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Abstract

In the paper we provide a few generalizations of Darbo fixed point the-
orem. Several interconnections among assumptions imposed in the proved
theorems are indicated. We also show the applicability of obtained results to
the theory of functional integral equations. A concrete example illustrating
the mentioned applicability is also included.

1 Introduction

In the fixed point theory an important role is played by the concept of a mea-
sure of noncompactness. This concept was initiated by the fundamental paper
of Kuratowski [14]. In 1955 G. Darbo, using the concept of a measure of non-
compactness, proved a theorem guaranteeing the existence of fixed points of the
so-called condensing operators [10]. That theorem found an abundance of appli-
cations in proving the existence of solutions for a wide class of differential and
integral equations (cf. [2-4, 7-9, 11], for example).
It is worthwhile mentioning that Darbo theorem extends both the classical Banach
contraction principle and the Schauder fixed point theorem [8].

The aim of this paper is to obtain some generalizations of the above mentioned
Darbo fixed point theorem and to indicate the applicability of the obtained results
to existence theorems for some functional integral equations.
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At the beginning we provide notation, definition and some auxiliary facts which
will be needed in the sequel. To this end assume that E is a given Banach space
with the norm || - || and zero element 6. Denote by B(x,r) the closed ball in E
centered at x and with radius r. We write B, to denote B(0,r). If X is a subset of
E then the symbols X, Conv X stand for the closure and the closed convex hull
of X, respectively. The algebraic operations on sets will be denoted by X + Y and
AX (A € R).

Moreover, we denote by Mg the family of all nonempty bounded subsets of E
and by Mg its subfamily consisting of all relatively compact sets.

Definition 1.1 ([8]). A mapping y : Mg — Ry = [0, c0) is said to be a measure of
noncompactness in E if it satisfies the following conditions:

1° The family ker p = {X € Mg : u(X) = 0} is nonempty and ker  C Ng.
22 XCY=uX) <u(Y).

3% u(X) = p(X).
4° u(ConvX) = u(X).
5 u(AX 4+ (1—A)Y) < Au(X) + (1= Mu(Y) for A € [0,1].

6° If (X, ) is a nested sequence of closed sets from Mg such that lim u(X,) =0

n—oo

(o]
then the intersection set Xoo = () X, is nonempty.
n=1

The family ker y described in 1° is called the kernel of the measure of noncom-
pactness u.
Observe that the intersection set X« from axiom 6° is a member of the kernel
ker u. In fact, since y(Xe) < u(Xy) for any n, we have that y(Xe) = 0. This
yields that X« € ker p.

Now we recall three important theorems playing a key role in the fixed point
theory (cf. [1, 8, 12]).

Theorem 1.1. Let Q) be a nonempty, bounded, closed and convex subset of a Banach
space E. Then each continuous and compact map F : Q) — () has at least one fixed point
in the set Q).

Obviously the above formulated theorem constitutes the well known Schauder
fixed point principle. Its generalization, called the Darbo fixed point theorem, is
formulated below.

Theorem 1.2. Let () be a nonempty, bounded, closed and convex subset of a Banach space
Eand let T : (O — Q) be a continuous mapping. Assume that there exists a constant
k € [0,1) such that

u(TX) < ku(X)

for any nonempty subset X of Q), where y is a measure of noncompactness defined in E.
Then T has a fixed point in the set Q).
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Next, we present the following theorem due to Caristi [12].

Theorem 1.3. Let (M, p) be a complete metric space and let ¢ : M — R be a lower
semicontinuous function which is bounded from below. Suppose T : M — M is an
arbitrary mappings such that

plu, Tu) < ¢(u) — ¢(Tu)
forany u € M. Then T has a fixed point in M.

2 Main results

This section is devoted to prove a few generalizations of Darbo fixed point theo-
rem (cf. Theorem 1.2).

Theorem 2.1. Let () be a nonempty, bounded, closed and convex subset of a Banach
space E and let T : Q) — () be a continuous operator such that

P(u(TX)) < p(u(X)) — e(u(X)) (2.1)

for any nonempty subset X of (), where y is an arbitrary measure of noncompactness
and ¢, : Ry — R are given functions such that ¢ is lower semicontinuous and 1 is
continuous on R.. Moreover, ¢(0) = 0and ¢(t) > 0 for t > 0. Then T has at least one
fixed point in Q).

Proof. Consider the sequence (), ) defined as Qg = Q) and O, = ConvT(},,_1 for
n = 1,2,... If there exists a natural number 1y such that y(Q,,) = 0, then (),
is compact. In this case Theorem 1.1 implies that T has a fixed point in (). Next,
assume that u(Q),) > 0 for n = 1,2,.... By our assumptions, we get

P(H(Qnr1)) = P((ConvTy)) = Pp(u(TQ)) < p(p(Qn)) — e(u(Qn)) - (22)

Since the sequence (y((2,)) is nonincreasing and nonnegative, we infer that
1#(Qy) — r when n tends to infinity, where r > 0 is a nonnegative real num-
ber. On the other hand, in view of (2.2) we obtain

lim sup $((Qr41)) < limsup ((Qy)) — liminf p(p(0))

n—00 n—o0 n—o0

This yields ¢(r) < (r) — ¢(r). Consequently ¢(r) = 0 sor = 0. Hence we
deduce that u(Q,) — 0 as n — oco. Now, taking into account that Q,,11 C Q,,

on the base of axiom 6° of Definition 1.1 we derive that the set Qs = ) ), is
n=1
nonempty, closed, convex and Qe C (). Moreover, the set (), is invariant under

the operator T and ), € ker . Thus, applying Theorem 1.1 we complete the
proof. n
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Theorem 2.2. Let () be a nonempty, bounded, closed and convex subset of a Banach
space E and let T : () — Q) be a continuous operator satisfying the inequality

wTX) < o(u(X)) (2.3)

for any nonempty subset X of (3, where y is an arbitrary measure of noncompactness and
¢ : Ry — Ry is a nondecreasing functions such that li_r>n ¢"(t) = 0 for each t > 0.
n—oo

Then T has at least one fixed point in the set ().

Proof. Similarly as in the proof of the preceding theorem, we define by induction
the sequence ((),), where O)g = Q) and ), = ConvTQ),,_1 forn = 1,2,.... More-
over, in the same way as before we can assume that y1(Q),) > Oforalln =1,2,....
Further, taking into account our assumptions, we have

#( Q1) = p(ConvTQy) = u(TQ) < @(u(Q)) <
P> (1(Q-1)) < ... < 9" (u(QY)) .

This implies that 1£(Q),) — 0asn — oo. Since the sequence ((),,) is nested, in view

[,°]
of axiom 6° of Definition 1.1 we deduce that the set Qs = [ (), is nonempty,
n=1
closed and convex subset of the set (). Hence we get that () is a member of the

kernel ker pi. So, () is compact. Next, keeping in mind that T maps () into
itself and taking into account Schauder fixed point principle (cf. Theorem 1.1) we
infer that the operator T has a fixed point x in the set (). Obviously x € (). This
completes the proof. n

Now, let us pay attention to the following corollary from the above theorem
which belongs to the classical metric fixed point theory.

Corollary 2.1. Let Q) be a nonempty, bounded, closed and convex subset of a Banach
space E and let T : () — Q) be an operator such that

1 Tx = Ty[| < o(l[x = yll) (2.4)

forall x,y € Q), where ¢ : R — R is a nondecreasing function with nlgxgo ¢"(t) =0
foreacht > 0. Then T has a fixed point in the set Q).

Proof. Let u : Mg — R be a set quantity defined by the formula
#(X) = diamX,

where diamX = sup{||x —y|| : x,y € X} stands for the diameter of X. It is easily
seen that y is a measure of noncompactness in a space E in the sense of Definition
1.1 (cf. [6, 8]).

Further observe that since the function ¢ is nondecreasing, then in view of (2.4)
we have

sup ||Tx —Ty[| < sup ¢(||x—y|[) < ¢ (sup ||x—y||> :
xyeX xyeX xyeX
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This yields that
w(ITX) < o(u(X)) -

The application of Theorem 2.2 completes the proof. n

In what follows, we show that the assumption saying that li_r)n ¢"(t) = 0 for
n—oo

t > 0 can be replaced by other handy requirement.

Lemma 2.1. Let ¢ : Ry — R be a nondecreasing and upper semicontinuous function.
Then the following two conditions are equivalent:

(i) nh_r)rologo (t) =0forany t > 0.
(ii)) ¢(t) <t foranyt > 0.

Proof. Let ¢ satisfy condition (i). Suppose that condition (ii) does not hold i.e.,
there exists a number ¢y > 0 such that ¢(ty) > fo. Hence, in view of the fact that
¢ is nondecreasing we infer that ¢?(ty) = @(¢(ty)) > @(ty) > to. By induction
we obtain that ¢"(tg) > top > 0 for n = 1,2,.... This yields the contradiction
and proves that condition (ii) is satisfied. Conversely, assume that ¢ satisfies
condition (ii). Take an arbitrary number ¢t > 0 and consider the sequence (¢"(t)).
Then ¢*(t) = ¢(¢(t)) < @(t). Similarly, by induction we can easily seen that
the sequence (¢"(t)) is decreasing. Thus, there exists the limit nh_r}rc}o P"(t) = r.

If r = 0 we have the desired conclusion. If » > 0, then in view of our assumptions
we have that ¢(r) < r. On the other hand, we have that r < ¢"(¢) for any
n=1,2,... In view of the upper semicontinuity of ¢, this implies that

r < lim @"(t) = lim @(¢" 1(t)) < o(r) <r.

n—00 n—00
The obtained contradiction completes the proof. n

Observe that, the assumptions on the upper semicontinuity of the function ¢
is exploited only in the proof of the implication (ii)=-(i). Moreover, in the proof
of this implication we do not utilize the fact that, ¢ is nondecreasing.

On the other hand it is easily seen that if ¢ is not upper semicontinuous on R
and satisfies condition (ii) then ¢ has not to satisfy condition (i).
Indeed, consider the function ¢ : Ry — R, defined by the formula

0,ift=0
o(t) = % +In (t + ”T_l) ,ift € (%, ﬁ] and 7 is a natural number, n > 3

Sin(t+1),ift> 1.

It is easy to check that ¢ is increasing on R, ¢(t) < t for t > 0 but ¢ is not upper
semicontinuous (obviously ¢ is lower semicontinuous). On the other hand we
can easily seen that ¢ does not satisfy condition (i).

Now we provide a remark concerning an interconnection between Theorems
2.1and 2.2.
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Remark 2.1. Observe that if the function ¢ : Ry — R, appearing in Theorem
2.1 is increasing, then Theorem 2.1 can be treated as a special case of Theorem 2.2
provided we assume additionally that ¢(¢) > 0 for ¢t > 0 and ¢ is continuous on
R+.

To prove this fact let us first observe that from inequality (2.1) we infer that
Y(t) — ¢(t) > 0 for t > 0. Thus, since the function ¢ is invertible and the inverse
function ¢~! is defined and continuous on an subinterval of R, we can write
equivalently inequality (2.1) in the form

w(TX) < = (p(r(X)) — @(u(X))) (2.5)

for any X € ME.
Further, let us consider the function ¢ : Ry — R, defined by the formula

(1) =~ (p(t) — 9(1)) -

Observe that ¢ is continuous on R. Moreover, inequality (2.5) can be written in
the form

w(TX) < o(u(X))

for X € Mg, which has the same form as inequality (2.3) from Theorem 2.2. No-
tice that in view of the fact that the function ¥~! is increasing on R, we deduce
that for t > 0 the following inequality holds

o(t) = = (p(t) — (1)) < 9~ (p(1)) =t.

Thus, in view of Lemma 2.1, the function ¢ satisfies the requirement li_r}n P (t) =
n—oo

0 from Theorem 2.2. This shows that we can apply Theorem 2.2 which justifies
our above stated assertion.

3 An application to a functional integral equation

In this section we provide applications of the generalization of Darbo fixed point
theorem contained in Theorem 2.2 to prove the existence of solutions of a func-
tional integral equation of Volterra type.

We will work in the Banach space BC(RR.) consisting of all real functions defined,
bounded and continuous on R.. The space BC(R_ ) is furnished with the stan-
dard supremum norm i.e., the norm defined by the formula

||x|| = sup{[x(¢)| : t = 0} .

We will use a measure of noncompactness in the space BC(R.) which corre-
sponds to the asymptotic stability of solutions of considered integral equations
(cf. [3,7,9,11]). In order to define this measure of noncompactness let us fix a
nonempty, bounded subset X of BC(R_ ) and a positive number L > 0. For x € X
and & > 0 denote by w’(x,¢) the modulus of continuity of the function x on the
interval [0, L

wh(x,e) = sup{|x(t) — x(s)|: t,s € [0,L], |t —s| < e}.
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Moreover, let us put
wl(X,e) = sup{w(x,e): x € X},
wk(X) =limwh(X,¢),
e—0
wo(X) = lim w§(X) .
L—o0
Further, for a fixed number t € R, let us denote
X(t) ={x(t): x € X}.
Finally, let us define the function y on the family 9pc (g ) but putting
1(X) = wo(X) + limsup diamX(t) ,

t—o0

where diamX(t) is understood as
diamX(t) = sup{|x(¢t) —y(t)| : x,y € X}.

It may be shown [8] (cf. also [9]) that the function y is a measure of noncompact-
ness in the space BC(R ) (in the sense of Definition 1.1). The kernel ker u of this
measure contains nonempty and bounded sets X such that functions belonging
to X are locally equicontinuous on R4 and the thickness of the bundle formed by
the graphs of functions belonging to X tends to zero at infinity. This property will
be further used to deduce the asymptotic stability of solutions of the equations
investigated by ourselves.

Further on, denote by ¢ the family of all functions ¢ : R — R being nonde-
creasing on R and such that nlgrgo ¢"(t) = 0 for each t > 0.

Then we can formulate the following theorem.

Theorem 3.1. Assume that the following conditions are satisfied:

(i) f:Ry xR — Risa continuous function. Moreover, the function t — f(t,0) is
a member of the space BC(R.).

(ii) There exists an upper semicontinuous function ¢ € ¢ such that any t € Ry and
forall x,y € R we have that

(8 x) = f(Ey)] < o(lx—yl) -
Additionally we assume that ¢ is superadditive i.e., ¢(t) + ¢(s) < @(t +s) for
all't,s € Ry.

(iii) § : Ry x Ry x R — R is a continuous function and there exist continuous
functions a, b : Ry — Ry such that

lim a(t) /b(s)ds —0
0

t—ro00

and
8(t,s,x)| < a(t)b(s)
fort,s € Ry such that s < t, and for each x € R.



352 A. Aghajani - J. Banas— N. Sabzali

(iv) There exists a positive solution rg of the inequality

p(r)+q<r,

where q is the constant defined by the equality

qzsup{ftO-l-a /b }
0

Then the functional integral equation

t

ﬂﬂ:f@x@)+/g@&ﬂﬂwateR+, (3.1)

0

has at least one solution in the space BC(R.).

Remark 3.1. Observe that the constant g defined above is finite in view of as-
sumptions (i) and (iii). On the other hand from Lemma 2.1 follows that ¢(r) < r
for each v > 0. This explains that the inequality from assumption (iv) has a sense.

Proof of Theorem 3.1. Consider the operator T defined on the space BC(R ) by the

formula
t

(T2)(8) = £(t,x(1)) + [ glt,s,x(s))ds,
0
fort e R,.

In view of the imposed assumptions we have that the function Tx is continuous
on R . Further, for an arbitrarily fixed function x € BC(R. ), using our assump-
tions, we obtain

t

[(Tx) ()] < [f (£ x(2)) = f(£,0)] + |£(t,0)] +/Ig(fIS/X(S))IdS

0

< o(Jx(t)]) + | f(,0)| +a(t /b
0

= o(lx(t)]) + [f(£,0)] +c(t),

ﬂ/mg%
0

Since by assumption (ii) the function ¢ is nondecreasing, in virtue of forth ob-
tained estimate we get

where we denoted

ITx[| < @([Ix[]) +4.



Some generalizations of Darbo fixed point theorem and applications 353

where g is a constant defined in assumption (iv). Thus T maps the space BC(R.)
into itself.
Moreover, keeping in mind assumption (iv) we infer that T is a self mapping of
the ball B;,, where r is a constant appearing in assumption (iv).

In what follows we show that T is continuous on the ball B,. To this end fix
an arbitrary number ¢ > 0. Then, for x,y € B;, such that ||x — y|| < ¢, we obtain

t

[(Tx)(t) = (Ty) ()] < @([x(t) —y()]) +/|g(fzsfx(5)) —8(t5,y(s))lds

0

< p(x(t) ~y()) + [ Ig(t,sx()lds + [ lg(t,s,y(s))lds
0 0

< ¢(e) +2c(t), (3.2)

forany t € Ry.
Further, in view of assumption (iii) we deduce that there exists a number L > 0
such that

2a(t) / b(s)ds < ¢ (3.3)
0

for eacht > L.

Thus, taking into account Lemma 2.1 and linking (3.2) and (3.3), for an arbitrary
t > L we get

[(Tx)(#) = (Ty)(H)] < 2e. (34)
Now, let us define the quantity w' (g, ¢) by putting

w'(g,€) = sup{|g(t,s,x) = g(t,;5,y)| : t,5 € [0,L], x,y € [~ro,70], [x —y| <e}.

Since the function g(t,s,x) is uniformly continuous on the set [0, L] x [0,L] x
[—70, 70] we infer, that wl(g,e) — 0ase — 0.

Next, taking into account the first part of estimate (3.2), for an arbitrarily fixed
t € [0, L] we obtain

L
[(Tx)(t) = (Ty)(B)] < @(e) + /WL(gIE)dS = ¢(e) + Lw(ge) - (3.5)
0

Finally, combining estimates (3.4) and (3.5), on the base of the above established
fact concerning the quantity w'(g, ¢), we conclude that the operator T is continu-
ous on the ball By,.

In what follows let us take an arbitrary nonempty subset X of the ball B;,.
Fix numbers ¢ > 0 and L > 0. Next, choose arbitrarily t,s € [0, L] such that
|t —s| < e. Without loss of generality we may assume thats < t. Then, for x € X
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we get:

[(Tx)(t) = (Tx)(s)| < [f(t,x(t)) — f(s,x(s)) |+
/gtrx d'r—/gsrx())dr
< [f(tx(t)) — f(s,x ())|+|f(SIX( )) — f(s,x(s))]

S

/g(s,'r,x('r))dr—/g(s,r,x(r))d'r

0 0

t

+ /g(t,r,x(r))d’r—/g(s,'r,x('r))dr
0

0

+

t

< wr(f,e) + @(x(t) — x(s)]) + / 8(t, T, x(1)) = &(s, 7, x(7))|dT

0

+ [ 136 x()ldr < wh(f,e) + g (x,2)

t t
+ [whg eyt +a(s) [b(rdr < wk(f,e) + (! (x,¢)
0

+ Lwl(g,e) +esup{a(s)b(t) : t,s € [0,L]}, (3.6)

where we denote

wi (f,€) = sup{|f(t,x) = f(s,x)| : t,5 € [0,L], x € [~ro,r0], [t — 5] < e},

wlL(g,s) = sup{|g(t,T,x) — g(s,T,x)| : t,5,T €[0,L], x € [—ro,70], |t —5| < €}.

Further, observe that in view of the uniform continuity of the function f on the set
[0, L] x [—7p, 7o) and the function g on the set [0, L] x [0, L] x [—rg, 9] we infer that
wh(f,e) = 0and wi(g,e) — 0as e — 0. Moreover, since the functions a = a(t)
and b = b(t) are continuous on R we have that the quantity

sup{a(s)b(t) : t,s € [0,L]}
is finite. Hence, from estimate (3.6) we derive that

wk(TX) < lim g(w (X, ¢)) .

e—0

Consequently, taking into account the upper semicontinuity of the function ¢, we
get

wi (TX) < ¢(wg (X))
and, finally

wo(TX) < plwo(X)). (3.7)

Now, let us choose two arbitrary functions x,y € X. Then, for t € R we get
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[(Tx)(8) = (Ty) (O] < |f(Ex(8)) = f(£ (1)

+ [ Ig(ts x(s)) s + 0/ 3(t,5,(s)) ds

0

< o(|x(t) —y(£)]) +2a(t) /b(S)dS = ¢(|x(t) —y()]) +2¢(t) .
0

This estimate allows us to derive the following one
diam(TX)(t) < ¢(diamX(t)) + 2¢(t) .

Consequently, in view of the upper semicontinuity of the function ¢ we obtain

limsup diam(TX)(t) < ¢ <lim sup diamX(t)) . (3.8)
t—o0 t—o0

Further, combining (3.7), (3.8) and taking into account the superadditivity of
the function ¢ (cf. assumption (iii)), we get

wo(TX) + lim sup diam(TX)(t) < ¢ (wO(X) + lim sup diamX(t))

t—o0 t—o0

or, equivalently
w(TX) < o(u(X)), (39)

where y is the measure of noncompactness defined in the space BC(R ) at the
beginning of this section. Finally, keeping in mind (3.9) and applying Theorem
2.2 we complete the proof. n

Remark 3.2 Let us notice that as the function ¢ appearing in Theorem 3.1
(cf. assumption (ii)) we can take an arbitrary function ¢ : Ry — R which is
convex and such that ¢(t) < t for t > 0. Indeed, the assumption on convex-
ity of ¢ and the condition ¢(0) = 0 imply that ¢ is increasing, continuous and
superadditive on R (cf. [5]).

As examples of functions ¢ may serve the function ¢(t) =t —In(t+1) for t > 0
or the functions defined on R in the following way

tP,if t €
F =
ot { t+1/pp/

Oll/pl/(P—l)J
1-p) _ 1/p1/ P~ it > 1/p1/(P—1) ,

where p is an arbitrarily fixed real number such that p > 1.

Remark 3.3. Applying suitable reasoning we can also show that instead of convex
functions ¢ (cf. Remark 3.2) we can take functions being concave on R and such
that ¢(t) < t for t > 0. In fact, it is sufficient to require that ¢ : R, — R, is
continuous, ¢(t) < t for t > 0 and

’ <t+5> SURRC) (3.10)

2 2
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for t,s € Ry. In this case, combining estimates (3.7) and (3.8) and considering the
measure of noncompactness y1, defined on the family Mpc (g, ) by the formula

m(X) = u(X),
for an arbitrarily fixed nonempty subset X of Mpc () we obtain

#(TX) = wo(TX) + lim sup diam(TX) (¢)
t—ro0

< @(wo(X)) + ¢ <limsup diamX(t))

t—o0

p(wo(X)) + ¢ (hm sup diamX(t))

t—o0

2
wp(X) + lim sup diamX(¢)
t—o00

=2

2

This implies the estimate
m(TX) < ¢ (X)),

and our assertion follows from Theorem 2.2.

It is worthwhile mentioning that inequality (3.10) in conjunction with the as-
sumption on continuity of the function ¢ implies that the function ¢ is concave
on the interval R i.e., for all t,s € Ry and for arbitrary a € [0,1] we have that

@t + (t—a)s) > ap(t) + (1 —a)g(s)
(cf. [13]).

Obviously, if we assume that ¢ is concave on Ry and ¢(t) < f for t > 0 then we
infer that ¢ is continuous on R and satisfies inequality (3.10) (see [13]).

Let us also pay attention to the fact that each concave function such that
¢(0) = 0 is subadditive. On the other hand the assumption on subadditivity
of the function ¢ seems to not work in our situation.

Now we illustrate our result contained in Theorem 3.1 (cf. also Theorem 2.2)
with help of an example.

Example 3.1. Consider the following functional integral equation

12 Ccos x(s
x(t) = g I+ x(0)] +/1+|smx as., (311)

for t € R4. Observe that this equation is a special case of Eq. (3.1) if we put

2

£t x) = %m

1 ,
In(1+[x)

se~fcosx

t - @
gt s,x) = 1+ |sinx| "
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Indeed, taking ¢(t) = In(1 + ¢) we see that ¢(f) < t for t > 0. Obviously the
function ¢ is increasing and concave on R . Further, for arbitrarily fixed x,y € R
such that |x| > |y| and for t > 0 we obtain

£ 1+IXI ( |x |—|y|)
t,x)— f(t, 1 <In{1+

<In(1+|x —yl) = (jx —y]) -

The case |y| > |x| can be treated in the same way.
Thus, keeping in mind Remark 3.3 we infer that the function f satisfies assump-
tion (ii) of Theorem 3.1. It is also easily seen that f satisfies also assumption (i).
Further, notice that the function g acts continuously from the set R x R, x R
into R. Moreover, we have
8(t,s,%)| < s

fort,s € Ry and x € R. So, if we put a(t) = ¢!, b(s) = s, then we can see that
assumption (iii) is satisfied. Indeed, we have

t t

lim a(t) [ b(s ds—hmet/sds:o.

t—o00 t—o0
0 0

Now, let us calculate the constant g appearing in assumption (iv). We get
t

g = sup{|f(t,0)| +a(t /b L £>0) = sup{f2e /2 >0} = 2¢72 = 0.27067....
0

Further, let us consider the inequality from assumption (iv), having now the form
In1+r)+g<r.

It is easily seen that each number r > 1 (this estimate can be improved) satisfies
the above inequality. Thus, as the number ry we can take g = 1.

Finally, on the base of Theorem 3.1 we conclude that Eq. (3.11) has at least one
solution in the space BC(R. ), located in the ball B;.

Acknowledgement

The authors would like to express their sincere appreciation to the anonymous
referee for valuable comments on the original version of the manuscript.

References

[1] R.P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applica-
tions, Cambridge University Press, Cambridge, 2004.



358 A. Aghajani - J. Banas— N. Sabzali

[2] A. Aghajani, ]. Banas, Y. Jalilian, Existence of solutions for a class of non-
linear Volterra singular integral equations, Comput. Math. Appl. 62 (2011)
1215-1227.

[3] A. Aghajani, Y. Jalilian, Existence and global attractivity of solutions of
a nonlinear functional integral equation, Commun. Nonlin. Sci. Numer.
Simul. 15 (2010) 3306-3312.

[4] A. Aghajani, Y. Jalilian, Existence of nondecreasing positive solutions for a
system of singular integral equations, Medit. J. Math. 8 (2011) 563-576.

[5] J. Appell, J. Banas, N. Merentes, Bounded Variation and Around, Walter de
Gruyter (to appear).

[6] ]J. Banas, On measures of noncompactness in Banach spaces, Comment.
Math. Univ. Carolinae 21 (1980) 131-143.

[7] J. Banas, B.C. Dhage, Global asymptotic stability of solutions of a functional
integral equation, Nonlin. Anal. 69 (2008) 1945-1952.

[8] J. Banas, K. Goebel, Measures of Noncompactness in Banach spaces, Lect.
Notes Pure Appl. Math., vol. 60, Dekker, New York, 1980.

[9] J. Bana$, B. Rzepka, An application of a measure of noncompactness in the
study of asymptotic stability, Appl. Math. Letters 16 (2003) 1-6.

[10] G. Darbo, Punti uniti in transformazioni a condomino non compatto, Rend.
Sem. Mat. Univ. Padova 24 (1955) 84-92.

[11] B.C. Dhage, S.S. Bellale, Local asymptotic stability for nonlinear quadratic
functional integral equations, Electr. ]. Qual. Th. Differ. Equations (2008)
1-13.

[12] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ.
Press, Cambridge, 1990.

[13] M. Kuczma, Introduction to the Theory of Functional Equations, Birkhduser
Verlag, Basel, 2009.

[14] K. Kuratowski, Sur les espaces completes, Fund. Math. 15 (1930) 301-309.

School of Mathematics, Iran University of Science and Technology,
Narmak, Tehran 1684613114, Iran
email :aghajani@iust.ac.ir

Department of Mathematics, Rzeszéw University of Technology,
al. Powstaticéw Warszawy 8,35-959 Rzeszéw, Poland
email ;jpbanas@prz.edu.pl

Department of Mathematics, Behbahan Branch,
Islamic Azad University, Behbahan, Iran
email : sabzali.navid3@gmail.com



