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Abstract

We analyse some aspects of the notion of algebraic exponentiation intro-
duced by the second author [16] and satisfied by the category Gp of groups.
We show how this notion provides a new approach to the categorical-alge-
braic question of the centralization. We explore, in the category Gp, the un-
usual universal properties and constructions determined by this notion, and
we show how it is the origin of various properties of this category.

Introduction

In [16], the second author observed, by means of very straightforward Kan ex-
tension arguments, that, in the category Gp of groups, the change of base functor
with respect to the fibration of points along any group homomorphism h : X →
Y:

h∗ : PtYGp → PtXGp

has a right adjoint, revealing, for the category Gp, a property having a certain
analogy with the property, for a category E, of being locally cartesian closed [24],
namely the property that the following change of base functor: h∗ : E/Y →
E/X has a right adjoint for any map h. On the other hand, he showed moreover
that, in the algebraic context of unital categories C, the condition that the change
of base functor along the terminal map: τ∗X : C = Pt1C → PtXC has a right
adjoint is related to the existence of some generalized notion of centralization.

Now, the property of local cartesian closedness is very powerful and well
known to be shared, for instance, by any elementary topos. It is unnecessary
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to insist on its significance. We shall develop some aspects of this new concept of
algebraic exponentiation.

In Section 1), we shall more deeply analyse the parallelism with cartesian
closedness and we shall strictly elucidate the relationship with the classical no-
tion of centralizer, in such a way that, when a unital category C is regular, any change
of base functor τ∗X, as above, has a right adjoint if and only if any subobject has a cen-
tralizer, revealing that, behind the notions of centre and centralizer, there was an
unexpected wider-ranging phenomenon of functorial nature. In Section 2) we
shall show that, in the Mal’cev context, algebraic exponentiation along split epi-
morphisms allows us to extend the existence of centralizers from subobjects to
equivalence relations; accordingly, when the category C is moreover exact, we
get a Schreier-Mac Lane extension theorem, according to [11]. In Section 3) we
shall investigate the stability properties of algebraic exponentiation and in partic-
ular we shall show how, in the efficiently regular context, the existence of a right
adjoint to:

h∗ : PtYC → PtXC

can be extended from split epimorphims to regular epimorphisms. In Section 4),
in the stricter context of protomodular categories, we give a detailed description
of some constructions determined by the algebraic exponentiation of all mor-
phisms, and in particular we shall investigate two main consequences, namely
strong protomodularity (which guarantees, among other things, that the commu-
tation of two equivalence relations (R, S) is characterized by the commutation
of their associated normal subobjects (IR, IS) [9]) and peri-abelianness (which is
strongly related to the cohomology of groups [10]). These last points show us
how some well identified particular properties of the category Gp of groups orig-
inate from this algebraic exponentiation property. In this same category Gp, we
shall explore in detail the very unusual universal properties and constructions
involved in algebraic exponentiation.

On the other hand we shall enlarge the list of examples (Section 2.1) to some
categories of topological models, such as topological groups and topological rings,
and to non-pointed categories such as the fibres GrdX above the set X of the fibra-
tion ( )0 : Grd → Set from groupoids to sets whose fibre Grd1 above 1 is nothing
but the category Gp itself.

1 Cartesian vs algebraic cartesian closedness

1.1 Slice categories and cartesian closedness

Let E be any finitely complete category and Y an object in E. Any object
f : X → Y in the slice category E/Y has a specific presentation as the domain
of an equalizer of a split pair in E/Y which actually comes from a monad on the
slice category E/Y (where the common splitting of the parallel pair below is the
map p0 × X):
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X //
( f ,1)

//

f
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Y × X

s0×X //

Y×( f ,1)
//

pY
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Y× (Y × X)

pY
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oo

Y

This presentation can be extended to the category PtYE of points above Y, namely
to the split epimorphisms, in the following way:

X //
( f ,1)

//

f

""E
EEE

EE
EEE

EE
EE

E
Y × X

s0×X //

Y×( f ,1)
//

pY

��

Y× (Y × X)

pY

yyrrrrrrrrrrrrrrrrr

oo

Y

s

bbEEEEEEEEEEEEEE

(1,s)

OO

(s0,s)

99rrrrrrrrrrrrrrrrr

As a collateral consequence, when the category E is pointed, we get the kernel of
f , from the previous diagram, by the following equalizer:

Ker f //
k f // X

ιX //

( f ,1)
// Y× Xoo

Now consider the change of base along the terminal map: τ∗Y : E −→ E/Y. Ac-
cording to our initial remark and because of the left exactness of right adjoints,
the question of the existence of a right adjoint to τ∗Y is reduced to the existence
of cofree structures for the projections pY : Y × X → Y in E/Y; and this cofree
structure is nothing but the exponential XY. In other words:

The functor τ∗Y : E → E/Y has a right adjoint if and only if the functor Y×− : E → E

has a right adjoint. The category E is cartesian closed if and only if any functor τ∗Y has a
right adjoint.

1.2 Fibration of points and algebraic cartesian closedness

In an algebraic context, no such exponential does exist in general, among other
things because of the existence of a zero object in the main instances, and con-
sequently no such right adjoint functor to τ∗Y. However we have the possibil-
ity to consider the existence of a right adjoint to the “change of base” functor
τ∗Y : Pt1E → PtYE, i.e, here, “only” with respect to the points of E/Y and E; and
even more generally the existence of a right adjoint to the change of base functor
f ∗ : PtYE→ PtXE for a any map f : X → Y.

This idea was first introduced by the second author [16] who showed these
right adjoints to f ∗ do exist in the categories Gp of groups and R-Lie of Lie R-
algebras, for any commmutative ring R [17].

The previous observation above concerning the equalizer presentation of any
split epimorphism applies now for the change of base functor: τ∗Y : Pt1E −→
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PtYE along the terminal map. The question of the existence of a right adjoint to
τ∗Y is then reduced to the existence of cofree structures for the split epimorphisms
(pY , (1, u)) : Y× X → Y in PtYE with a monomorphic u : Y ֌ X.

We shall work now more specifically in the algebraic context of a unital [4], or
even weakly unital [22] category C. Recall:

Definition 1.1. A category C is unital (resp. weakly unital) when it is pointed, is finitety
complete, and is such that any pair of maps of the following form:

X //
(1,0)

// X ×Y Yoo
(0,1)

oo

is jointly strongly epic (resp. jointly epic).

Accordingly a finitely complete pointed category C is unital if and only if
the supremum of the two previous subobjects is 1X×Y. In these contexts, the
functor τ∗Y becomes fully faithful. Recall also that there is then an intrinsic notion
of commutation for any pair of maps with same codomain. We say that a pair
( f , g) commutes:

X //
(1,0)

//

f
""F

FFFFFFFFFFF X ×Y

φ

��

Yoo
(0,1)

oo

g

||xxxxxxxxxxxx

Z

when there exists a factorization φ (called the cooperator of this pair), the unique-
ness of φ making this existence a property of the pair ( f , g), see also [18]. In these
algebraic contexts, the meaning of the existence of a right adjoint to the functor
τ∗Y above can be made much more algebraically civilized:

Proposition 1.2. Suppose C is a unital (resp. weakly unital) category. The change of
base functor τ∗Y : Pt1E −→ PtYE admits a right adjoint ΦY if and only if any subobject
u : Y ֌ X with domain Y admits a universal map ζu : Z[u] → X commuting with it.
This universal map ζu is necessarily a monomorphism.

Proof. The universal property of ζu translates exactly the universal property of the
cofree structure of the split epimorphism (pY, (1, u)) : Y× X ⇄ Y with respect to
τ∗Y. Indeed, the natural transformation ε : τ∗Y.ΦY ⇒ Id is produced by a map in
PtYC:

Y× Z[u]
(pY ,φ)

//

pY

##G
GG

GG
GG

GG
GG

GG
Y× X

pY

||zz
zz

zz
zz

zz
zz

Y

ιY

ccGGGGGGGGGGGGG
(1,u)

<<zzzzzzzzzzzz

which makes φ : Y× Z[u] → X the cooperator of the commuting pair (u, ζu), with
ζu = φ.ιZ[u]. Consider now the kernel equivalence of the map ζu:

R[ζu]
p0 //
p1

// Z[u]
ζu // X

The map ζu.pi commutes with u by means of the cooperator φ.(Y× pi). Its factor-
ization through ζu being unique, we get p0 = p1; and ζu is a monomorphism.
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Now, starting from any split epimorphism ( f , s), the cofree structure ΦY[ f , s]
is the equalizer of the following upper parallel pair:

ΦY[ f , s] // //

��

Z[s] //
//

ζs

��

Z[(1, s)]

ζ(1,s)

��
Ker f //

k f

// X
ιX //

( f ,1)
// Y× X

Since the lower line is also an equalizer and the maps (ζs, ζ(1,s)) are monomor-

phisms, the left-hand side square is a pullback and ΦY[ f , s] = Ker f ∩ Z[s].
According to the previous proposition and the parallelism with cartesian closed-
ness [1], we shall introduce the following:

Definition 1.3. A category E with finite products is said to be algebraically cartesian
closed (a.c.c.) when any functor τ∗Y : Pt1E −→ PtYE has a right adjoint.

On the other hand, we have the quite classical:

Definition 1.4. Suppose C is a unital (resp. weakly unital) category. The centralizer
of a subobject u : Y ֌ X is the largest subobject commuting with it, i.e. the universal
monomorphism commuting with u.

So, when C is a unital category which is algebraically cartesian closed, any subobject
u has a centralizer ζu. When C is regular in the sense of [1] (as it is the case for any
variety of universal algebras) the converse is true:

Proposition 1.5. Suppose C is a regular unital category. Then it is algebraically carte-
sian closed if and only if any subobject u : Y ֌ X has a centralizer.

Proof. Let h : T → X be any map commuting with u. Consider the canonical

decomposition of h through a regular epimorphism T
ρ
։ V

h̄
֌ X. Then, since ρ

is a regular epimorphism the pair (u, h̄) of subobjects does commute in C; so h̄,
and thus h, factorizes through the centralizer ζu : Z[u] ֌ X of u which therefore
becomes also the universal map commuting with u.

1.3 Examples

The unital category Mon of monoids is unital and, as a variety of algebras, is
exact and therefore regular. It has centralizers and thus is algebraically cartesian
closed. More generally any unital variety of algebras with centralizers (as the
categories Gp of groups or CRg of commutative rings) is algebraically cartesian
closed. In the category Gp of groups any split epimorphism ( f , s) above Y is of
the kind Y ⋉ψ K ⇄ Y, where ψ is the associated action of the group Y on the
group K. Then ΦY[ f , s] is nothing but the subgroup {k ∈ K/∀y ∈ Y, yk = k} of
K of the invariant elements under the action ψ.
The main consequence of the algebraic cartesian closedness is a commutation of
limits: the functor τ∗Y, having a right adjoint, preserves the colimits existing in C.
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1.4 Reflection of commuting pairs

There is a very simple result which will be of consequence later on:

Proposition 1.6. Let C be a unital (resp. weakly unital) category and (Γ, ǫ, ν) a left
exact comonad on it. Then the category CoalgΓ of Γ-coalgebras is unital (resp. weakly
unital) and the left exact forgetful functor U : CoalgΓ → C reflects the commuting pairs.

Proof. Since the comonad (Γ, ǫ, ν) is left exact and C is finitely complete, so is the
category CoalgΓ, which is moreover pointed since so is C. The forgetful functor
U : CoalgΓ → C is left exact. The category CoalgΓ is unital (resp. weakly unital)
since the functor U is conservative (resp. faithful). Now, suppose that we have a
pair of morphisms in CoalgΓ:

(X, ξ)
f
−→ (Z, ζ)

g
←− (Y, υ)

whose image by U is endowed with a cooperator φ. We have to show that this
map φ is actually a map of coalgebras, namely that the following quadrangle
commutes:

X //
(1,0)

// X ×Y

φ

��

Γξ×Γυ

&&MMMMMMMMMM Yoo
(0,1)

oo

Z

ζ &&MMMMMMMMMMMM ΓX × ΓY

Γφ
��

ΓZ

which can be done by composition with the two upper horizontal maps.

1.5 Strongly unital categories

A unital category C is strongly unital [8], when in addition, for any object Y, the
change of base functor τ∗Y : C → PtYC is saturated on subobjects, namely such
that any subobject R ֌ τ∗Y(Z) is, up to isomorphism, the image by τ∗Y of some
subobject S ֌ Z. In this context, the idempotent comonad associated with the
algebraic cartesian closedness has a specific property:

Proposition 1.7. Suppose C is a strongly unital category. Suppose the functor τ∗Y :
Pt1C −→ PtYC admits a right adjoint ΦY. Then the natural transformation of the
induced idempotent left exact comonad εY : τ∗Y.ΦY ⇒ Id is monomorphic. Moreover any
subobject j : •֌ • in PtYC produces a pullback in PtYC:

τ∗Y.ΦY(•) //
τ∗Y.ΦY(j)

//

εY•

��

τ∗Y.ΦY(•)

εY•

��
• //

j
// •
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Proof. The comonad is idempotent even if C is only unital since the functor τ∗Y is
fully faithful. From the construction of ΦY[ f , s], it is sufficient to prove the asser-
tion for Z[u] = ΦY[pY, (1, u)]. We observed that the natural map εY(pY, (1, u)) is

nothing but the map Y× Z[u]
(pY ,φ)
→ Y× X, where the map φ is the cooperator of

u and ζu. Now consider the following diagram in C:

Y
ιY //

(1,u)

��?
??

??
??

??
??

??
?

Y× Z[u]

(pY,φ)

��

Z[u]
ιZ[u]oo

(0,ζu)

}}||
||

||
||

||
||

||

Y× X

pY

__??????????????

Then, according to Lemma 1.8.18 in [4] the vertical central map is a monomor-
phism if and only if so is the map (0, ζu), which is the case here. The end of the
proof is a consequence of the following very general lemma:

Lemma 1.8. Let U : E → F be a left exact fully faithful functor between finitely com-
plete categories. Suppose moreover that U has a right adjoint G such that the natural
transformation of the induced idempotent left exact comonad ε : U.G ⇒ Id is monomor-
phic. Then the functor U is saturated on subobjects if and only if, given any subobject
j : X′ ֌ X in F, the following square is a pullback in F:

U.G(X′) //
U.G(j)

//

εX′

��

U.G(X)

εX

��
X′ //

j
// X

Proof. Suppose the previous condition is satisfied. Given any subobject j, when
εX is an isomorphism, so is εX′ , and U is saturated on subobjects. Conversely
suppose U saturated on subobjects, and consider the pullback of εX along j and
the induced monomorphic factorization η:

U.G(X′)
))

U.G(j)

))SSSSSSSSSSSSSSSSSS

εX′

��6
66

66
66

66
66

66
66

66
66

6 $$

η
$$H

HHHHHHHHHHH

P //
j̄
//

ǫ

��

U.G(X)

εX

��
X′ //

j
// X

U being saturated on subobjects, we can choose an object P = U(T). Accordingly
there is a map η̄ : U(T) = P → U.G(X′) with εX′ .η̄ = ǫ. Since εX′ and ǫ are
monomorphisms, this η̄ is η−1; and the square in question is a pullback.
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2 Mal’cev context

We shall work now in the algebraic context of Mal’cev categories in the sense of
[13] and [14]. One way of saying that a category C is a Mal’cev category is to say
that any pointed fibre PtYC is unital or, equivalently that any pointed fibre PtYC

is strongly unital, see [8]. Let us introduce the following:

Definition 2.1. A finitely complete category C is said to be fiberwise algebraically carte-
sian closed (f.a.c.c.) when every fibre PtYC is algebraically cartesian closed. A morphism
h : X → Y in C is said to be algebraically exponentiable when the change of base functor
h∗ : PtYC→ PtXC along h admits a right adjoint. The category C is said to be locally al-
gebraically cartesian closed (l.a.c.c) when any morphism h is algebraically exponentiable.

So, a category C is fiberwise algebraically cartesian closed if and only if, given
any split epimorphism ( f , s) : X ⇄ Y the change of base functor f ∗ : PtYC →
PtXC has a right adjoint Φ f . When the category C is a regular Mal’cev category,
it is equivalent, according to Proposition 1.5, to saying that in any fibre PtYC there
exist centralizers of subobjects. We get immediately:

Proposition 2.2. Let C be a fiberwise algebraically cartesian closed Mal’cev category.
Let ( f , s) : X ⇄ Y be any split epimorphism in C. Then the change of base functor
f ∗ : PtYC → PtXC is such that the natural transformation ε f : f ∗.Φ f ⇒ Id of
the induced idempotent left exact comonad is monomorphic. Moreover any subobject
j : •֌ • in PtXC produces a pullback in PtXC:

f ∗.Φ f (•) //
f ∗.Φ f (j)

//

ε f •

��

f ∗.Φ f (•)

ε f •

��
• //

j
// •

Proof. As we recalled above, the category C being Mal’cev, any fibre PtYC is not
only unital but also strongly unital. Accordingly, just apply Proposition 1.7.

2.1 Examples

In [16] and [17], it was shown that: the category CRg of commutative rings
is fiberwise algebraically cartesian closed but not locally algebraically cartesian
closed; the categories Gp of groups and R-Lie of Lie R-algebras, for any comm-
mutative ring R, are locally algebraically cartesian closed; when a category E is
a cartesian closed category with pullbacks, the category GpE of internal groups
in E is locally algebraically cartesian closed. A category A was defined as es-
sentially affine in [7] when any change of base functor h∗ : PtYA → PtXA is
an equivalence of categories; accordingly any essentially affine category is locally
algebraically cartesian closed. In particular any additive category is locally alge-
braically cartesian closed.
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Non-pointed examples 1: slice and coslice categories

Lemma 2.3. Let U : C → D be a pullback preserving functor which is moreover a dis-
crete fibration (resp. discrete cofibration). When U( f ) : U(X) → U(Y) is algebraically
exponentiable in D, so is f : X → Y in C.

Proof. Straightforward.

Let C be any category. Then, for any object Y in C, the domain functor C/Y →
C is a discrete fibration which preserves pullbacks. Still, for any object Y in C, the
codomain functor Y/C → C is a left exact discrete cofibration. Accordingly fiber-
wise algebraic cartesian closedness (resp. locally algebraic cartesian closedness)
is stable under slicing and coslicing, giving rise to non-pointed examples. As
a consequence, when C is fiberwise algebraically cartesian closed (resp. locally
algebraically cartesian closed), so is any fibre PtYC.

Non-pointed examples 2: the fibres of the fibration Grd → Set
Let us denote by Grd the category of groupoids and by ( )0 : Grd → Set the

forgetful functor associating with any groupoid Y1 the set Y0 of its objects; it is
a fibration whose cartesian maps in Grd are the fully faithful functors. The fibre
above 1 is clearly the pointed category Gp of groups. We shall denote by GrdX

the fibre above the set X: its objects are the groupoids whose set of objects is X
and its arrows are those functors between such groupoids which are bijective on
objects. We know that these fibres GrdX are protomodular [7] and thus Mal’cev
categories, and they are no longer pointed. The aim of this section is to show that
any fibre GrdX is locally algebraically cartesian closed; the proof will be a slight
generalization of the proof for Gp.

Lemma 2.4. Let be given a groupoid Y1. The fibre PtY1
(GrdY0

) is in bijection with the
functor category F (Y1, Gp). Suppose F1 : Y1 → Z1 be any functor. Then the change
of base functor F∗1 : PtZ1

(GrdZ0
)→ PtY1

(GrdY0
) is naturally isomorphic to the functor

F (F1, Gp) : F (Z1, Gp)→ F (Y1, Gp).

Proof. The category Gp can be considered as the full subcategory of the category
Cat (of categories) whose objects are the groupoids with only one object. The
lemma is a specification of the Grothendieck construction. From any functor H :
Y1 → Gp we get a bijective on objects split cofibration H1 : X1 → Y1 where a
map y → y′ in X1 is a pair ( f , γ) with f : y → y′ is a map in Y1 and γ ∈ H(y′).
The composition is defined by: ( f ′, γ′).( f , γ) = ( f ′. f , γ′.H( f ′)(γ)). The functor
H1, defined by H1( f , γ) = f , has a splitting T1 defined by T1( f ) = ( f , 1H(y′)).
Conversely any split bijective on objects functor H1 : X1 → Y1 is necessarily a
split cofibration and determines a functor H : Y1 → Gp. The end of the proof is
straightforward.

Theorem 2.5. Consider the fibration ( )0 : Grd → Set; any of its fibres GrdX is locally
algebraically cartesian closed.

Proof. Given any functor F1 : Y1 → Z1 between two groupoids, the functor
F (F1, Gp) : F (Z1, Gp) → F (Y1, Gp) admits a right adjoint, given by the right
Kan extension along the functor F1. Then, according to the previous lemma, any
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change of base functor F∗1 : PtZ1
(GrdZ0

) → PtY1
(GrdY0

) has a right adjoint. The
theorem holds by taking F1 a bijective on objects functor with Z0 = X = Y0.

Topological models
In this section we shall make explicit some topological examples. Let T be

a Mal’cev theory, V(T) the corresponding variety of T-algebras and Top(T) the
category of topological T-algebras. Recall that Top(T) is then a regular Mal’cev
category, see [19], whose regular epimorphisms are the open surjective maps.
Moreover, for every surjective homomorphism g : X ։ Y in V(T) with X in
Top(T), endowing Y with the quotient topology makes Y an object in Top(T)
and makes g an open map. Recall also the following:

Lemma 2.6. Let T be a Mal’cev theory. Then the forgetful left exact functor
U : Top(T) → V(T) reflects the pullback of split epimorphisms along regular epi-
morphisms.

Proposition 2.7. Let T be a Mal’cev theory such that V(T) is fiberwise algebraically
cartesian closed. Then the category Top(T) of topological T-algebras is fiberwise alge-
braically cartesian closed.

Proof. Let ( f , s) : X ⇄ Y be a split epimorphism in Top(T) and (g, t) : V ⇄ X an
object in PtXTop(T). First consider the following diagram given by the algebraic
exponentiation in V(T):

U( f )∗ΦU( f )[U(g), U(t)]
uu

εd1
(U(g),U(t))

uukkkkkkkkkkkkkkkk φ
// //

{{wwwwwwwwwwwwwwwwwwwwwww

ΦU( f )[U(g), U(t)]
ooσoo

γ

xxrrrrrrrrrrrrrrrrrrrrrrrrrrrr

U(V)

U(g)
��

U(X)

U(t)

OO

U( f )
// //

β

;;wwwwwwwwwwwwwwwwwwwwwww
U(Y)oo

U(s)
oo

τ

88rrrrrrrrrrrrrrrrrrrrrrrrrrrr

and then the following one in Top(T) where V ′ is the algebra U( f )∗ΦU( f )[U(g),

U(t)] equipped with the topology induced by the one on V:

V ′ww
ε̄

wwppppppppppp φ̄
// //

����
��

��
��

��
��

��
��

W
ooσ̄oo

γ̄

��

V
g
��

X

t

OO

f
// //

β̄

@@

Yoo
s

oo

τ̄

??

The map t in Top(T) and the factorization β in V(T) produce the factorization
β̄. Then put the quotient topology on ΦU( f )[U(g), U(t)] to produce the object

W in Top(T). Then we get the dotted maps above the quadrangle pullback of
our initial diagram. The previous lemma asserts that it is a pullback. From this
situation, it is straightforward to check that the split epimorphism (γ̄, τ̄) has the
desired universal property with respect to the change of base functor f ∗.
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Accordingly the categories TopGp and TopCRg of topological groups and
topological commutative rings are fiberwise algebraically cartesian closed.

2.2 Abelian split extension

A split epimorphism ( f , s) : X ⇄ Y is said to be abelian in a Mal’cev category C

when it is an abelian object in the fibre PtYC. Since any right adjoint functor is left
exact, any algebraically exponentiable map h : Y → Y′ is such that the restriction
of Φh : PtYC → PtY′C to the abelian objects determines a functor:

Φh : AbPtYC → AbPtY′C

In particular, when C is pointed and fiberwise algebraically cartesian closed,
when ( f , s) is abelian, so is the object ΦY[ f , s]. Recall that, when C is the cate-
gory Gp of groups, a split epimorphism is abelian if and only if it has an abelian
kernel A:

1 // A // // Y ⋉ψ A π // // Y //
oo

σ
oo 1

The subgroup ΦY[π, σ] of the invariant elements of A under the action ψ was de-
noted AY in [20] and shown to be the 0-dimensional cohomology group H0

ψ(Y, A).

This was used in [15] to introduce in the Mal’cev context a notion of internal co-
homology.

2.3 Centralizer of equivalence relations

In the Mal’cev context, there exists also an intrinsic notion of commutation at the
level of equivalence relations, see [12] and also [25] and [23]. First, the subobjects
of the object (p0, s0) : X × X ⇄ X in the fibre PtXC coincide exactly with the
reflexive relations on X, hence, in the Mal’cev context, with the equivalence rela-
tions on X. Recall that two equivalence relations R and S on an object X commute
in C if and only if the two following subobjects in the fibre PtXC do commute in
PtXC, see Proposition 2.6.12 in [4]:

S

d0

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

(d0,d1)

wwnnnnnnnnnnnnnnnnnnnn

R //
(d1,d0) //

d1

""E
EE

EE
EE

EE
EE

EE
E

X× X

p0

��
X

s0

bbEEEEEEEEEEEEEE

s0

OO s0

>>~~~~~~~~~~~~~~~~~~~~~~~~~~~~

the choice of this presentation (Rop rather than R) being made for technical rea-
sons related to the classical presentation of the axioms of a Mal’cev operation. So,
in the fiberwise algebraically cartesian closed context, the existence of centralizers
can be immediately transfered to the level of equivalence relations.
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Proposition 2.8. Suppose C is a Mal’cev category which is fiberwise algebraically carte-
sian closed. Let R be any equivalence relation on the object X. Then the centralizer Z(R)
of the equivalence relation R does exist in C.

Proof. Since the category C is fiberwise algebraically cartesian closed, the unital
fibre PtXC has centralizers of subobjects, and according to the previous recall
about equivalence relations and their commutations, the centralizer of R in C is
nothing but the centralizer of the subobject R ֌ X× X in the fibre PtXC (see the
diagram above). According to Proposition 1.2, it is given by Φd1

[pR, (1, d0)].

So, when the category C is exact, Mal’cev and fiberwise algebraically carte-
sian closed, the existence of centralizers makes the Schreier- Mac Lane extensions
classification theorem hold, see [11].

3 Algebraic exponentiable morphisms

3.1 Stability under pullback along split epimorphisms

We show that the algebraically exponentiable morphisms are stable under pull-
back along split epimorphisms. It is a consequence of the following very general
lemma:

Lemma 3.1. Let E be a category with pullbacks and U : E → F a functor which admits
a right adjoint G. Then, for any object X ∈ E, the induced functor:

UX : PtXE // PtUXF

has a right adjoint GX. When moreover the category F has pullbacks, any map f : X →
X′ makes the following leftward diagram commute up to a natural isomorphism:

PtX′E

f ∗

��

UX′

// PtUX′F
GX′oo

U f ∗

��
PtXE

UX //
PtUXF

GX

oo

When, in addition, U is left exact the previous diagram also commutes at the level of
dotted arrows.

Proof. Let (τ, σ) : T ⇄ UX be an object of PtUXF. It is straightforward to check
that GX(τ, σ) is given by the following pullback in E, where ηX is the unit of the
adjunction:

•

��

// GT

Gτ

��
X ηX

//

OO

GUX

Gσ

OO
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The second point is a consequence of the naturality of the unit η and of the fact
that the right adjoint functor G preserves pullbacks. From that, the last point is
straightforward.

Proposition 3.2. Let C be a finitely complete category. Then the algebraically exponen-
tiable morphisms in C are stable under pullback along split epimorphisms. Moreover any
pullback in the category C with y algebraically exponentiable:

X

f

��

x // X′

f ′

��
Y y

//

s

OO

Y′

s′

OO

satisfies the following Beck-Chevalley conditions, i.e. makes the following diagrams com-
mute up to natural isomorphisms:

PtXC
Φx // PtX′C
x∗

oo PtXC
Φx //

s∗

��

PtX′C

s′∗

��

x∗
oo

PtYC

f ∗

OO

Φy

// PtY′C

y∗
oo

f ′∗

OO

PtYC
Φy

// PtY′C

y∗
oo

Proof. Apply the previous lemma to the functor y∗ : PtY′C → PtYC and notice
that we have Pt( f ′,s′)(PtY′C) = PtX′C and Pt( f ,s)(PtYC) = PtXC. Then consider
the following morphisms in PtY′C:

X′

f ′   A
AA

AA
AA

AA

f ′
// Y′

1

~~~~
~~

~~
~~

~
Y′

1
  @

@@
@@

@@
@@

s′ // X′

f ′

~~}}
}}

}}
}}

}

Y′
1

>>~~~~~~~~~

s′
``AAAAAAAAA

Y′
s′

>>}}}}}}}}}

1

``@@@@@@@@@

Then we get immediately the following:

Corollary 3.3. When a split epimorphism ( f , s) : X ⇄ Y is algebraically exponentiable,
the induced endofunctor f ∗.Φ f on PtXC is (up to a natural isomorphism) equal to the
endofunctor Φp0 .p∗1 , where p0 and p1 are given by the kernel equivalence relation:

R[ f ]
p1

//

p0 //
Xs0

oo
f

// // Y

This endofunctor Φp0 .p∗1 on PtXC inherits the left exact comonad structure induced by
the adjoint pair ( f ∗, Φ f ).
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3.2 The efficiently regular context

A regular category C is said to be efficiently regular, when, in addition, any equiv-
alence relation S, on an object X, which is included in an effective equivalence

relation S
m
֌ R[ f ] by an effective monomorphism m, is itself effective. The main

examples are the categories TopGp and TopAb of topological groups and abelian
groups. Any exact category is efficiently regular. When the category C is more-
over efficiently regular, we can extend algebraic exponentiability from split epi-
morphisms to regular epimorphisms and have a kind of converse to Proposition
3.2. For that, let us begin by the following:

Proposition 3.4. Let C be regular. Consider an internal discrete cofibration: f
1

: X1 →

Y1 between two groupoids:

R[d0]

d1
2

//
d1

1

//
d1

0 //

R( f1)

��

X1

d1

//

d0 //

f1

��

X0

f0

��

s0

oo

R[d0]

d1
2

//
d1

1

//
d1

0 //
Y1

d1

//

d0 //
Y0s0

oo

Suppose the morphism f0 is algebraically exponentiable. Then the functor f ∗
1

: SCo fY1
→

SCo fX1
from the split discrete cofibrations above Y1 to the split discrete cofibrations above

X1 defined by pulling back along the functor f
1

admits a right adjoint which is con-

structed levelwise.

Proof. According to Proposition 3.2, since the vertical square with the d0 is a pull-
back (the functor f

1
being a discrete cofibration), the maps f1 and R( f1) are also

algebraically exponentiable. Let (α1, β
1
) : T1 ⇄ X1 be a split discrete fibra-

tion above X1. We are going to show that the split epimorphisms Φ f0
(α0, β0) =

(ᾱ0, β̄0) : W0 ⇄ Y0 and Φ f1
(α1, β1) = (ᾱ1, β̄1) : W1 ⇄ Y1 are actually underlying

a discrete cofibration above Y1, which will determine the construction of the lev-
elwise right adjoint in question. For that, let us consider the following diagram:

T1 //
d0 //

α1

ttiiiiiiiiiiiiiiii T0

α0ttiiiiiiiiiiiiiiii
oo

X1
d1

//
d0//

f1

��

X0

f0

��

oo

W1 //
d0 //

ᾱ1

ttiiiiiiiiiiiiiiii W0

ᾱ0ttiiiiiiiiiiiiiiii
oo

Y1
d1

//
d0//

Y0
oo
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Since the square with the d0 in the statement is a pullback underlying a pullback
of split epimorphisms, then, according to Proposition 3.2, the Beck-Chevalley
condition holds for this square. Consequently the lower quadrangle with d0

above is underlying a pullback of split epimorphisms. But a discrete cofibra-
tion between groupoids is also a discrete fibration and the square with the d1

in the statement is also a pullback. Moreover, the Beck-Chevalley condition not
only says that the co-free object are preserved by pullbacks, but also the univer-
sal natural transformation f ∗i .Φ fi

⇒ 1PtYi
C, i ∈ {0, 1}. This determines an arrow

d1 : W1 → Y1 which makes also the lower quadrangle with d1 a pullback, and
produces a reflexive graph W1 ⇒ W0. The same Beck-Chevalley condition makes
this reflexive graph underlying a groupoid structure and α1 a discrete fibration
which is, by construction, a levelwise cofree structure with respect to the pulling
back along the functor f

1
.

Whence the following “converse” to Proposition 3.2:

Proposition 3.5. Let C be an efficiently regular. Consider the following pullback with f ′

a regular epimorphism:

X
f

// //

x

��

Y

y

��
X′

f ′
// // Y′

Then, when the morphism x is algebraically exponentiable, so is the morphism y, and we
have the Beck-Chevalley commutation:

PtX

Φx

��

PtY
f ∗

oo

Φy

��
PtX′ PtY′

f ′∗
oo

Proof. Complete the previous pullback by the following diagram:

R2[ f ]

p1
2

//
p1

1

//
p1

0 //

R2(x)

��

R[ f ]
p1

//

p0 //

R(x)

��

X

x

��

s0

oo
f

// // Y

y

��
R2[ f ′]

p1
2

//
p1

1

//
p1

0 //
R[ f ′]

p1

//

p0 //
X′s0

oo
f ′

// // Y′
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which determines a discrete cofibration R1(x) : R1[ f ] → R1[ f
′] between the left

hand side induced horizontal groupoids. According to the previous proposition
the change of base functor R1(x)

∗ : SCo fR1[ f ′] → SCo fR1[ f ] admits a right adjoint.
Now consider the following commutative square:

PtY′C
y∗

//

FY′

��

PtYC

FY

��
SCo fR1[ f ′]

R1(x)
∗

// SCo fR1[ f ]

where the functors FY and FY′ are the canonical straightforward functors which
are fully faithful, since f and f ′ are regular epimorphisms. They are also essen-
tially surjective, since, in an efficiently regular category, any equivalence fibration
which is discretely cofibered above an effective equivalence relation is itself effec-
tive. Accordingly the functors FY and FY′ are equivalences of categories, and the
change of base functor y∗ admits a right adjoint. This construction of the right
adjoint to y∗ imposes the Beck-Chevalley condition.

Corollary 3.6. Let C be efficiently regular and f : X ։ Y a regular epimorphism such
that the map p0 : R[ f ] → X is algebraically exponentiable, then the map f is itself
algebraically exponentiable and we have: f ∗.Φ f ≃ Φp0 .p∗1 .

When C is efficiently regular and fiberwise algebraically cartesian closed, then any
regular epimorphism f : X ։ Y is algebraically exponentiable.

Proof. Consider the following pullback:

R[ f ]
p1 // //

p0

��

x

f

��
X

f
// // Y

and apply the previous proposition.

4 Protomodular context

We shall now work in the stronger context of a protomodular category C [7],
which means that any (left exact) change of base functor: h∗ : PtYC → PtXC is
conservative. We get immediately the following:

Proposition 4.1. Suppose C is protomodular, then any change of base functor h∗ along
an algebraic exponentiable map h : X → Y reflects commuting pairs.
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Proof. In the protomodular context, any change of base functor being left exact
and conservative, any algebraic exponentiable map h : X → Y makes this functor
h∗ immediately comonadic [16]. Accordingly, the assertion in question is a direct
consequence of Proposition 1.6.

4.1 Lacc pointed protomodular categories

On the one hand, in [5] and [6], the notion of action representative category was
introduced, i.e. a pointed protomodular category C in which each object X admits
a universal split extension with kernel X (=split extension classifier):

X // γ // D1(X)
d0 // // D(X)oo
s0

oo

in the sense that any other split extension with kernel X determines a unique
morphism χ : G → D(X) such that the following diagram commutes and the
right hand side squares are pullbacks:

X // k //

1X

��

H

χ1

��

f
// // G

χ

��

oo
s

oo

X //
γ

// D1(X)
d0 // // D(X)oo
s0

oo

On the other hand, in [16], the second author showed that when the category
C is pointed protomodular, it is locally algebraically cartesian closed if and only if the
change of base functors along the initial maps have a right adjoint.

It is worth translating in detail what this means, and, rather surprisingly, we
shall observe that this means a kind of extended dual of the action representa-
tivity. So let C be a locally algebraically cartesian closed pointed protomodular
category. Let Y be an object of C and αY : 1 ֌ Y its associated initial map. We
shall denote by ßY the right adjoint of α∗Y. Starting with any object T in C, the
object ßY(T) is a split epimorphism above Y which is equipped with a (universal)
map from its kernel towards T. In other words it produces a universal split exact
sequence we shall denote this way:

Ł(Y, T) //
κY

T //

lY
T

��

Y ⋉ Ł(Y, T)
ψY

T // // Yoo
ζY

T

oo

T

which from any given similar situation, i.e. a split exact sequence with codomain
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Y and a comparison map h:

K // k //

h

))

h̄
��

X
f

// //

Y⋉h̄
��

Yoo
s

oo

Ł(Y, T) //
κY

T //

lY
T
��

Y ⋉ Ł(Y, T)
ψY

T // // Yoo
ζY

T

oo

T

produces a unique dotted factorization h̄. In particular the following upper canon-
ical split exact sequence determines a factorization which will be denoted by §Y

T :

T // ιT //

1T

))

§Y
T
��

Y× T
pY // //

Y⋉§Y
T
��

Yoo
ιY

oo

Ł(Y, T) //
κY

T //

lY
T
��

Y ⋉ Ł(Y, T)
ψY

T // // Yoo
ζY

T

oo

T

Starting from the more specific one with the diagonal s0 as section, we have also
the following factorization:

Y // ι1 //

1Y

))

̟Y
��

Y×Y
p0 // //

Y⋉̟Y
��

Yoo
s0

oo

Ł(Y, Y) //
κY

Y //

lY
Y
��

Y ⋉ Ł(Y, Y)
ψY

Y // // Yoo
ζY

Y

oo

Y

which we shall analyse below more precisely in the category Gp.

4.2 The category Gp of groups

We shall explore in detail here the very unusual constructions involved in the
local exponentiation property of the category Gp. In this case, we have Ł(Y, T) =
F (Y, T), namely Ł(Y, T) is the set of functions from the underlying set of the
group Y to the underlying set of the group T equipped with the group structure
determined by the group structure on T. The action of the group Y on this group
F (Y, T) associates with the pair (y, φ) the function:

φ ◦ τy : Y → T ; z 7→ φ(z.y)

where τy is the translation on the right in the group Y (in other words we get:
(yφ)(z) = φ(z.y)). So, in the category Gp, the parallelism between cartesian
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closedness and algebraic cartesian closedness is not only simply formal, but a
kind of strong memory of the underlying exponentiation in Set.

The homomorphism lY
T : F (Y, T)→ T is the evaluation at the unit element of

Y. Given any split extension with a map h:

K // //

h
��

Y ⋉α K // // Yoooo

T

the group homomorphism h̄ : K → F (Y, T) is then defined by h̄(k)(y) = h(yk).
In particular we get the group homomorphism §Y

T : T → Ł(Y, T) defined by

§Y
T(t)(y) = t, in other words §Y

T(t) is the function constant on t. Also, we get

̟Y : Y → Ł(Y, Y) defined by ̟Y(y)(z) = z.y.z−1 which is a very awkward way
to integrate the “inner action” of Y inside the category Gp.

If we start from:

K // //

h
��

X
f

// // Yoo
s

oo

T

we get: (Y ⋉ h̄)(x) = ( f (x), h̄(x.s ◦ f (x−1))).

4.3 Consequences of local algebraic cartesian closedness

In this section, we shall investigate two important consequences of local alge-
braic cartesian closedness, namely strong protomodularity and peri-abelianness.
These well identified properties in the category Gp now clearly appear to have
originated from locally algebraic cartesian closedness.

Normal functor and strong protomodularity

Recall that a left exact functor U : C → D is called normal when it is con-
servative and it reflects the normal monomorphisms in the sense of [4]. A pro-
tomodular category C is said to be strongly protomodular [4] when any change of
base functor h∗ : PtYC → PtXC with respect to the fibration of points is not
only conservative but also normal. The categories Gp of groups and R-Lie of Lie
R-algebras, for any commmutative ring R, are strongly protomodular. In this sec-
tion we shall show that, when a protomodular category C is locally algebraically
cartesian closed, it is necessarily strongly protomodular. Let us begin by the fol-
lowing observation:

Lemma 4.2. Let U : C→ D be a left exact conservative functor. Suppose moreover that
D is protomodular. If it has a right adjoint G, then U is normal.

Proof. The right adjoint G is left exact and consequently preserves the monomor-
phims and the equivalence relations. Now let m : X′ ֌ X be a monomorphism
in C such that the monomorphism U(m) is normal to the equivalence relation R
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in D, namely such that we have a discrete fibration in D:

U(X′)×U(X′) //
µ

//

p1

��

p0

��

R

d1

��

d0

��
U(X′) //

U(m)
//

OO

U(X)

OO

Since U(X′)×U(X′) = U(X′ × X′), by adjunction we get a map µ̄ in C such that
ǫR.U(µ̄) = µ:

X′ × X′ //
β

//
//

µ̄
//

p1

��

p0

��

T
η̄

//

d1

��

d0

��

G(R)

G(d1)

��

G(d0)

��

X′ //
m

//

OO

X ηX

//

OO

G.U(X)

OO

which determines a morphism between the equivalence relations ∇X′ and G(R).
We shall set T = η−1

X (G(R)) and denote by β the induced factorization. We are
going to show that m is normal to the equivalence relation T and that U(T) ≃ R.
For that, consider the following diagram in D:

U(X′)×U(X′) //
U(β)

//
//

U(µ̄)
//

p1

��

p0

��

µ

""
U(T)

U(η̄)
//

U(d1)

��

U(d0)

��

U.G(R) ǫR

//

����

R

d1

��

d0

��
U(X′) //

U(m)
//

OO

U(X)
U(ηX)

//

OO

1U(X)

>>
U.G.U(X)

OO

ǫU(X)

// U(X)

OO

The map γ = ǫR.U(η̄) produces an inclusion U(T) ⊂ R of equivalence relations.
Since the whole diagram is a discrete fibration and γ is a monomorphism, then
the left hand side part of the diagram is a discrete fibration. Accordingly U(m)
is normal to the equivalence relation U(T). Now, when D is protomodular, a
monomorphism is normal to at most one equivalence relation, and γ is necessar-
ily an isomorphism. On the other hand, since U is left exact and conservative it
reflects the pullbacks, so that m is normal to T in C.

Theorem 4.3. Let C be a protomodular category which is locally algebraically cartesian
closed. Then C is strongly protomodular.

Proof. Since C is protomodular and locally algebraically cartesian closed, so is
any fibre PtYC. Moreover any change of base functor:

h∗ : PtYC → PtXC
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is left exact and conservative since C is protomodular; it has a right adjoint since
C is locally algebraically cartesian closed. By the previous lemma it is normal,
and C is strongly protomodular.

Now suppose, in addition, that C is pointed. Being pointed and strongly pro-
tomodular, it is such that two equivalence relations (R, S) centralize if and only
if their associated normal subobjects (IR, IS) commute, see [9]; in other words the
category C is such that we have the so-called equation “Smith=Huq”.

The assertion of the theorem above was mentioned by G. Janelidze during the
CT 2010 conference in Genova, but in the much stricter context of semi-abelian
categories, as an immediate consequence of Proposition 9 in [3], which deals with
preservation of colimits and cannot be used in our context.

Peri-abelian categories

When C is a regular strongly unital category with finite colimits, the inclusion
functor AbC ֌ C from the full subcategory of abelian objects in C admits a left
adjoint which is given by the cokernel of the diagonal s0 : X ֌ X × X, or by the
coequalizer of the pair (ι0, ι1); X ⇒ X × X. Recall now the following [10]:

Definition 4.4. We shall say that a finitely cocomplete, regular Mal’cev category D is
peri-abelian when the change of base functor along any map h : Y → Y′ with respect to
the fibration of points preserves the associated abelian object.

If (AbPt)D denotes the subcategory of the abelian objects in the fibres of the
fibration of points, it is equivalent to saying that the reg-epi reflection A() is carte-
sian, i.e. it preserves the cartesian maps:

(AbPt)D

  @
@@

@@
@@

@@
@@

// // PtD

¶D

����
��

��
��

��

A()

��

D

The categories Gp of groups, Rg of non unitary commutative rings and K-Lie of
Lie K-algebras are peri-abelian. The previous definition was introduced in [10] as
a tool to produce some cohomology isomorphisms which hold in the Eilenberg-
Mac Lane cohomology of groups and in the cohomology of Lie K-algebras when
K is a field.

Theorem 4.5. Let C be a finitely cocomplete regular Mal’cev category which is locally
algebraically cartesian closed. Then C is peri-abelian.

Proof. This is a straightforward consequence of the fact that the change of base-
functors h∗, having a right adjoint, preserve cokernels or coequalizers.
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4.4 The non-pointed protomodular case

We shall suppose here that the category is still protomodular, but no longer pointed.
We shall show that the algebraic exponentiability of any split monomorphism im-
plies the algebraic exponentiability of any of its retractions, and from that, in the
efficiently regular context, of a large class of morphisms. This will be the conse-
quence of a very general result:

Proposition 4.6. Let C be a protomodular category. For morphisms f : X → Y and
g : Y → Z in C, if g. f and f are algebraically exponentiable, then g is algebraically
exponentiable.

Proof. Recall that for any morphism p : E → B in C, p∗ preserves all limits and
reflects isomorphisms. Therefore if p∗ has a right adjoint, then by the dual of the
Weak Tripleability Theorem [21], p∗ is comonadic. The result follows from the
well-known adjoint functor lifting theorem (see e.g. [2]) applied to the diagram of
functors:

PtZC
g∗

//

(g. f )∗

##F
FFFFFFFFFFFFF PtYC

f ∗

{{xxxxxxxxxxxxxx

PtXC

Φ f

;;xxxxxxxxxxxxxx
Φg f

ccFFFFFFFFFFFFFF

in which Φg f and Φ f are the right adjoints to the functors (g. f )∗ and f ∗ respec-
tively.

Whence the following theorem:

Theorem 4.7. Let C be a protomodular category such that any split monomorphism s is
algebraically exponentiable. Then any of its retractions f is algebraically exponentiable.
If, in addition, C is efficiently regular, any map h : X → Y is algebraically exponentiable
provided that its domain X has a global support.

Proof. The first point is a straightforward consequence of the previous proposi-
tion. Moreover, given any map h in C, we get h = pY.(1X, h), where the map
(1X , h) is a monomorphism split by pX, and consequently the change of base
functor along it admits a right adjoint by assumption. When C is regular and X
has global support, the map pY is a regular epimorphism. Now when C is ef-
ficiently regular, the change of base functor along pY admits a right adjoint by
Proposition 3.6.

4.5 Back to the pointed case

The previous construction of the right adjoint obviously applies in the pointed
case and gives an alternative description of the centralizers. First, let ( f , s) : X ⇄
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Y be any split epimorphism; we get a classifying map γ( f ,s):

K // k //

1K

((

γ( f ,s)

��

X
f

// //

Y⋉γ( f ,s)

��

Yoo
s

oo

Ł(Y, K) //
κY

K

//

lY
K

��

Y ⋉ Ł(Y, K)
ψY

K // // Yoo
ζY

K

oo

K

Then ΦY[ f , s] is given by the following equalizer:

ΦY[ f , s] // // K
§Y

K //

γ( f ,s)

// Ł(Y, K)

In particular the centralizer of a subobject u : Y ֌ X is given by the following
equalizer:

Z[u] // ζu // X
§Y

X //

γ(pY,(1,u))

// Ł(Y, X)

Let us make explicit these constructions in the category Gp. First we have:
γ( f ,s)(k)(y) = s(y).k.s(y−1), and consequently: ΦY[ f , s] = {k ∈ K/∀y ∈ Y,

k = s(y).k.s(y−1)}, and thus, of course, Z[u] = {x ∈ X/∀y ∈ Y, x = y.x.y−1}.
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