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Abstract

We study a mathematical model for a quasistatic process of contact with
normal compliance and friction when the wear of the contact surface due to
friction is taken into account. The material is electro-viscoelastic with long
memory. We establish a variational formulation for the model and prove the
existence and uniqueness of the weak solution. The proof is based on classi-
cal results for elliptic variational inequalities and fixed point arguments.

1 Introduction

The piezoelectric effect is characterized by the coupling between the mechanical
and electrical behavior of the materials. Indeed, the apparition of electric charges
on some crystals submitted to the action of body forces and surfaces tractions
was observed and their dependence on the deformation process was underlined.
Conversely, it was proved experimentally that the action of electric field on the
crystals may generate strain and stress. A deformable material which presents
such a behavior is called a piezoelectric material. Piezoelectric materials are used
extensively as switches and actuators in many engineering systems, in radioelec-
tronics, electroacoustics and measuring equipments. However, there are very few
mathematical results concerning contact problems involving piezoelectric mate-
rials and therefore there is a need to extend the results on models for contact
with deformable bodies which include coupling between mechanical and elec-
trical properties. General models for elastic materials with piezoelectric effects
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can be found in [1, 6]. A static frictional contact problem for electric-elastic ma-
terials was considered in [2, 8, 12]. A slip-dependent frictional contact problem
for electro-elastic materials was studied in [17]. Contact problems with friction
or adhesion for electro-viscoelastic materials were studied in [4, 7, 15, 16, 17] and
recently in [10, 11] in the case of an electrically conductive foundation.

In the present paper we consider a mathematical model for the process of
contact with normal compliance and friction contact conditions when the wear
of the contact surface due to friction is taken into account. The foundation is
assumed to move steadily and only sliding contact takes places. The material
is electro-viscoelastic with long memory, defined by a relaxation operator. We
derive the variational formulation and prove the existence and uniqueness of the
weak solution of the model.

The paper is organized as follows. In section 2 we present the notation and
some preliminaries. In section 3 we present the mechanical problem, we list the
assumptions on the data and give the variational formulation of the problem.
In section 4 we state our main existence and uniqueness result. It is based on
arguments of classical results for elliptic variational inequalities and fixed point
arguments.

2 Notation and preliminaries

In this section we present the notation we shall use and some preliminary mate-
rial. For further details, we refer the reader to [3, 5]. We denote by Sd the space
of second order symmetric tensors on R

d (d = 2, 3), while ”.” and | . | will rep-
resent the inner product and the Euclidean norm on Sd and R

d. Let Ω ⊂ R
d be a

bounded domain with a Lipschitz boundary Γ and let ν denote the unit outer nor-
mal on Γ. Everywhere in the sequel the index i and j run from 1 to d, summation
over repeated indices is implied and the index that follows a comma represents
the partial derivative with respect to the corresponding component of the inde-
pendent spatial variable. We use the standard notation for Lebesgue and Sobolev
spaces associated to Ω and Γ and introduce the spaces:

H = L2(Ω)d =
{

u = (ui) / ui ∈ L2(Ω)
}

,

H =
{

σ = (σij) / σij = σji ∈ L2(Ω)
}

,

H1 = {u = (ui) / ε(u) ∈ H } ,

H1 = {σ ∈ H / Div σ ∈ H} .

Here ε and Div are the deformation and divergence operators, respectively,
defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div σ = (σij, j).

The spaces H, H, H1 and H1 are real Hilbert spaces endowed with the canonical
inner products given by

(u, v)H =
∫

Ω

uivi dx ∀ u, v ∈ H,
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(σ, τ)H =
∫

Ω

σijτij dx ∀ σ, τ ∈ H,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H ∀ u, v ∈ H1,

(σ, τ)H1
= (σ, τ)H + (Div σ, Div τ)H ∀ σ, τ ∈ H1.

The associated norms on the spaces H, H, H1 and H1 are denoted by | . |H,
| . |H, | . |H1

and | . |H1
, respectively. For every element v ∈ H1 we also use the

notation v for the trace of v on Γ and we denote by vν and vτ the normal and the
tangential components of v on Γ given by

vν = v.ν, vτ = v − vνν. (2.1)

We also denote by σν and στ the normal and the tangential traces of a function
σ ∈H1, we recall that when σ is a regular function then

σν = (σν).ν, στ = σν − σνν, (2.2)

and the following Green’s formula holds:

(σ, ε(v))H + (Div σ, v)H =
∫

Γ

σν.v da ∀ v ∈ H1. (2.3)

Let T > 0. For every real Banach space X we use the notation C(0, T; X) and
C1(0, T; X) for the space of continuous and continuously differentiable functions
from [0, T] to X, respectively; C(0, T; X) is a real Banach space with the norm

| f |C(0,T;X)= max
t∈[0,T]

| f (t) |X

while C1(0, T; X) is a real Banach space with the norm

| f |C1(0,T;X)= max
t∈[0,T]

| f (t) |X + max
t∈[0,T]

|
.
f (t) |X .

Finally, for k ∈ N and p ∈ [1, ∞], we use the standard notation for the
Lebesgue spaces Lp(0, T; X) and for the Sobolev spaces Wk,p(0, T; X). Moreover,
if X1 and X2 are real Hilbert spaces then X1 × X2 denotes the product Hilbert
space endowed with the canonical inner product (., .)X1×X2

.

3 Mechanical and variational formulations

The physical setting is the following. An electro-viscoelastic body with long
memory occupies a bounded domain Ω ⊂ R

d (d = 2, 3) with outer Lipschitz
surface Γ. The body is submitted to the action of body forces of density f0 and
volume electric charges of density q0. It is also submitted to mechanical and elec-
tric constraint on the boundary. We consider a partition of Γ into three disjoint
measurable parts Γ1, Γ2 and Γ3, on one hand, and on two measurable parts Γa

and Γb, on the other hand, such that meas (Γ1) > 0, meas (Γa) > 0 and Γ3 ⊂ Γb.
Let T > 0 and let [0, T] be the time interval of interest. The body is clamped on
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Γ1 × (0, T), so the displacement field vanishes there. A surface tractions of den-
sity f2 act on Γ2 × (0, T) and a body force of density f0 acts in Ω × (0, T) . We also
assume that the electrical potential vanishes on Γa × (0, T) and a surface electric
charge of density q2 is prescribed on Γb × (0, T). The contact is frictional, it is
modeled with normal compliance and the wear of the contact surfaces is taken
into account. The foundation is assumed to move steadily and only sliding con-
tact takes places. We suppose that the body forces and tractions vary slowly in
time, and therefore, the accelerations in the system may be neglected. Neglecting
the inertial terms in the equation of motion leads to a quasistatic approach of the
process. We use an electro-viscoelastic constitutive law with long memory given
by

σ = Aε(
.
u) +Fε(u) +

∫ t

0
M(t − s)ε(u(s)) ds − E∗E(ϕ), (3.1)

D = Eε(u) + BE(ϕ), (3.2)

where u is the displacement field and σ and ε(u) are the stress and the linearized
strain tensor, respectively. Here A and F are nonlinear operators describing the
purely viscous and the elastic properties of the material, respectively, and M is
a relaxation fourth order tensor. E(ϕ) = −∇ϕ is the electric field, E = (eijk)
represents the third order piezoelectric tensor, E∗ is its transposed and B denotes
the electric permittivity tensor. We use dots for derivatives with respect to the
time variable t. When M = 0 the constitutive law (3.1)-(3.2) reduces to the electro-
viscoelastic constitutive law given by (3.2) and

σ = Aε(
.
u) +Fε(u)− E∗E(ϕ). (3.3)

We now briefly describe the boundary conditions on the contact surface Γ3,
based on the model derived in [19, 20]. We introduce the wear function
w : Γ3 × [0, T] → R which measures the wear accumulated of the surface. The
evolution of the wear of the contacting surface is governed by a simplified ver-
sion of Archard’s law ( see [19, 20]) which we now describe. The rate form of
Archard’s law is

.
w = −k1σν |

.
uτ − v∗ |, (3.4)

where k1 > 0 is a wear coefficient, v∗ is the tangential velocity of the foundation
and |

.
uτ − v∗ | represents the slip speed between the contact surface and the

foundation. We see that the rate of wear is assumed to be proportional to the
contact stress and the slip speed. For the sake of simplicity we assume in the rest
of the section that the motion of the foundation is uniform, i.e. v∗ does not vary
in time. Denote v∗ =| v∗ | > 0. We assume that the tangential speed v∗ is large so
that we can neglect in the sequel

.
uτ as compared with v∗ to obtain the following

version of Archard’s law
.

w = −k1v∗σν. (3.5)

Use of the simplified law (3.5) for the evolution of the wear avoids some mathe-
matical difficulties in the study of the quasistatic electro-viscoelastic contact prob-
lem. Let now pi , for i = ν, τ, denote the normal compliance functions satisfying
pi(r) = 0 if r ≤ 0 and other assumptions given in what follows and note that the
wear appears in the normal compliance condition as follows:

−σν = pν(uν − h − w) , | στ |= pτ(uν − h − w),
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where h represents the initial gap between the body and the foundation. We
model the frictional contact between the electro-viscoelastic body and the foun-
dation with a version of Coulomb’s law of dry friction. Since there is only sliding
contact it follows that

| στ |= pτ(uν − h − w), στ = −λ(v∗ − uτ), λ ≥ 0 ,

these relations set constraints on the evolution of the tangential stress, in particu-
lar, the tangential stress is in the direction opposite to the relative sliding velocity
v∗ − uτ. An example of the normal compliance function pν is

pν(r) = cνr+, (3.6)

or, more general,
pν(r) = cν(r+)

m. (3.7)

Here cν is a positive constant, r+ = max {0, r} and m > 0. The normal compliance
contact condition was proposed in [9], in the particular form of (3.7). Then it was
used in a large number of papers, see e.g. [14] and the references therein. A
related form of normal compliance functions is given by

pτ = µ pν, (3.8)

where µ ≥ 0 is the coefficient of friction, and

pτ = µ pν(1 − δpν)+, (3.9)

where δ is a small positive material constant related to the wear and hardness of
the surface and µ ≥ 0 is the coefficient of friction. This related form of compliance
contact condition was used in [19, 20] .

To simplify the notation, we do not indicate explicitely the dependence of
various functions on the variables x ∈ Ω ∪ Γ and t ∈ [0, T] . Then, the classical
formulation of the mechanical problem of sliding frictional contact problem with
normal compliance and wear may be stated as follows.

Problem P. Find a displacement field u : Ω × [0, T] → R
d, a stress field σ : Ω ×

[0, T] → Sd, an electric potential field ϕ : Ω × [0, T] → R and an electric displacement
field D : Ω × [0, T] → R

d such that

σ = Aε(
.
u) +Fε(u) +

∫ t

0
M(t − s)ε(u(s)) ds + E∗∇ϕ in Ω × (0, T) , (3.10)

D = Eε(u)− B∇ϕ in Ω × (0, T) , (3.11)

Divσ + f0 = 0 in Ω × (0, T) , (3.12)

divD = q0 in Ω × (0, T) , (3.13)

u = 0 on Γ1 × (0, T) , (3.14)

σν = f2 on Γ2 × (0, T) , (3.15)






−σν = pν(uν − h − w) , | στ |= pτ(uν − h − w)
στ = −λ(v∗ − uτ), λ ≥ 0

.
w = −k1v∗σν

on Γ3 × (0, T), (3.16)
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ϕ = 0 on Γa × (0, T) , (3.17)

D . ν = q2 on Γb × (0, T) , (3.18)

u(0) = u0, w(0) = 0 in Ω. (3.19)

Here equations (3.10) and (3.11) represent the electro-viscoelastic constitutive law
with long memory introduced in the third section. Equations (3.12) and (3.13)
represent the equilibrium equations for the stress and electric-displacement fields
while equations (3.14) and (3.15) are the displacement and traction boundary con-
dition, respectively. Equation (3.16) represents the condition with normal compli-
ance, friction and wear described above. Equations (3.17) and (3.18) represent the
electric boundary conditions. In equation (3.19) u0 is the given initial displace-
ment and w(0) = 0 means that at the initial moment the body is not subject to
any prior wear. To obtain the variational formulation of the problem (3.10)-(3.19),
we introduce the closed subspace of H1(Ω)d defined by

V =
{

v ∈ H1(Ω)d / v = 0 on Γ1

}

.

Since meas (Γ1) > 0, Korn’s inequality holds and there exists a constant Ck > 0,
that depends only on Ω and Γ1, such that

| ε(v) |H≥ Ck | v |H1(Ω)d ∀v ∈ V.

A proof of Korn’s inequality may be found in [13] p. 79. On the space V we
consider the inner product and the associated norm given by

(u, v)V = (ε(u), ε(v))H , | v |V=| ε(v) |H ∀u, v ∈ V. (3.20)

It follows that | . |H1(Ω)d and | . |V are equivalent norms on V and therefore

(V, | . |V) is a real Hilbert space. Moreover, by the Sobolev trace Theorem and
(3.20), there exists a constant C0 > 0, depending only on Ω, Γ1 and Γ3 such that

| v |L2(Γ3)d≤ C0 | v |V ∀v ∈ V. (3.21)

We also introduce the spaces

W =
{

φ ∈ H1(Ω) / φ = 0 on Γa

}

,

W =
{

D = (Di) / Di ∈ L2(Ω), divD ∈ L2(Ω)
}

,

where divD = (Di,i). The spaces W and W are real Hilbert spaces with the inner
products given by

(ϕ, φ)W =
∫

Ω

∇ϕ .∇φ dx,

(D, E)W =
∫

Ω

D . E dx +
∫

Ω

divD . divE dx.

The associated norms will be denoted by | . |W and | . |W , respectively. Moreover,
when D ∈W is a regular function, the following Green’s type formula holds:

(D,∇φ)H + (divD, φ)L2(Ω) =
∫

Γ

D . ν φ da ∀ φ ∈ H1(Ω).
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Notice also that, since meas(Γa) > 0, the following Friedrichs-Poincaré inequality
holds:

| ∇φ |H≥ CF | φ |H1(Ω) ∀φ ∈ W, (3.22)

where CF > 0 is a constant which depends only on Ω and Γa. In the study of the
mechanical problem (3.10)-(3.19), we make the following assumptions.

The viscosity operator A : Ω × Sd → Sd satisfies































(a) There exists a constant LA > 0 such that
| A(x, ε1)−A(x, ε2) |≤ LA | ε1 − ε2 | ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(b) There exists a constant mA > 0 such that
(A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA | ε1 − ε2 |2 ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(c) The mapping x → A(x, ε) is Lebesgue measurable on Ω for any ε ∈ Sd.
(d) The mapping x → A(x, 0) belongs to H.

(3.23)
The elasticity Operator F : Ω × Sd → Sd satisfies































(a) There exists a constant LF > 0 such that
| F (x, ε1)−F (x, ε2) |≤ LF | ε1 − ε2 |
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(b) The mapping x → F (x, ε) is Lebesgue measurable on Ω

for any ε ∈ Sd.
(c) The mapping x → F (x, 0) belongs to H.

(3.24)

The relaxation operator M satisfies

M ∈ C(0, T;H∞), (3.25)

where H∞ is the space of fourth order tensor field given by

H∞ =
{

E = (Eijkl)/Eijkl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d
}

,

which is a real Banach space with the norm

| E |H∞
= max

1≤i,j,k,l≤d
| Eijkl |L∞(Ω) .

The normal compliance functions pr : Γ3 × R → R+ (r = ν, τ) satisfy















(a) There exists a constant Lr > 0 such that
| pr(x, u1)− pr(x, u2) |≤ Lr | u1 − u2 | ∀u1, u2 ∈ R, a.e. x ∈ Ω.
(b) For any u ∈ R, x → pr(x, u) is measurable.
(c) The mapping x → pr(x, 0) blongs to L2(Γ3).

(3.26)

We observe that the assumption (3.26) on the functions pν and pτ are pretty gen-
eral except the assumption (3.26)(a) which, roughly speaking, requires the func-
tions to grow at most linearly. It is easily seen that the functions defined in (3.6)
and (3.7) satisfy the condition (3.26)(a). We also observe that if the functions pν

and pτ are related by (3.8) or (3.9) and pν satisfies (3.26)(a), then pτ also satisfies
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(3.26)(a) with Lτ = µ Lν. So our results below are valid for the boundary value
problems associated with these choices of the normal compliance functions.

The electric permittivity operator B = (bij): Ω × R
d → R

d satisfies















(a) B(x)E = (bij(x)Ej) ∀E = (Ei) ∈ R
d, a.e. x ∈ Ω.

(b) bij = bji , bij ∈ L∞(Ω).
(c) There exists a constant mB > 0 such that

BE.E ≥ mB | E |2 ∀ E = (Ei) ∈ R
d, a.e. x ∈ Ω.

(3.27)
The piezoelectric operator E : Ω × Sd → R

d satisfies

{

(a) E(x)τ = (ei j k (x)τjk) ∀τ = (τij) ∈ Sd, a.e. x ∈ Ω.
(b) ei jk = eikj ∈ L∞(Ω).

(3.28)
We also suppose that the body forces and surface tractions have the regularity

f0 ∈ C(0, T; H), f2 ∈ C(0, T; L2(Γ2)
d), (3.29)

q0 ∈ C(0, T; L2(Ω)), q2 ∈ C(0, T; L2(Γb)), (3.30)

q2(t) = 0 on Γ3 ∀t ∈ [0, T] . (3.31)

Note that we need to impose assumption (3.31) for physical reasons, indeed the
foundation is assumed to be insulator and therefore the electric charges (which
are prescribed on Γb ⊃ Γ3) have to vanish on the potential contact surface. The
initial displacement field satisfies

u0 ∈ V. (3.32)

Next, we denote by f : [0, T] → V the function defined by

( f (t), v)V =
∫

Ω

f0(t) . v dx +
∫

Γ2

f2(t) .v da ∀v ∈ V, t ∈ [0, T] , (3.33)

and we denote by q : [0, T] → W the function defined by

(q(t), φ)W =
∫

Ω

q0(t) .φ dx −
∫

Γb

q2(t) .φ da ∀φ ∈ W, t ∈ [0, T] . (3.34)

We define the functional j : V × V × L2(Γ3) → R by

j(u, v, w) =
∫

Γ3

pν(uν − h − w)vν da

+
∫

Γ3

pτ(uν − h − w) | vτ − v∗ | da ∀u, v ∈ V, w ∈ L2(Γ3), (3.35)

the functional j satisfies

for all g ∈ V and w ∈ L2(Γ3)

v → j(g, v, w) is proper, convex and lower semicontinuous on V. (3.36)
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We note that conditions (3.29) and (3.30) imply

f ∈ C(0, T; V), q ∈ C(0, T; W). (3.37)

Using standard arguments we obtain the variational formulation of the mechan-
ical problem (3.10)-(3.19).

Problem PV. Find a displacement field u : [0, T] → V, a stress field σ : [0, T] → H1,
an electric potential field ϕ : [0, T] → W, an electric displacement field D : [0, T] →
H and a wear function w : [0, T] → L2(Γ3) such that for all t ∈ [0, T] ,

σ(t) = Aε(
.
u(t)) + Fε(u(t)) +

∫ t

0
M(t − s)ε(u(s)) ds + E∗∇ϕ(t), (3.38)

.
w = −k1v∗σν, (3.39)

(σ(t) ), ε(v−
.
u(t)))H + j(u(t), v,w(t)) − j(u(t),

.
u(t), w(t))

≥ ( f (t), v−
.
u(t))V ∀v ∈ V, (3.40)

D(t) = Eε(u(t)) − B∇ϕ(t), (3.41)

(D(t),∇φ)H = −(q(t), φ)W ∀φ ∈ W, (3.42)

u(0) = u0, w(0) = 0. (3.43)

We notice that the variational problem PV is formulated in terms of displacement
field, stress field, electrical potential field, electric displacement field and a wear
function. The functions u, σ, ϕ, D and w which satisfy (3.38)-(3.43) are called
weak solution to contact problem P. The existence of the unique solution to prob-
lem PV is stated and proved in the next section.

4 An existence and uniqueness result

The main result in this section is the following existence and uniqueness result.

Theorem 4.1. Let the assumptions (3.23)-(3.32) hold. Then there exists a unique solution
{u, σ,ϕ, D,w} to problem PV. Moreover, the solution satisfies

u ∈ C1(0, T; V), (4.1)

σ ∈ C(0, T;H1), (4.2)

ϕ ∈ C(0, T; W), (4.3)

D ∈ C(0, T;W), (4.4)

w ∈ C1(0, T; L2(Γ3)). (4.5)
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The functions u, σ, ϕ, D and w which satisfy (3.38)-(3.43) are called weak solu-
tion to contact problem P. We conclude that, under the assumptions (3.23)-(3.32),
the mechanical problem (3.10)-(3.19) has a unique weak solution satisfying (4.1)-
(4.5). The proof of Theorem 4.1 is carried out in several steps that we prove in
what follows. Everywhere in this section we suppose that assumptions of The-
orem 4.1 hold. Below, C denotes a generic positive constant which may depend
on Ω, Γ1, Γ2, Γ3,A, E ,F , pν, pτ and T but does not depend on t nor of the rest of
input data, and whose value may change from place to place.

In the first step let w ∈ C(0, T; L2(Γ3)), η ∈ C(0, T;H) and g ∈ C(0, T; V) be
given and consider the following variational problem.

Problem PVwηg : Find a displacement field vwηg : [0, T] → V and a stress field
σwηg : [0, T] → H such that for all t ∈ [0, T] ,

σwηg(t) = Aε(vwηg(t)) + η(t), (4.6)

(σwηg(t)), ε(v − vwηg(t)))H + j(g(t), v,w(t)) − j(g(t), vwηg(t), w(t))

> ( f (t), v−vwηg(t))V ∀v ∈ V. (4.7)

In the study of problem PVwηg we have the following result.

Lemma 4.2. PVwηg has a unique weak solution such that

vwηg ∈ C(0, T; V), σwηg ∈ C(0, T;H1). (4.8)

Proof. We define the operator A : V → V such that

(Au, v)V = (Aε(u), ε(v))H ∀u, v ∈ V. (4.9)

It follows from (4.9) and (3.23)(a) that

| Au − Av |V≤ LA | u − v |V ∀u, v ∈ V, (4.10)

which shows that A : V → V is Lipschitz continuous. Now, by (4.9) and (3.23)(b)
we find

(Au − Av, u − v)V ≥ mA | u − v |2V ∀u, v ∈ V, (4.11)

i.e., that A : V → V is a strongly monotone operator on V. Moreover using Riesz
Representation Theorem we may define an element F ∈ C(0, T; V) by

(F(t), v)V = ( f (t), v)V − (η(t), ε(v))H.

Since A is a strongly monotone and Lipschitz continuous operator on V and since
v → j(g(t), v,w(t)) is a proper convex lower semicontinuous functional, it follows
from classical result on elliptic inequalities (see for example [5]) that there exists
a unique function vwηg(t) ∈ V which satisfies

(Avwηg(t), v − vwηg(t))V + j(g(t), v,w(t)) − j(g(t), vwηg(t), w(t))

> (F(t), v − vwηg(t))V ∀v ∈ V. (4.12)
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We use the relation (4.6), the assumption (3.23) and the properties of the defor-
mation tensor to obtain that σwηg(t) ∈ H. Since v = vwηg(t) ± ψ satisfies (4.7),

where ψ ∈ D(Ω)d is arbitrary, using the definition (3.33) we find

Divσwηg(t) + f0(t) = 0. (4.13)

With the regularity assumption (3.29) on f0 we see that Divσwηg(t) ∈ H. There-
fore σwηg(t) ∈ H1. Let t1, t2 ∈ [0, T] and denote η(ti) = ηi, f (ti) = fi, g(ti) = gi,
vwηg(ti) = vi, σwηg(ti) = σi for i = 1, 2. Using the relation (4.12) we find that

(Av1 − Av2, v1 − v2)V

≤ ( f1− f 2, v1 − v2)V + (η2 − η1, ε(v1−v2))H
+ j(g1, v2, w)− j(g1, v1, w) + j(g2, v1, w)− j(g2, v2, w). (4.14)

From the definition of the functional j given by (3.35) we have

j(g1, v2, w)− j(g1, v1, w) + j(g2, v1, w)− j(g2, v2, w)

=
∫

Γ3

{(pν(g1ν − w − h)− pν(g2ν − w − h)} (v2ν − v1ν) da

+
∫

Γ3

{(pτ(g1ν − w − h)− pτ(g2ν − w − h)} (|v2τ − v∗| − |v1τ − v∗|) da

We use (3.21) and (3.26) to deduce that

j(g1, v2, w)− j(g1, v1, w) + j(g2, v1, w)− j(g2, v2, w)

≤ C | g1 − g2 |V | v1 − v2 |V . (4.15)

The relation (3.20), the estimate (4.11) and the inequality (4.15) combined with
(4.14) give us

mA | v1 − v2 |V≤ C(| f1 − f2 |V + | η1 − η2 |H + | g1 − g2 |V). (4.16)

The inequality (4.16) and the regularity of the functions f , g and η show that

vwηg ∈ C(0, T; V).

From assumption (3.23) and the relation (4.6) we have

| σ1 − σ2 |H≤ C(| v1 − v2 |V + | η1 − η2 |H), (4.17)

and from (4.13) we have

Divσ(ti) + f0(ti) = 0, i = 1, 2. (4.18)

The regularity of the function η, v, f0 and the relations (4.17)-(4.18) show that

σwηg ∈ C(0, T;H1).
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Let w ∈ C(0, T; L2(Γ3)), g ∈ C(0, T; V) and let η ∈ C(0, T;H) be given. We
consider the following operator

Λwη : C(0, T; V) → C(0, T; V)

defined by

Λwηg = u0 +
∫ t

0
vwηg (s) ds ∀g ∈ C(0, T; V). (4.19)

Lemma 4.3. Let the assumptions (3.23)-(3.32) hold. Then the operator Λwη has a unique
fixed point gwη ∈ C(0, T; V).

Proof. Let g1, g2 ∈ C(0, T; V) and let η ∈ C(0, T;H). We use the notation vi =
vwηgi

and σi = σwηgi
for i = 1, 2. Using similar arguments as those used in (4.16)

we find
mA | v1(t)− v2(t) |V≤ C | g1(t)− g2(t) |V ∀t ∈ [0, T]. (4.20)

From (4.19) and (4.20) we find that

| Λwηg1(t) − Λwηg2(t) |V≤ C
∫ t

0
| g1(s) − g2(s) |V ds ∀t ∈ [0, T]. (4.21)

Reiterating this inequality m times, we obtain

| Λ
m
wηg1 − Λ

m
wηg2 |C(0,T;V)≤

CmTm

m!
| g1 − g2 |C(0,T;V) . (4.22)

This shows that for m large enough the operator Λ
m
wη is a contraction in the Ba-

nach space C(0, T; V). Thus, from Banach’s fixed point theorem the operator Λwη

has a unique fixed point gwη ∈ C(0, T; V).

Now we consider the following problem.
Problem PVwη. Find a displacement field uwη : [0, T] → V such that for all

t ∈ [0, T] ,

(Aε(
.
uwη(t)), ε(v−

.
uwη(t)))H + j(uwη(t), v,w(t)) − j(uwη(t),

.
uwη(t), w(t))

+ (η(t), ε(v−
.
uwη(t))H ≥ ( f (t), v−

.
uwη(t))V ∀v ∈ V, (4.23)

uwη(0) = u0. (4.24)

In the study of the problem PVwη we have the following result.

Lemma 4.4. PVwη has a unique solution satisfying the regularity (4.1).

Proof. For each w ∈ C(0, T; L2(Γ3)) and η ∈ C(0, T;H), we denote by
gwη ∈ C(0, T; V) be the fixed point obtained in lemma 4.3 and let uwη be the
function defined by

uwη(t) = u0 +
∫ t

0
vwηgwη(s) ds ∀t ∈ [0, T]. (4.25)

We have Λwηgwη = gwη . From (4.19) and (4.25) it follows that

uwη = gwη. (4.26)

Therefore, taking g = gwη in (4.7 ) and using (4.6), ( 4.25) and (4.26) we see that
uwη is the unique solution to problem PVwη satisfiying the regularity expressed
in (4.1).
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In the second step, let w ∈ C(0, T; L2(Γ3)) and η ∈ C(0, T;H), we use the
displacement field uwη obtained in (4.25) and consider the following variational
problem.

Problem QVwη. Find the electric potential field ϕwη : [0, T] → W such that

(B∇ϕwη(t),∇φ)H − (Eε(uwη(t)),∇φ)H = (q(t), φ)W ∀φ ∈ W, (4.27)

we have the following result.

Lemma 4.5. QVwη has a unique solution ϕwη which satisfies the regularity (4.3).

Proof. We define a bilinear form: b(., .) : W × W → R such that

b(ϕ, φ) = (B∇ϕ,∇φ)H ∀ϕ, φ ∈ W. (4.28)

We use (3.27) to show that the bilinear form b is continuous, symmetric and co-
ercive on W, moreover using Riesz Representation Theorem we may define an
element qwη : [0, T] → W such that

(qwη(t), φ)W = (q(t), φ)W + (Eε(uwη(t)),∇φ)H ∀φ ∈ W.

We apply Lax-Milgram Theorem to deduce that there exists a unique element
ϕwη(t) ∈ W such that

b(ϕwη(t), φ) = (qwη(t), φ)W ∀φ ∈ W. (4.29)

We conclude that ϕwη(t) is a solution to QVwη. Let t1, t2 ∈ [0, T], it follows from
(3.22), (3.27), (3.28), (4.28) and (4.29) that

| ϕwη(t1)− ϕwη(t2) |W≤ C(| uwη(t1)− uwη(t2) |V + | q(t1)− q(t2) |W),

the previous inequality and the regularity of uwη and q imply that ϕwη ∈ C(0, T; W).

Finally as a consequence of these results and using the properties of the opera-
tor F and the operator E , for t ∈ [0, T], we consider the operator Λ : C(0, T;H) →
C(0, T;H) defined by

Λη(t) = Fε(uwη(t)) +
∫ t

0
M(t − s)ε(uwη(s)) ds + E∗∇ϕwη(t), (4.30)

We have the following result.

Lemma 4.6. The operator Λ hase a unique fixed point η∗ ∈ C(0, T;H) such that
Λη∗ = η∗.

Proof. Let η1, η2 ∈ C(0, T;H). We use the notation uwηi
= ui,

.
uwηi

= vwηi
= vi,

σwηi
= σi and ϕwηi

= ϕi for i = 1, 2. Using (4.30), (3.20), (3.24), (3.25) and (3.28)
to obtain

| Λη1(t)− Λη2(t) |
2
H≤ C(| u1(t)− u2(t) |

2
V +

∫ t

0
| u1(s)− u2(s) |

2
V ds

+ | ϕ1(t)− ϕ2(t) |
2
W). (4.31)
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Since

ui(t) =
∫ t

0
vi(s)ds + u0, t ∈ [0, T] ,

we have

| u1(t)− u2(t) |
2
V≤ C

∫ t

0
| v1(s)− v2(s) |

2
V ds ∀t ∈ [0, T] . (4.32)

For the electric potential field, we use (4.27), (3.22), (3.27) and (3.34) to obtain

| ϕ1(t)− ϕ2(t) |
2
W≤ C | u1(t)− u2(t) |

2
V . (4.33)

We substitute (4.33) in (4.31) and use (4.32) to obtain

| Λη1(t)− Λη2(t) |
2
H≤ C

∫ t

0
| v1(s)− v2(s) |

2
V ds. (4.34)

Moreover, from (4.23) we obtain

(Aε(v1)−Aε(v2), ε(v1 − v2))H ≤ j(u1, v2, w)− j(u1, v1, w)

+ j(u2, v1, w)− j(u2, v2, w)− (η1 − η2, ε(v1 − v2))H. (4.35)

Using similar arguments as those used in (4.15) we find

j(u1, v2, w)− j(u1, v1, w) + j(u2, v1, w)− j(u2, v2, w).

≤ C | u1 − u2 |V | v1 − v2 |V . (4.36)

From (3.23)(b), (4.35) and (4.36) it follows that

| v1 − v2 |2V≤ C( | u1 − u2 |2V + | η1 − η2 |2H) (4.37)

Integrating this equality with respect to time, we find

∫ t

0
| v1(s)− v2(s) |

2
V ds

≤ C
∫ t

0
( | u1(s)− u2(s) |

2
V + | η1(s)− η2(s) |

2
H) ds ∀t ∈ [0, T] . (4.38)

From (4.32) we have

| u1(t)− u2(t) |
2
V

≤ C
∫ t

0
| u1(s)− u2(s) |

2
V ds + C

∫ t

0
| η1(s)− η2(s) |

2
H ds ∀t ∈ [0, T] . (4.39)

This inequality, combined with Gronwall’s inequality, leads to

| u1(t)− u2(t) |
2
V≤ C

∫ t

0
| η1(s)− η2(s) |

2
H ds ∀t ∈ [0, T] . (4.40)

It follows now from (4.38) that

∫ t

0
| v1(s)− v2(s) |

2
V ds ≤ C

∫ t

0
| η1(s)− η2(s) |

2
H ds ∀t ∈ [0, T] . (4.41)
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The previous inequality and estimate (4.34) imply

| Λη1(t)− Λη2(t) |
2
H

≤ C
∫ t

0
| η1(s)− η2(s) |

2
H ds.

Reiterating this inequality m times leads to

| Λ
m

η1 − Λ
m

η2 |2C(0,T;H)≤
CmTm

m!
| η1 − η2, |2C(0,T;H) .

Thus, for m sufficiently large, Λ
m is a contraction on the Banach space C(0, T;H),

and so Λ has a unique fixed point.

Let w ∈ C(0, T; L2(Γ3)). In the third step we consider the following variational
problem.

Problem PVw. Find a displacement field uw : [0, T] → V, a stress field σw : [0, T] →
H, an electric potential field ϕw : [0, T] → W and an electric displacement field
Dw : [0, T] → H such that for all t ∈ [0, T] ,

σw(t) = Aε(
.
uw(t)) +Fε(uw(t))

+
∫ t

0
M(t − s)ε(uw(s)) ds + E∗∇ϕw(t), (4.42)

(σw(t) , ε(v−
.
uw(t)))H + j(uw(t), v,w(t)) − j(uw(t),

.
uw(t), w(t))

≥ ( f (t), v−
.
uw(t))V ∀v ∈ V, (4.43)

Dw(t) = Eε(uw(t))− B∇ϕw(t), (4.44)

(Dw(t),∇φ)H = −(q(t), φ)W ∀φ ∈ W, (4.45)

uw(0) = u0. (4.46)

Lemma 4.7. Problem PVw has a unique solution (uw, σw, ϕw, Dw) satisfying (4.1)-(4.4).

Proof. Let η∗ ∈ C(0, T;H) be the fixed point of Λ defined by (4.30) and denote
uw = uwη∗ , ϕw = ϕwη∗ be the solutions to problems PVwη and QVwη obtained in
lemmas 4.4 and 4.5 for η = η∗. Let

σw(t) = Aε(
.
uw(t)) + Fε(uw(t)) +

∫ t

0
M(t − s)ε(uw(s)) ds + E∗∇ϕw(t).

Equation Λη∗ = η∗, combined with (4.30), shows that (uw, σw,ϕw, Dw) satisfies
(4.42)-(4.45). Next, (4.46) and the regularities (4.1)-(4.4) follow from Lemmas 4.4,
4.5 and assumptions on A, F , M and E which concludes the existence part of the
lemma 4.7.

The uniqueness part of lemma 4.7 is a consequence of the uniqueness of the
fixed point of the operator Λ defined by (4.30) and the unique solvability of prob-
lems PVwη∗ and QVwη∗ .
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Let us now consider the operator L : C(0, T; L2(Γ3)) → C(0, T; L2(Γ3)) de-
fined by

Lw(t) = −k1v∗
∫ t

0
(σw)ν(s)ds ∀t ∈ [0, T] . (4.47)

The last step in the proof of Theorem 4.1 is the next result.

Lemma 4.8. The operator L has a unique fixed point

w∗ ∈ C(0, T; L2(Γ3)).

Proof. Let w1, w2 ∈ C(0, T; L2(Γ3)) and denote by (ui, σi, ϕi, Di), i = 1, 2, the solu-
tions to problem PVw for w = wi, i.e. ui = uwi

, vi =
.
ui =

.
uwi

, σi = σwi
, ϕi = ϕwi

and Di = Dwi
. Moreover, we denote in the sequel by C various positive constants

which may depend on k1 and v∗. We use similar arguments that those used in
the proof of the relation (4.41) to find that

∫ t

0
| v1(s)− v2(s) |

2
V ds

≤ C(
∫ t

0
| u1(s)− u2(s) |

2
V ds +

∫ t

0
| w1(s)− w2(s) |

2
L2(Γ3)

ds). (4.48)

Since u1(0) = u2(0) = u0 and using (4.48) we obtain

| u1(t)− u2(t) |
2
V≤ C

∫ t

0
| v1(s)− v2(s) |

2
V ds

≤ C
∫ t

0
| u1(s)− u2(s) |

2
V ds + C

∫ t

0
| w1(s)− w2(s) |

2
L2(Γ3)

ds. (4.49)

Applying Gronwall inequality, we deduce that

| u1(t)− u2(t) |
2
V≤ C

∫ t

0
| w1(s)− w2(s) |

2
L2(Γ3)

ds. (4.50)

It follows now from (4.48) and (4.50) that
∫ t

0
| v1(s)− v2(s) |

2
V ds ≤ C

∫ t

0
| w

1
(s)− w2(s) |

2
L2(Γ3)

ds. (4.51)

On the other hand, since

σi = Aε(
.
ui) +Fε(ui) +

∫ t

0
M(t − s)ε(ui(s)) ds + E∗∇ϕi,

for i = 1, 2, we use the assumption (3.23)(b), (3.24), (3.25), (3.28) and the relation
(4.33) to obtain that for s ∈ [0, T]

| σ1(s)− σ2(s) |
2
H≤ C(| v1(s)− v2(s) |

2
V + | u1(s)− u2(s) |

2
V).

We integrate the previous inequality with respect to time to deduce that

∫ t

0
| σ1(s)− σ2(s) |

2
H ds

≤ C(
∫ t

0
| v1(s)− v2(s) |

2
V ds +

∫ t

0
| u1(s)− u2(s) |

2
V ds).
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We substitute (4.50) and (4.51) in the previous inequality to find

∫ t

0
| σ1(s)− σ2(s) |

2
H ds ≤ C

∫ t

0
| w1(s)− w2(s) |

2
L2(Γ3)

ds. (4.52)

The definition of the operator L given by (4.47) and estimate (4.52) give us

| Lw1(t)−Lw2(t) |
2
L2(Γ3)

≤ C
∫ t

0
| w1(s)− w2(s) |

2
L2(Γ3)

ds. (4.53)

Reiterating this inequality n times leads to

| Lnw1 −Lnw2 |2C(0,T;L2(Γ3))
≤

CnTn

n!
| w1 − w2 |2C(0,T;L2(Γ3))

.

Therefore, for n large enough, Ln is a contractive operator on the Banach space
C(0, T; L2(Γ3)). The operator L has a unique fixed point w∗ ∈ C(0, T; L2(Γ3)).

Now we have all the ingredients to prove Theorem 4.1.

Proof. Let w∗ be the fixed point of the operator L given by (4.47). With (4.42)-
(4.47) it is easy to verify that (uw∗ , σw∗ , ϕw∗ , Dw∗ , w∗) is the unique solution to
problem PV satisfying the regularities (4.1)-(4.5).
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