector sublattice of A and let F (X1, .., Xn) ∈ R+ [X1, .., Xn] be a ho-

mogeneous polynomial of degree p (0 < p ∈ N). Then (F (u1, .., un))
1
p ∈ B+ for all

u1, .., un ∈ B+.
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Theorem 2. ([4], Theorem 3.2) Let A be a uniformly complete vector lattice and let p be a
natural number such that p ≥ 1. Then the set ∏p (A) =

{

u1...up, ui ∈ A, 1 ≤ i ≤ p
}

is a vector lattice under the ordering inherited from A with ∏p (A+) as a positive cone.

Proposition 4 (20, Proposition 3.11). Let A be a relatively uniformly complete vector
lattice, let Au be its universal completion, let S = {ei, i ∈ I} be a maximal orthogonal
system of A and let ei0 ∈ S. Then Au can be equipped with an f-algebra multiplication
(denoted by ∗) such that a ∗ b ∈ A and a ∗ ei0 = a for all a, b ∈ Iei0

, where Iei0
is the

order ideal generated by ei0 in A.

Proof. Let S = {ei, i ∈ I} be a maximal orthogonal system of A and let ei0 ∈ S. By
[16, Remark 19.5], the order ideal Iei0

generated by ei0 in A can be equipped with

a unital f -algebra multiplication denoted by ∗. This f -algebra multiplication has

a similar extension to the band
{

ei0

}dd
generated by ei0 in Au (denoted also by ∗).

This latter multiplication has also a similar extension to Au (denoted also by ∗),
by the following way

a ∗ b = a1 ∗ b1, for all a, b ∈ Au

where a1 (resp b1) is the projection component of a (resp of b) in the band
{

ei0

}dd

generated by ei0 in Au, which gives the desired result.

The proof of the following result is almost identical to [4, Theorem 3.4].

Theorem 3 (20, Theorem 3.12). Let A be a relatively uniformly complete vector lattice,
let B be a vector lattice and let Ψ be an order bounded orthosymmetric n-multilinear
mapping from An into B. Then there exists an order bounded operator T : ∏n (A) → B
such that Ψ (u1, .., un) = T (u1...un) .

As a corollary we generalize the result of Y. Benyamini, S. Lassalle and
J. L. G. Llavona ([3], Theorem 2.3).

Corollary 2. (Y. Benyamini, S. Lassalle and J. L. G. Llavona ) Let A be a relatively
uniformly complete vector lattice, let B be a vector lattice and let P ∈ P0 (

nA, B). Then
there exists an order bounded operator T : ∏n (A) → Bd (the Dedekind completion of
B) such that

P (u) = T (un) for all u ∈ A.

Proof. Let P ∈ P0 (
n A, B) and let Ψ : An → B be its associated orthosymmetric

n-multilinear operator. According to Theorem 1, there exist two positive or-
thosymmetric n-multilinear operators Ψ1, Ψ2 : An → Bd such that Ψ = Ψ1 − Ψ2.
In view of Theorem 3, there exists two order bounded operators T1,
T2 : ∏n (A) → Bd such that

Ψ1 (u, ..., u) = T1 (u
n) , Ψ2 (u, ..., u) = T2 (u

n) for all u ∈ A.

Therefore
P (u) = (T1 − T2) (u

n) for all u ∈ A

and the proof is complete.
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Also we deduce the result of K. Sundaresan [19].

Corollary 3. (K. Sundaresan) Let p ∈ N, such that 1 ≤ n < p , then for every
P ∈ P0

(

nLp (µ) , R
)

there exists g ∈ L p
p−n

such that

P ( f ) =
∫

K
f ngdµ for all f ∈ Lp (µ) .

Proof. Let us denote the classical multiplication in Lp (µ) by ∗. We remark that the
following map

φ : ∏n

(

Lp (µ)
)

→ ∏
∗
n

(

Lp (µ)
)

f1... fn 7→ f1 ∗ ... ∗ fn

is linear and bijective. Hence ∏
∗
n

(

Lp (µ)
)

can be equipped with the following
lattice order

f1 ∗ ... ∗ fn ≥ 0 in ∏
∗
n

(

Lp (µ)
)

if f1... fn ≥ 0 in ∏n

(

Lp (µ)
)

,

which means that φ becomes a lattice homomorphism. Moreover it is well known
that ∏

∗
n

(

Lp (µ)
)

is naturally identified with L p
n
(µ) . Therefore, by the previous

corollary, there exists an order bounded operator T : ∏
∗
n

(

Lp (µ)
)

= L p
n
(µ) → R

such that P ( f ) = T ( f n) for all f ∈ Lp (µ) . It is well-known that the dual of
L p

n
(µ) is given by integrals. More precisely there exists g ∈ L p

p−n
such that

P ( f ) =
∫

K
f ngdµ for all f ∈ Lp (µ)

and we are done.

Similarly we deduce the result of D. Carando, S. Lassalle and I. Zalduendo
[11, Theorem 1.4] and D. Pérez-Garcia, and I. Villanueva [17, Theorem 2.1].

Corollary 4. (D. Carando, S. Lassalle and I. Zalduendo, D. Pérez-Garcia, and I. Vil-
lanueva ) For any P ∈ P0 (

nC (K) , R) , there is a regular Borel measure µ over K such
that

P ( f ) =
∫

K
f ndµ for all f ∈ C (K) .

Proof. Let e = χK. Since that there exists a unique multiplication (denoted by jux-
taposition) on C (K) in such a manner C (K) becomes an f -algebra with a unit
element e, then the f -algebra multiplication on C (K) can be extended in a unique
to the universal completion (C (K))u of C (K) . It follows that (C (K))u becomes
an f-algebra with a unit element e. Consequently ∏n (C (K)) = C (K) . In view
of Corollary 2, there exists an order bounded operator T : C (K) → R such
that P ( f ) = T ( f n) for all f ∈ C (K) . By the well-known F. Riesz representa-
tion Theorem [2, Theorem 1.1.7], there is a regular Borel measure µ over K such
that P ( f ) =

∫

K f ndµ, for all f ∈ C (K) , as required.

In the sequel, we need the following notations. Let us denote L (∏n (A) , B)
by the vector lattice of all order bounded linear operators from ∏n (A) into B.
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Theorem 4. Let A be a relatively uniformly complete vector lattice and let B be a
Dedekind complete vector lattice. Then the map

Ω : ∆ (n A, B) → L (∏n (A) , B)
Ψ 7→ TΨ

defined by TΨ (an) = Ψ (a, .., a) for all 0 ≤ a ∈ A, is a lattice isomorphism.

Proof. Let Ψ ∈ ∆ (n A, B) such that Ω (Ψ) = 0L(∏n(A),B). It follows that

Ψ (a, .., a) = 0 for all 0 ≤ a ∈ A. Since ∏n (A+) is a positive cone of ∏n (A) ,
it follows that Ψ = 0. Moreover, it is an easy task to show that Ω is a surjective
map. Hence Ω is a bijective map. It remains to show that Ω is lattice homomor-
phism. To this end, let Ψ ∈ ∆ (n A, B) and let 0 ≤ a ∈ A, then

Ω
(

Ψ+
)

= TΨ+ .

Since

Ω
(

Ψ+
)

(an) = TΨ+ (an)

= Ψ+ (a, .., a)

= sup {Ψ (b1, .., bn) , 0 ≤ bi ≤ a, 1 ≤ i ≤ n}

and since A is a relatively uniformly complete vector lattice, then by |16, Remark
19.5] the order ideal Ia generated by a in A can be equipped with a multiplica-
tion (denoted by juxtaposition) such that Ia is an f -algebra with a unit element a.
Therefore, by the symmetry of Ψ and by using the same argument as in the proof
of Theorem 3,

Ψ (b1, .., bn) = Ψ (b1a, .., bna)

= Ψ (b1...bn, a, .., a)

for all 0 ≤ bi ≤ a, 1 ≤ i ≤ n. In view of Proposition 4, there exists a unique
0 ≤ b ≤ a ∈ Ia such that b1...bn = bn. Hence, also by using the same argument as
in the proof of Theorem 3, we have that

Ψ (b1, ..., bn) = Ψ (bn, a, ..., a)

= Ψ (b, ..., b) .

As a conclusion,

Ω
(

Ψ+
)

(an) = sup {Ψ (b, ..., b) , 0 ≤ b ≤ a} .

Moreover,

(Ω (Ψ))+ (an) = (TΨ)
+ (an)

= sup {TΨ (bn) , 0 ≤ bn ≤ an}

= sup {Ψ (b, ..., b) , 0 ≤ b ≤ a}

Hence
(Ω (Ψ))+ (an) = Ω

(

Ψ+
)

(an)

for all 0 ≤ a ∈ A. As ∏n (A+) is the positive cone of the vector lattice ∏n (A) ,

we deduce that (Ω (Ψ))+ = Ω (Ψ+) and we are done.
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Since Any orthogonally-additive homogeneous polynomial P of degree n is
associated to its associated n-orthosymmetric multimorphism Ψ, we deduce the
following.

Theorem 5. Let A be a relatively uniformly complete vector lattice and let B be a
Dedekind complete vector lattice. Then under the following ordering

P1 ≤ P2 if and only if Ψ1 ( f1, ..., fn) ≤ Ψ2 ( f1, ..., fn)

where Ψ1, Ψ2 ∈ ∆ (n A, B) are respectively the associated orthosymmetric multimor-
phisms of P1 and P2, for all f1, .., fn ∈ A+ and for all P1, P2 ∈ P0 (

n A, B) , P0 (
nA, B)

is a vector lattice.

Finally, as simple combination between Theorem 1, Theorem 5 and Theorem
4, we deduce the following corollaries.

Corollary 5. Let A be a relatively uniformly complete vector lattice and let B be a
Dedekind complete vector lattice. Then P0 (

nA, B) is lattice isomorphic to L (∏n (A) , B).

Corollary 6 (13, Theorem 3.4). Let E be a uniformly complete Archimedean Riesz sub-
space of a semiprime f -algebra A and F uniformly complete Archimedean. Then, for every
positive orthogonally additive n-homogeneous polynomial P ∈ P0 (

nE, F) there exists a
unique positive linear application L ∈ L (∏n (E) , F) such that P(x) = L(xn) for every
x ∈ E.
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