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Abstract

We extend the family of Meixner-Pollaczek polynomials {P
(λ)
n (·; φ)}∞

n=0,
classically defined for λ > 0 and 0 < φ < π, to arbitrary complex values of
the parameter λ, in such a way that both polynomial systems (the classical
and the new generalized ones) share the same three term recurrence relation.
The values λN = (1 − N)/2, with N a positive integer, are the only ones for
which no orthogonality condition can be deduced from Favard’s theorem.
In this paper we introduce a non-standard discrete-continuous inner prod-
uct with respect to which the generalized Meixner-Pollaczek polynomials

{P
(λN)
n (·; φ)}∞

n=0 become orthogonal.

1 Introduction

First, let us fix some terminologies, notations and conventions that we will use
throughout this paper.

The set of complex numbers will be denoted by C and i will stand for the
imaginary unit (i2 = −1); the set of positive integers will be denoted by N, and
N0 will denote the set of nonnegative integers. All polynomials considered will
be complex-valued in one complex variable, and P will stand for the set of all
such polynomials. For each n ∈ N0, the subset of P of all polynomials of de-
gree not greater than n will be denoted by Pn. By a system of monic polynomials
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we will mean a sequence {Pn}∞
n=0 of polynomials satisfying P

(n)
n = n! for each

n ∈ N0. For notational convenience, we will use P−1 to denote the null polyno-
mial.

For n ∈ N, a (square) matrix of order n, with complex entries ajk, will be

denoted by A = (ajk)
n−1
j,k=0 (the entry ajk will be also called the (j + 1, k + 1)th

element of the matrix A), and (aj)
n−1
j=0 ∈ Cn will stand for the matrix of order

1 × n (equivalently, for the vector) (a0, a1, . . . , an−1). The conjugate transpose of a

matrix A = (ajk)
n−1
j,k=0 will be denoted by using the superscript ∗ (with or without

parenthesis, as needed), that is,

A∗ = (A)∗ = (ajk)
n−1 ∗
j,k=0 =

(
(ajk)

n−1
j,k=0

)∗
= (akj)

n−1
j,k=0,

(the overline denotes, of course, complex conjugation). A square matrix A will
be called Hermitian whenever A = A∗; a Hermitian matrix A will be called
positive definite whenever xAx∗ > 0 for each x ∈ Cn \ {0} (as usual, we will
identify the only element of a matrix of order 1 with the matrix itself, so the

matrix
(
(xj)

n−1
j=0

) (
(ajk)

n−1
j,k=0

) (
(xj)

n−1
j=0

)∗
will be identified with its unique entry

∑
n−1
j=0 ∑

n−1
k=0 ajkxjxk ). For Hermitian matrices, positive definiteness is equivalent to

the requirement that all of its principal minors are positive, and also equivalent to
the fact that all its eigenvalues are positive. A sesquilinear form in a linear complex
space V is a map (·, ·) : V × V → C that is linear in its first (left) argument and
conjugate-linear in the second (right) one; when this sesquilinear form is positive
definite (i.e., when (x, x) > 0 for each x ∈ Cn \ {0}) the map is called an inner
product in V.

The Kronecker delta will be denoted by δij, and (·)n will denote the so-called
shifted factorial (also, Pochhammer symbol), defined by

(x)0 = 1, (x)n+1 = x(x + 1) · · · (x + n), n ∈ N0, x ∈ C.

As usual, the binomial coefficient for complex numbers n, k is
(

n

k

)
=

Γ(n + 1)

Γ(k + 1)Γ(n − k + 1)
, −n,−k,−(n − k) /∈ N,

and the hypergeometric series mFn is

mFn

(
a1, . . . , am

b1, . . . , bn

∣∣∣∣ x

)
=

∞

∑
k=0

(a1)k · · · (am)k

(b1)k · · · (bn)k

xk

k!
, m, n ∈ N0,

where (b1)k, . . . , (bn)k 6= 0 for all k ∈ N0. When m = 0 (n = 0) the numerator
(denominator) of (a1)k · · · (am)k/(b1)k · · · (bn)k becomes 1. Clearly, if one of the
numerator parameters satisfies −aj ∈ N0, then the hypergeometric series is a
polynomial of degree min{−aj : −aj ∈ N0}.

In concluding this first part of the introduction, we recall that the nth iteration
of an operator Ψ : P → P is recursively defined by means of

{
Ψ0 = I, (I is the identity operator),
Ψn+1 = Ψ ◦ Ψn, n ∈ N0.
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Now, let us make a brief survey of non-standard orthogonality in the litera-
ture.

By a non-standard orthogonality result we will mean an orthogonality statement

for a system of monic polynomials {P
(λ1,...,λm)
n }∞

n=0, with parameters λ1, . . . , λm,
and satisfying the three term recurrence relation

xP
(λ1,...,λm)
n (x) = P

(λ1,...,λm)
n+1 (x) + anP

(λ1,...,λm)
n (x) + bnP

(λ1,...,λm)
n−1 (x), n ∈ N0,

(where an = a
(λ1 ,...,λm)
n ∈ C, bn = b

(λ1,...,λm)
n ∈ C), for those values of the parame-

ters for which bn vanishes for some n ≥ 1. This topic has attracted great interest
in recent years. In [11], Kwon and Littlejohn state that for each N ∈ N, the La-

guerre polynomials {L
(−N)
n }∞

n=0 form an orthogonal sequence with respect to a
positive-definite inner product that can be written as a discrete-continuous bilin-
ear form involving derivatives. A unified approach to the orthogonality of the

(generalized) Laguerre polynomials {L
(α)
n }∞

n=0, for arbitrary real α, can be found
in [20]. For a given positive integer number N, the orthogonality of the gener-

alized Gegenbauer polynomials {C
(−N+1/2)
n }∞

n=0 is solved in [3], using again a
Sobolev inner product, that is, an inner product involving derivatives (the case
N = 1 is considered also in [12]). Other cases for Jacobi polynomials are solved

in [2], where the families {P
(−N,β)
n }∞

n=0, N ∈ N, −(N + β) /∈ N and {P
(α,−N)
n }∞

n=0
, N ∈ N, −(α + N) /∈ N are considered, and also in [1], in which the orthogonal-

ity for {P
(−N,−M)
n }∞

n=0 , N, M ∈ N is stated. The orthogonality of the sequence

{M
(γ,µ)
n }∞

n=0 of generalized Meixner polynomials, with γ ∈ R and 0 < µ < 1,
is given in [4], where a special consideration is taken for the values γ = 1 − N,
N ∈ N. A non-standard inner product with respect to which the symmetric

Meixner-Pollaczek polynomials {P
(λ)
n (·/2; π/2)}∞

n=0 (λ ∈ R) become orthogo-
nal is introduced in [6]. For (not necessarily symmetric) generalized Meixner-

Pollaczek polynomials {P
(0)
n (·; φ)}∞

n=0 (0 < φ < π) we can find an orthogonality
result in [8].

In this paper, we consider suitable modifications of our previous result [14,

Theorem 3], adapted to the case of Meixner-Pollaczek polynomials {P
(λ)
n (·; φ)}∞

n=0
with arbitrary complex parameter λ, in order to state the orthogonality of the

families {P
((1−N)/2)
n (·; φ)}∞

n=0, where N ∈ N, the parameters (1 − N)/2 being
the only ones for which no orthogonality condition is ensured by Favard’s theo-
rem. For analogous results in the q-world we refer the reader to [15, 16, 17, 18, 19].

The paper is organized as follows. In Section 2 we extend the monic Meixner-

Pollaczek polynomial system {P
(λ)
n (·; φ)}∞

n=0, classically defined for λ > 0 and
0 < φ < π, giving an explicit definition that works perfectly well for all λ ∈ C; we
will also give in this section two preparatory results, one concerning the roots of
the new polynomials, and the other one concerning the action of the iterations of
the linear operator δ/δx on them. In Section 3 we define a nonstandard discrete-
continuous inner product which yields orthogonality for the extended monic
Meixner-Pollaczek polynomials with those “exceptional” values of the parameter
λ for which Favard’s theorem fails to work, i.e. for λ ∈ {0,−1/2,−1,−3/2, . . .}.
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2 The generalized Meixner-Pollaczek polynomials

J. Meixner [13] introduced in 1934 a class of polynomials that F. Pollaczek [21] con-
sidered independently sixteen years later. This remarkable family of orthogonal
polynomials is a generalization of some of the classical ones, and it exhibits in
many aspects a singular behaviour (for a brief but enlightening discussion, see
[22, pp. 393–400]). These so-called Meixner-Pollaczek polynomials appear in the
Askey-scheme of hypergeometric orthogonal polynomials [7, 9].

For each λ > 0 and each φ ∈ (0, π), the nth degree monic Meixner-Pollaczek

polynomial P
(λ)
n (·; φ) can be defined in terms of the hypergeometric series 2F1 by

means of (see (1.7.1) and (1.7.4) in [9])

P
(λ)
n (x; φ) =

(2λ)n

(2 sin φ)n
einφ

2F1

(
−n, λ + ix

2λ

∣∣∣∣ 1 − e−2iφ

)
, n ∈ N0, (2.1)

and they satisfy the three term recurrence relation

xP
(λ)
n (x; φ) = P

(λ)
n+1(x; φ) + a

(λ,φ)
n P

(λ)
n (x; φ) + b

(λ,φ)
n P

(λ)
n−1(x; φ), n ∈ N0, (2.2)

where

a
(λ,φ)
n = −n + λ

tan φ
, b

(λ,φ)
n =

n(n + 2λ − 1)

4 sin2 φ
, (2.3)

with the agreement that a
(λ,π/2)
n = lim

φ→π/2
a
(λ,φ)
n = 0. The orthogonality condition

is (see (1.7.2) and (1.7.4) in [9])

∫ ∞

−∞
P
(λ)
m (x; φ)P

(λ)
n (x; φ)

e(2φ−π)x

2π
|Γ(λ + ix)|2dx =

n!Γ(n + 2λ)

(2 sin φ)2(λ+n)
δmn, (2.4)

where m, n ∈ N0, λ > 0 and 0 < φ < π.
Our intention is to accomplish the extension of the monic Meixner-Pollaczek

polynomials {P
(λ)
n (·; φ)}∞

n=0 for all complex values of the parameter λ. We first
observe that (2.1) does not hold when −2λ ∈ N0, but after straightforward ma-

nipulation of the series we obtain an expression for P
(λ)
n (·; φ) which is defined for

all λ ∈ C, φ ∈ (0, π) and n ∈ N0.

Definition 2.1. For each λ ∈ C, each φ ∈ (0, π) and for all n ∈ N0 we define the nth

degree monic generalized Meixner-Pollaczek polynomials P
(λ)
n (·; φ) by means of

P
(λ)
n (x; φ) =

n

∑
k=0

(−1)k

(
n

k

)
(2λ + k)n−k

einφ(1 − e−2iφ)k

(2 sin φ)n
(λ + ix)k, x ∈ C. (2.5)

Observe that this new extended family satisfies the same three term recurren-
ce relation (2.2), (2.3) as the classical monic Meixner-Pollaczek polynomials with

positive parameter λ. Hence, taking into account that for n ≥ 1 one has b
(λ,φ)
n = 0

only when −2λ ∈ N0, the corresponding orthogonality statement would be that
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the generalized family of monic Meixner-Pollaczek polynomials is orthogonal
with respect to a quasi-definite moment functional (which is positive definite if
λ > 0) if and only if −2λ ∈ C \ N0.

Now we will give some results that will be essential in the main results of this
paper.

As shown in [5, Proposition 6], P
(0)
n (x/2; π/2) = (x/2)P

(1)
n−1(x/2; π/2) for

n ≥ 1, where we have adapted the original relation to our normalization.
In [8, Proposition 13], the author improves this relation and gets (again, in the

version of monic polynomials) P
(0)
n (x; φ) = xP

(1)
n−1(x; φ), n ≥ 1. The following

result generalizes these ones.

Proposition 2.1. Let N ∈ N. For each integer n ≥ N,

P
((1−N)/2)
n (x; φ) = P

((1−N)/2)
N (x; φ)P

((1+N)/2)
n−N (x; φ)

= (−i)N
(1 − N

2
+ ix

)

N
P
((1+N)/2)
n−N (x; φ), φ ∈ (0, π), x ∈ C. (2.6)

Proof. For the sake of brevity we introduce the notation

c
(n;φ)
k =

einφ(1 − e−2iφ)k

(2 sin φ)n
, n ∈ N0, 0 ≤ k ≤ n, 0 < φ < π.

Using (2.5) we have

P
((1−N)/2)
n (x; φ) =

n

∑
k=0

(−1)k

(
n

k

)
(−N + 1 + k)n−kc

(n;φ)
k

(1 − N

2
+ ix

)

k
.

Since (−N + 1 + k)n−k = (−N + k + 1)(−N + k + 2) · · · (−N + n), if n ≥ N
(which implies that the last factor in the shifted factorial is a non-negative inte-
ger), then for each k ≤ N − 1 (which implies the non-positiveness of the first
factor) we have (−N + 1 + k)n−k = 0. Consequently, for n ≥ N

P
((1−N)/2)
n (x; φ) =

n

∑
k=N

(−1)k

(
n

k

)
(−N + 1 + k)n−kc

(n;φ)
k

(1 − N

2
+ ix

)

k

=
n−N

∑
k=0

(−1)N+k

(
n

N + k

)
(k + 1)n−N−kc

(n;φ)
N+k

(1 − N

2
+ ix

)

N+k
.

Taking into account that for 0 ≤ k ≤ n − N
(

n

N + k

)
(k + 1)n−N−k =

(
n − N

k

)
(1 + N + k)n−N−k,

c
(n;φ)
N+k = c

(N;φ)
N c

(n−N;φ)
k = iNc

(n−N;φ)
k ,

(1 − N

2
+ ix

)

N+k
=

(1 − N

2
+ ix

)

N

(1 + N

2
+ ix

)

k
,

we get

P
((1−N)/2)
n (x; φ) =

(
(−1)Nc

(N;φ)
N

(1 − N

2
+ ix

)

N

)

(
n−N

∑
k=0

(−1)k

(
n − N

k

)
(1 + N + k)n−N−kc

(n−N;φ)
k

(1 + N

2
+ ix

)

k

)
.
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Noting that

P
((1−N)/2)
N (x; φ) = (−1)Nc

(N;φ)
N

(1 − N

2
+ ix

)

N
= (−i)N

(1 − N

2
+ ix

)

N
, (2.7)

we finally establish the factorization (2.6).

Corollary 2.1. For fixed N ∈ N, let us denote x
(N)
k = (((2k + 1) − N)/2)i for

0 ≤ k ≤ N − 1. We have

P
((1−N)/2)
n

(
x
(N)
k ; φ

)
= 0, 0 ≤ k ≤ N − 1, n ≥ N, 0 < φ < π.

Proof. Since for 0 ≤ k ≤ N − 1 the points x
(N)
k are the N different (pure imaginary)

roots of the equation ((1− N)/2+ ix)N = 0, from (2.6) we deduce that for n ≥ N,

each x
(N)
k is a root of the polynomial P

((1−N)/2)
n (·; φ) .

We define the forward shift operator δ : P → P as usual (see [9, 0.9.1]), that is,
for each polynomial p, the polynomial δ(p) := δp is the one defined by means of
δp(x) = p(x + i/2)− p(x − i/2), x ∈ C. It is clear that δ is a linear operator that
reduces by one the degree of the evaluated polynomial. For the power functions
en, defined by en(x) = xn for n ∈ N0 and x ∈ C, it is usual to denote δen(x) = δxn.
Then δx = i, and also (δp(x))/(δx) = (1/i)δp(x). Thus, the symbol δ/δx will
stand for the linear operator −iδ.

Using [9, 1.7.7] (in its version for monic polynomials) in (2.5), we can eas-
ily verify that the same forward shift relation holds for the generalized monic
Meixner-Pollaczek polynomials. That is to say

δP
(λ)
n (x; φ)

δx
= nP

(λ+ 1
2 )

n−1 (x; φ), n ∈ N0, λ, x ∈ C.

(where we have used δP
(λ)
n (x; φ) instead of the more formal δP

(λ)
n (·; φ)(x),

and we will use this convention in the sequel). Therefore,

Proposition 2.2. Given a fixed nonnegative integer k, we have, for each n ≥ k − 1

(
δ

δx

)k

P
(λ)
n (x; φ) =

δkP
(λ)
n (x; φ)

(δx)k
= (n − k + 1)kP

(λ+ k
2 )

n−k (x; φ),

λ, x ∈ C, φ ∈ (0, π).

3 Orthogonality of {P
((1−N)/2)
n (·; φ)}∞

n=0 for positive integers N

By using the Poisson kernel and the associated Poisson measure, T.K. Araaya [5]

gives an orthogonality result for the system {P
(λ)
n (·/2; π/2)}∞

n=0 of symmetric
Meixner-Pollaczek polynomials with parameter λ = 0. This result was further
extended by the same author [6] to arbitrary real values of the parameter λ, by
introducing a non-standard inner product with respect to which the symmetric
Meixner-Pollaczek polynomials become orthogonal. In both cases, the technique
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of the proofs depends strongly both on the use of the generating function (to
replace the sequence of symmetric Meixner-Pollaczek polynomials) and on some
nice calculus machinery. As far as we know, D. Dominici [8, Remark 17] gives
the first non-standard orthogonality statement for (not necessarily symmetric)
generalized Meixner-Pollaczek polynomials with parameter λ = 0.

With the aid of a suitable modification of our result [14, Theorem 3], adapted
to the case considered here of generalized monic Meixner-Pollaczek polynomials,
we can give orthogonality results that are intimately related with those of Araaya
and Dominici.

Definition 3.1. Let N ∈ N and let φ ∈ (0, π). For a Hermitian and positive definite

complex matrix A of order N, and for the points xk = x
(N)
k = (((2k + 1)− N)/2)i,

0 ≤ k ≤ N − 1, we define the inner product (·, ·)(N;A;φ) : P × P → R by means of

(p, q)(N;A;φ) = (p(x0), p(x1), . . . , p(xN−1))A(q(x0), q(x1), . . . , q(xN−1))
∗

+
∫ ∞

−∞

(
δN p(x)

(δx)N

)(
δNq(x)

(δx)N

)
e(2φ−π)x

2π
|Γ(1/2 + ix)|2dx, p, q ∈ P. (3.8)

Our aim is to show that there exist matrices A such that the sequence of
generalized monic Meixner-Pollaczek polynomials with parameter λ equal to
(1 − N)/2 is orthogonal with respect to the non-standard inner product intro-
duced above.

Theorem 3.1. For a fixed positive integer N and for φ ∈ (0, π), the generalized monic

Meixner-Pollaczek polynomials {P
((1−N)/2)
n (·; φ)}∞

n=0 are orthogonal with respect to the
inner product (·, ·)(N;A;φ), where A = C−1D(C−1)∗, C stands for the matrix

(P
((1−N)/2)
j (xk; φ))N−1

j,k=0 and D is an arbitrary diagonal matrix of order N with posi-

tive entries in its diagonal.

Proof. First we must verify that A is Hermitian and positive definite.

Let {lj}N−1
j=0 ⊂ PN−1 be the set of Lagrange interpolating polynomials with

respect to the points {xk}N−1
k=0 (that is, lj(xk) = δjk for 0 ≤ j, k ≤ N − 1}). Taking

into account that both {P
((1−N)/2)
j (·; φ)}N−1

j=0 and {lj}N−1
j=0 are bases of PN−1, and

also that

P
((1−N)/2)
j (x; φ) =

N−1

∑
k=0

P
((1−N)/2)
j (xk; φ) lk(x), 0 ≤ j ≤ N − 1,

we can justify that the matrix C = (P
((1−N)/2)
j (xk; φ))N−1

j,k=0 is nonsingular.

We recall that a square complex matrix M is positive definite if and only if
there exists a nonsingular complex matrix Q such that M = QQ∗. Thus, A =

C−1D(C−1)∗ = (C−1
√

D)(C−1
√

D)∗ is positive definite (here,
√

D stands for the
diagonal matrix whose diagonal entries are the positive square root of the corres-
ponding diagonal entries of D).

Now we will state the orthogonality in three steps:
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i) In case that 0 ≤ m, n ≤ N − 1, since
(

δ

δx

)N

P
((1−N)/2)
m (x; φ) =

(
δ

δx

)N

P
((1−N)/2)
n (x; φ) = 0,

we get

(P
((1−N)/2)
m (·; φ), P

((1−N)/2)
n (·; φ))(N;A;φ)

=
(
(P

((1−N)/2)
m (xk; φ))N−1

k=0 C−1
)

D
(
(P

((1−N)/2)
n (xk; φ))N−1

k=0 C−1
)∗

= (δmk)
N−1
k=0 D

(
(δnk)

N−1
k=0

)∗
= κnδmn,

where κn is the (positive) (n + 1, n + 1)th entry of the matrix D.
ii) If 0 ≤ m ≤ N − 1 and n ≥ N, then

(
δ

δx

)N

P
((1−N)/2)
m (x; φ) = 0, and P

((1−N)/2)
n (xk; φ) = 0, 0 ≤ k ≤ N − 1,

so, clearly, we have (P
((1−N)/2)
m (·; φ), P

((1−N)/2)
n (·; φ))(N;A;φ) = 0.

iii) Finally, when m, n ≥ N, using that P
(1/2)
n−N (x; φ) is real for x ∈ R,

(P
((1−N)/2)
m (·; φ), P

((1−N)/2)
n (·; φ))(N;A;φ)

=
∫ ∞

−∞

(
δNP

((1−N)/2)
m (x; φ)

(δx)N

)(
δNP

((1−N)/2)
n (x; φ)

(δx)N

)
e(2φ−π)x

2π
|Γ(1/2 + ix)|2dx

= N!2
(

m

N

)(
n

N

) ∫ ∞

−∞
P
(1/2)
m−N (x; φ)P

(1/2)
n−N (x; φ)

e(2φ−π)x

2π
|Γ(1/2 + ix)|2dx

= N!2
(

n

N

)2 (n − N)!Γ(n − N + 1)

(2 sin φ)2(n−N)+1
δmn =

(
n!

(2 sin φ)n−N+1/2

)2

δmn.

Let us note that if we choose D = (j!2(2 sin φ)2(N−j)−1δjk)
N−1
j,k=0 in the previous

theorem, then we have the closed form for the norms

||P((1−N)/2)
n (·; φ)||(N;A;φ) =

(
(P

((1−N)/2)
n (·; φ), P

((1−N)/2)
n (·; φ))(N;A;φ)

)1/2

=
n!

(2 sin φ)n−N+1/2
, n ∈ N0.

We now give a new related orthogonality result in which the discrete part of
the sesquilinear form (3.8) changes in such a way that symmetry is gained and
explicitness is lost.

Theorem 3.2. Fixed N ∈ N and φ ∈ (0, π), there exists a Hermitian and positive

definite matrix A of order N such that the family {P
((1−N)/2)
n (·; φ)}∞

n=0 is orthogonal
with respect to the inner product (·, ·)(δ;N;A;φ) defined by

(p, q)(δ;N;A;φ) =
(

δk p (xk − (k/2)i)
)N−1

k=0
A

((
δkq (xk − (k/2)i)

)N−1

k=0

)∗

+
∫ ∞

−∞

(
δN p(x)

(δx)N

)(
δNq(x)

(δx)N

)
e(2φ−π)x

2π
|Γ(1/2 + ix)|2dx, p, q ∈ P. (3.9)
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Proof.
A simple induction argument shows that for each k ∈ N0,

δk p(x) =
k

∑
l=0

(−1)l

(
k

l

)
p(x + (k/2 − l)i), p ∈ P, x ∈ C.

Therefore, by Corollary 2.1 we have, fixed a nonnegative integer N and for
0 ≤ k ≤ N − 1 and n ≥ N,

δkP
((1−N)/2)
n (xk − (k/2)i; φ) =

k

∑
l=0

(−1)l

(
k

l

)
P
((1−N)/2)
n (xk − li; φ)

=
k

∑
l=0

(−1)l

(
k

l

)
P
((1−N)/2)
n (xk−l; φ) = 0.

Now consider the set of fundamental polynomials {hj}N−1
j=0 ⊂ PN−1 defined

by

δkhj(xk − (k/2)i) =
k

∑
l=0

(−1)l

(
k

l

)
hj(xk−l) = δkj, 0 ≤ k, j ≤ N − 1.

Clearly, these polynomials exist, are unique, and form a basis of PN−1. Taking

into account that both {P
((1−N)/2)
j (·; φ)}N−1

j=0 and {hj}N−1
j=0 are bases of PN−1, there

exists a nonsingular matrix Ct = (cjk)
N−1
j,k=0 such that for each j = 0, 1, . . . , N − 1,

P
((1−N)/2)
j (x; φ) =

N−1

∑
k=0

ckj hk(x),

which implies that C =
(

δkP
((1−N)/2)
j (xk − (k/2)i; φ)

)N−1

j,k=0
.

Then, for any arbitrary diagonal matrix D of order N with positive elements
in the diagonal, and defining A = C−1D(C−1)∗, we get the desired conclusion
following the same reasoning as in Theorem 3.2, replacing in steps i) and ii)

P
((1−N)/2)
m (xk; φ) and P

((1−N)/2)
n (xk; φ) by δkP

((1−N)/2)
m (xk − (k/2)i; φ) and

δkP
((1−N)/2)
n (xk − (k/2)i; φ), respectively.

As a final remark, let us say that defining δ̃ : P → P by δ̃p(x) =

p(x + i) − p(x) we get a result similar to the previous one, where δkP
((1−N)/2)
n

(xk − (k/2)i; φ) is replaced by δ̃kP
((1−N)/2)
n (((1 − N)/2)i; φ) and where

C =
(

δ̃kP
((1−N)/2)
j (((1 − N)/2)i; φ)

)N−1

j,k=0
.
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