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Abstract

In the past decade there has been a flurry of activity at the intersection
of spectral theory and symplectic geometry. In this paper we review recent
results on semiclassical spectral theory for commuting Berezin-Toeplitz and
h̄-pseudodifferential operators. The paper emphasizes the interplay between
spectral theory of operators (quantum theory) and symplectic geometry of
Hamiltonians (classical theory), with an eye towards recent developments
on the geometry of finite dimensional integrable systems.

1 Introduction

This paper gives a concise exposition of some recent results on spectral theory
of h̄-pseudodifferential and Berezin-Toeplitz operators. Most of what I will say
is contained in my papers with L. Charles, L. Polterovich, and S. Vũ Ngo. c [3,
17, 12]. I will also discuss some recent works on symplectic geometry of finite
dimensional completely integrable Hamiltonian systems by the author and Vũ
Ngo. c [13, 14] because they are central to the spectral theory. The papers [13, 14]
contain classification results for the so called completely integrable Hamiltonian
systems of semitoric type, and are in the spirit of the seminal papers of Atiyah [1],
Guillemin-Sternberg [10], and Delzant [8] on toric systems.

∗Based on a scheduled plenary Talk by the author at the 2012 Joint Congress of the Belgian,
Royal Spanish and Luxembourg Mathematical Societies. I was unable to attend the Congress and
I thank the organizers for the invitation to write this paper. This paper is not a survey but rather
a report on recent developments. Throughout we keep a more informal tone than in a regular
research paper. We refer to the articles [15, 17] for details and further bibliographic references.
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In this paper we are going to emphasize the connection of symplectic geom-
etry with spectral theory and microlocal analysis (see Guillemin-Sternberg [11]
and Zworski [19]). In fact, the development of semiclassical microlocal analy-
sis in the past four decades now allows a fruitful interplay between symplectic
geometry (classical mechanics) and spectral theory (quantum mechanics). The
literature on these subjects is vast and I refer to the aforementioned works for a
more comprehensive list of references.

2 Symplectic geometry and integrable systems

The word “symplectic” was introduced by H. Weyl (Elmshorn 1885-Zürich 1955)
in his book on classical groups [18]. It derives from a Greek word meaning com-
plex. Symplectic geometry is concerned with the study of symplectic manifolds.
A symplectic manifold is a pair (M, ω) consisting of a smooth C∞-manifold M and
a closed and non-degenerate differential 2-form ω on it, called a symplectic form.
For instance, we can take M to be a surface, and ω to be an area form on it
(in dimension 2, a symplectic form is the same as an area form). Another typ-
ical example is R

2n equipped with coordinates (x1, y1, . . . , xn, yn) and symplectic
form ∑

n
i=1 dxi ∧ dyi. The cotangent bundle of any compact smooth manifold is

also a symplectic manifold in a natural way.
Symplectic manifolds are even-dimensional (because the symplectic form is

non-degenerate) and orientable (because ωdim M/2 is a volume form). Let’s write
2n for the dimension of M. If M is compact, then one can use Stokes’ theorem to

show that for every 0 6 k 6 n we have that 0 6= [ω]k ∈ H2k
dR(M) so compact sym-

plectic manifolds are topologically nontrivial. By a famous theorem of Darboux
[4], near each point in (M, ω) there exist coordinates (x1, y1, . . . , xn, yn) in which
ω has the form ∑

n
i=1 dxi ∧ dyi, so symplectic manifolds have no local invariants,

except the dimension.
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Figure 1: Some possible singularities of an integrable system.

One important class of dynamical systems which can be studied with the tools
of symplectic geometry are those called integrable.
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Definition 1. A completely integrable system (or simply an integrable system) on a
2n-dimensional symplectic manifold (M, ω) is a smooth map F := ( f1, . . . , fn) :
M −→ R

n such that each fi is constant along the flow1 of each Hamiltonian vec-
tor field H f j

, where H f j
is defined by Hamilton’s equation ω(H f j

, ·) = −d f j and,

moreover, the vector fields H f1
, . . . , H fn

are linearly independent almost every-
where on M.

A singularity is a point m ∈ M at which the vector fields H f1
, . . . , H fn

are
linearly dependent. There are many mechanical systems which are integrable, for
instance: the coupled spin-oscillator (also called Jaynes-Cummings model, see [2]),
the spherical pendulum, the two-body problem, the Lagrange top, or the Kowalevski top.
All of these systems have singularities.

While there are a few results on symplectic theory of integrable systems, the
subject is largely not understood, we refer to [15, 17] for a more extensive dis-
cussion. In particular, [15] aims to give a more comprehensive description of the
current state of the art of the symplectic theory of integrable systems. It is inter-
esting to note that some features about the symplectic geometry of singularities
can be detected using spectral theory, see for instance [16], where this is done for
some of the singularities of the coupled spin-oscillator.

3 Notions of spectrum

3.1 Classical and quantum spectra

The self-adjoint operators T1, . . . , Td on a Hilbert space are mutually commuting
if their spectral measures µ1, . . . , µd pairwise commute. Then one can define the
joint spectral measure on R

d :

µ := µ1 ⊗ · · · ⊗ µd.

Definition 2. The joint spectrum of (T1, . . . , Td) is the support of the joint spectral
measure. It is denoted by JointSpec(T1, . . . , Td).

For instance, if the Tj’s are endomorphisms of a finite dimensional vector
space, then the joint spectrum of T1, . . . , Td is the set

{

(λ1, . . . , λd) ∈ R
d | ∃v 6= 0 such that Pjv = λjv ∀j = 1, . . . , n

}

.

If T1, . . . , Td are pairwise commuting semiclassical operators, then of course
the joint spectrum of T1, . . . , Td depends on the semiclassical parameter h̄.

Following the physicists, we use the following definition.

1That is, any two fi, f j commute in the sense that the Poisson brackets vanish:

{ fi, f j} := ω(H f i
, H f j

) = 0, for all 1 6 i, j 6 n.
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Definition 3. We call classical spectrum of (T1, . . . , Td) the closure of the image

F(M) ⊂ R
d,

where F = ( f1, . . . , fd) is the map of principal symbols of T1, . . . , Td.

32

0,5

1,0

0,0

−1 1

−0,5

1,5

−1,0

4 5

−1,5

0

Figure 2: Joint spectrum of quantum Jaynes-Cummings model.

3.2 Jaynes-Cummings model

An interesting system given by two self-adjoint commuting operators is the quan-
tum Jaynes-Cummings model, studied in detail in [17], and which is given as fol-
lows. For any h̄ > 0 such that 2 = h̄(n+ 1), for some non-negative integer n ∈ N,
let H ⊂ L2(R) denote the standard n + 1-dimensional Hilbert space quantizing
the sphere S2. Consider the operators:

x̂ :=
h̄

2
(a1a∗2 + a2a∗1), ŷ :=

h̄

2i
(a1a∗2 − a2a∗1), ẑ :=

h̄

2
(a1a∗1 − a2a∗2).

where

ai :=
1√
2h̄

(

h̄
∂

∂xj
+ xj

)

, i = 1, 2.

The operators on the Hilbert space H⊗L2(R) ⊂ L2(R2)⊗L2(R)

f̂1 := Id⊗
(

− h̄2

2

d2

d u2
+

u2

2

)

+ (ẑ ⊗ Id)

and

f̂2 :=
1

2
(x̂ ⊗ u + ŷ ⊗ (

h̄

i

∂

∂u
)),

are unbounded, self-adjoint, and commute. The spectrum of f̂1 is discrete and
consists of eigenvalues in

h̄
(1 − n

2
+ N

)

.
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The joint spectrum for a fixed value of h̄ is depicted in Figure 2. This quan-
tum model is in fact constructed by hands on quantization of the classical sys-
tem given by the symplectic manifold M = S2 × R

2, where S2 is viewed as
the unit sphere in R

3 with coordinates (x, y, z), and the second factor R
2 is

equipped with coordinates (u, v), and the Hamiltonians f1 := (u2 + v2)/2 + z

and f2 := 1
2 (ux + vy). So f1 and f2 are the principal symbols of f̂1 and f̂2.

4 Classical from semiclassical spectra

4.1 Compact case

Let (M, ω) be a compact symplectic manifold whose symplectic form represents
an integral de Rham cohomology class of M. In what follows such symplectic
manifolds will be called prequantizable. They admit a prequantum line bundle
L. Assume that M is endowed with a complex structure j compatible with ω,
so that M is Kähler and L is holomorphic. Here the holomorphic structure of the
prequantum bundle is the unique one compatible with the connection.

For a positive integer k = 1/h̄, we write Hh̄ for the space H0(M,Lk) of holo-
morphic sections of L

k. Since M is compact, Hh̄ is a closed finite dimensional
subspace of the Hilbert space L2(M,Lk). Here the scalar product is defined by in-
tegrating the Hermitian pointwise scalar product of sections against the Liouville
measure of M.

Denote by Πh̄ the orthogonal projector of L2(M,Lk) onto Hh̄. In this case, we
have the following definition.

Definition 4. A Berezin-Toeplitz operator is a sequence

T := (Th̄ : Hh̄ → Hh̄)h̄=1/k; k∈N∗

of operators of the form
(Th̄ := Πh̄ f (·, k))k∈N∗ ,

where f (·, k), viewed as a multiplication operator, is a sequence in C∞(M) with
an asymptotic expansion

f0 + k−1 f1 + . . .

for the C∞ topology. The coefficient f0 is the principal symbol of (Th̄)h̄=1/k;k∈N∗ .

Before stating the result of this section, recall that the Hausdorff distance
dH(A, B) between two subsets A and B of R

n is the infimum of the ǫ > 0 such
that A ⊆ Bǫ and B ⊆ Aǫ, where for any subset X of R

n, the set Xǫ is

Xǫ :=
⋃

x∈X

{m ∈ R
n | ‖x − m‖ 6 ǫ}.

If (Ak)k∈N∗ and (Bk)k∈N∗ are sequences of subsets of R
n, we say that Ak = Bk +

O(k−∞) if
dH(Ak, Bk) = O(k−N) ∀N ∈ N

∗.

In the following theorem, the convergence is taken in the Hausdorff metric.
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Figure 3: Convergence of convex hulls of spectra

Theorem 5 (Pelayo-Polterovich-Vũ Ngo. c [12]). Let Fd := (T1, . . . , Td) be a family
of pairwise commuting self-adjoint Berezin-Toeplitz operators on M. Let Sd ⊂ R

d be the
classical spectrum of Fd, and suppose that it is a convex set. Then JointSpec(Fd) → Sd,
as h̄ → 0.

The proof of Theorem 5 uses microlocal techniques (the key lemma for the
proof is [12, Lemma 5]). The result proven in [12] is stronger than Theorem 5: one
does not need to assume that Sd is convex. In the general case, what we proved
is that we have convergence (still in the Hausdorff metric) at the level of convex
hulls

Convex Hull(JointSpec(Fd)) → Convex Hull(Sd),

as h̄ → 0 (see Figure 3). These results may be extended in a natural way to non-
commuting operators, see [12, Section 9].

4.2 Noncompact case

Suppose that M is R
2n, or the cotangent bundle T∗X of a compact smooth n-

-dimensional manifold X (with a smooth density µ). In these cases a semiclas-
sical quantization of M is given by semiclassical h̄-pseudodifferential operators,
a well-known semiclassical version of the quantization given by homogeneous
pseudodifferential operators (see for instance Dimassi-Sjöstrand [9]). Symbolic
calculus of pseudodifferential operators holds when the symbols belong to a
Hömander class, eg. take A0 consisting of functions f ∈ C∞(R2n

(x,ξ)
) such that

there exists m ∈ R for which
∣

∣

∣
∂α
(x,ξ) f

∣

∣

∣
6 Cα〈(x, ξ)〉m

for all α ∈ N
2n. Here 〈z〉 := (1 + |z|2)1/2.
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If f ∈ A0, its Weyl quantization is defined on S(Rn) by

(Oph̄( f )u)(x) :=
1

(2πh̄)n

∫

R2n
e

i
h̄ ((x−y)·ξ) f ( x+y

2 , ξ)u(y)dydξ.

Let’s cover X with charts U1, . . . , UN, each of which is identified with a con-
vex bounded domain of R

n equipped with the Lebesgue measure. Consider a
partition of unity χ2

1, . . . , χ2
n subordinated to U1, . . . , UN. Let f ∈ C∞(T∗X) such

that
∣

∣

∣
∂α

ξ f (x)
∣

∣

∣
6 Cα〈ξ〉m for all (x, ξ) ∈ T∗X, α ∈ N

n, for some m ∈ R. Let Op
j
h̄( f )

be the Weyl quantization calculated in Uj and define:

Oph̄( f )u :=
N

∑
j=1

χj · Op
j
h̄( f )(χju) , for u ∈ C∞(X) ,

which is a pseudodifferential operator on X with principal symbol f = ∑
N
i=1 f χ2

j .

In what follows we work with the standard Hörmander class of symbols de-
pending on h̄, a(x, ξ, h̄) on R

2n or T∗X with compact X. We say that a mildly
depends on h̄ if

a(x, ξ, h̄) = a0(x, ξ) + h̄ a1,h̄(x, ξ),

where all a1,h̄(x, ξ) are uniformly bounded in h̄ and supported in the same com-
pact set.2

Definition 6. A semiclassical h̄-pseudodifferential operator on X is any sequence of
the form T := (Oph̄( f ))h̄∈(0, 1].

The analysis of h̄-pseudodifferential operators is delicate due to the possible
unboundedness of the operators.

Theorem 7 (Pelayo-Polterovich-Vũ Ngo. c [12]). Let X be either R
n, or a closed man-

ifold. Let Fd := (T1, . . . Td) be a family of pairwise commuting self-adjoint semiclassical
h̄-pseudodifferential operators on X whose symbols mildly depend on h̄. Let Sd ⊂ R

d

be the classical spectrum of Fd, and suppose that it is a convex set. Then from the fam-
ily {JointSpec(Fd)}h̄∈J one can recover Sd. If moreover each operator Ti is bounded,
1 6 i 6 d, then JointSpec(Fd) → Sd, as h̄ → 0.

As it was explained before, a more general result holds, where one does not
need to assume convexity of the classical spectrum.

Example 8. The results in this section apply to a number of examples. For in-
stance, Theorem 7 applies to the system given by a particle in a rotationally sym-
metric potential ([12, Section 9.2]). Theorem 5 applies to systems given by Hamil-
tonian torus actions ([12, Section 8.2]), and to the coupled-angular momenta sys-
tem ([12, Section 8.3]). ⊘

2Note: the principal symbol a0 can be unbounded.
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5 Spectral theory for systems of toric type

5.1 Symplectic geometry

An n-tuple of smooth functions

(µ1, . . . , µ) : M → R
n

on a 2n-dimensional symplectic manifold (M, ω) is called a momentum map for

a Hamiltonian n-torus action if the Hamiltonian flows tj 7→ ϕ
tj
µj

are periodic of

period 1, and pairwise commute:

ϕ
tj
µj
◦ ϕ

ti
µi
= ϕ

ti
µi
◦ ϕ

tj
µj

so that they define an action of R
n/Z

n. We say that (M, ω, µ) is a toric integrable
system, or simply a toric system, if in addition M is compact and connected, and
the action of R

n/Z
n is effective.

Two toric systems (M, ω, µ) and (M′, ω′, µ′) are isomorphic if there exists a
symplectomorphism ϕ : M → M′ such that

ϕ∗µ′ = µ.

The convexity theorem of Atiyah [1] and Guillemin-Sternberg [10] implies that
µ(M) is a convex polytope in R

n. By the Delzant classification theorem [8], µ(M)
is a so called Delzant polytope (i.e. rational, simple, and smooth), and the toric
integrable system (M, ω, µ) is classified, up to isomorphisms, by µ(M).

5.2 Semiclassical spectral theory

In the case of toric integrable systems, a complete description of the semiclassical
spectral theory can be given. That is, we are going to make a much stronger
assumption than in Section 4.1: “being toric”; but we are also going to obtain
much more information (in fact, all the information). Let (µ1, . . . , µn) be a toric
integrable system on a compact prequantizable symplectic manifold M equipped
with a prequantum bundle L and a compatible complex structure j.

Theorem 9 (Charles-Pelayo-Vũ Ngo. c [3]). Let T1, . . . , Tn be commuting Berezein-
Toeplitz operators with principal symbols µ1, . . . , µn. Then

JointSpec(T1, . . . , Tn)

is given by

g
(

µ(M) ∩
(

v +
2π

k
Z

n

)

; k
)

+ O(k−∞),

where v is any vertex of µ(M) and g(·; k) : R
n → R

n admits a C∞-asymptotic expansion
of the form g(·; k) = Id + k−1g1 + k−2g2 + · · · where each gj : R

n → R
n is smooth.

Moreover, the multiplicity of the eigenvalues in Theorem 9 can be described:
for all sufficiently large k, the multiplicity of the eigenvalues of JointSpec(T1, . . . ,

Tn) is 1, and there exists a small constant δ > 0 such that each ball of radius δ
k

centered at an eigenvalue contains precisely only that eigenvalue.
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5.3 Semiclassical isospectrality

The following type of inverse problem is classical and belongs to the realm of
questions in inverse spectral theory, going back to similar questions raised (and in
many cases answered) by pioneer works of Colin de Verdière [5, 6]. Let (M, ω, µ :
M → R

n) be a toric integrable system with a prequantum bundle L and a com-
patible complex structure j.

Theorem 10 (Charles-Pelayo-Vũ Ngo. c [3]). Let Fn := (T1, . . . , Tn) be a family of
commuting self-adjoint Berezin-Toeplitz operators with principal symbols µ1, . . . , µn.
Then one can recover (M, ω, µ) from the limit of the joint spectrum of T1, . . . , Tn.

Theorem 10 follows from combining the Delzant theorem with Theorem 9.
In fact, combining Delzant’s theorem with Theorem 5 gives an easier proof of
Theorem 10 which does not use Theorem 9 which is a more difficult (but much
more informative) result.

6 Spectral theory for systems of semitoric type

6.1 Symplectic geometry

A semitoric system consists of a connected symplectic four-dimensional manifold
(M, ω) and two smooth functions f1 : M → R and f2 : M → R such that f1 is
constant along the flow of the Hamiltonian vector field H f2

generated by f2 or,
equivalently, { f1, f2} = 0 and for almost all points p ∈ M, the vectors H f1

(p)

and H f2
(p) are linearly independent. Moreover,3 f1 is the momentum map of an

S1-action on M, and it is a proper map. Finally, we require F := ( f1, f2) : M → R
2

to have only non-degenerate singularities without hyperbolic components. Two
semitoric systems

(M1, ω1, F1 := ( f 1
1 , f 1

1 )) and (M2, ω2, F2 := ( f 2
1 , f 2

2 ))

are isomorphic if there exists a symplectomorphism φ : M1 → M2, and a smooth
map ϕ : F1(M1) → R with ∂2ϕ 6= 0, such that

{

φ∗ f 1
1 = f 2

1

φ∗ f2 = ϕ( f 1
1 , f 1

2 ).

Semitoric systems can be classified, up to isomorphisms, in terms of five sym-
plectic invariants. This classification appeared in [13, 14]. Roughly speaking,
these invariants are as follows: an integer m f counting the number of isolated
singularities, a collection of Taylor series classifying symplectically a saturated
neighborhood of the singular fiber corresponding to these sigularities, a family of
rational convex polygons

(

∆, (ℓj)
m f

j=1, (ǫj)
m f

j=1

)

,

3this is the condition which gives rise to the name “semitoric”
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which is constructed from the image F(M) ⊂ R
n of the system by performing

a very precise “cutting” (the ℓj’s are vertical lines cutting ∆ with orientations
ǫj = ±1), an invariant measuring the volumes of certain submanifolds meeting at
each of the isolated singularities, and, finally, a collection of integers measuring
how twisted the Lagrangian fibration of the system is around the singularities.

Toric systems are a particular case of semitoric systems. If the system is toric,
then four of the invariants do not appear (and the remaining one is simpler: a
polygon, instead of a class of polygons).

6.2 Semiclassical spectral theory

The semiclassical spectral theory of semitoric systems is not yet understood. In
[17, Section 9] it is conjectured that from the semiclassical joint spectrum of two
self-adjoint commuting operators one can recover the integrable system given by
the principal symbols, up to symplectic isomorphisms, provided these principal
symbols form a semitoric system. A sketch of proof of this conjecture appeared
in [17, Section 3.2].
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