
Rational involutive automorphisms related with

standard representations of SL(2, R)
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Abstract

Standard irreducible representations of the group SL(2, R) on coefficients
of homogeneous polynomials in two variables are studied in a new context.
It is proved that any standard representation of SL(2, R) on Rn+1 induces an
involutive rational mapping of an open dense subset of Rn+1 onto itself. Ex-
amples in low dimensions are presented. We also construct formal involutive
rational mappings with “arbitrary complexity”.

1 Introduction

In [2], the first author studied an irreducible representation of SL(2, R) on the
space of symmetric equiaffine connections with constant Christoffel symbols on
R2. During the study of this representation and the attempts to find all invariants,
a remarkable rational involutive map of an open dense subset of R6 onto itself
appeared.

Involutive transformations play an important role in integrable dynamical
systems, see e.g. [1], [3], [4], [7] and the references inside. Unfortunately, all
the works known to the authors investigate in general, or apply to dynamics, in-
volutive automorphisms of the type R2 → R2 or involutive transformations of
the real projective plane. In [6], involutive mappings appear as transformations
of differential equations. Probably, no systematic studies in higher dimensions
are known.
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It is well known that the group SL(2, R) admits an irreducible representation
in any dimension, namely the representation on homogeneous polynomials of
degree n in two variables (“binary forms of degree n”). In the present paper, these
representations are studied. It is proved that each such representation induces an
involutive mapping of an open dense subset of Rn+1 onto itself. In dimensions 3,
4 and 5, corresponding involutive mappings are constructed explicitly.

2 Main result

We will consider spaces Pn of homogeneous polynomials of degree n in two vari-
ables (binary forms) denoted as

a0xn + a1xn−1y + · · ·+ anyn,

and the corresponding spaces Rn+1[a0, a1, . . . , an] of their coefficients. This nota-
tion is essential for the further considerations. Let the subgroup

g1(t) =

(
1 t

0 1

)

of the group SL(2, R) act in the standard way on Pn for each n ≥ 2. This deter-
mines the action of this group on the space Rn+1[a0, a1, . . . , an] of coefficients. The
induced Killing vector field is of the form

Zn = n a0
∂

∂a1
+ (n − 1) a1

∂

∂a2
+ · · ·+ 2 an−2

∂

∂an−1
+ an−1

∂

∂an
(1)

(cf. [5], Theorem 3.40, for instance). Let us define the weight of a monomial in the
variables a0, . . . , an as the sum of all indices contained in this monomial (counting
also the multiplicities). On the ground of this we define a polynomial of weight k.
Let us emphasize that the notion “weight” will be used in this particular meaning
everywhere and it should not be confused with the standard meaning of “weight”
as used in the representation theory. It is well known fact that the space of all
invariants of the operator (1) admits a polynomial Hilbert basis.

Lemma 1. Let J be a polynomial invariant of the operator (1) which is of the form p1 J1 +
· · ·+ pk Jk, where J1, . . . , Jk are homogeneous polynomials of mutually distinct constant
weights or of mutually distinct degrees. Then J1, . . . , Jk are invariants, too.

Proof. The operator Zn has the property that

Zn(ak) = (n − k + 1) ak−1, k = 1, . . . , n.

Hence we see easily, that Zn converts each polynomial of the constant weight s
into a polynomial of the constant weight s− 1 and each homogeneous polynomial
of degree d again into a homogeneous polynomial of degree d. In particular,
p1Zn(J1) + · · ·+ pkZn(Jk) = 0 and hence Zn(J1) = · · · = Zn(Jk) = 0.
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Lemma 2. For each fixed n, there is a substitution of the form bi = qiai, qi ∈ Q, i =
0, 1, . . . , n, such that the operator Zn takes on the form

Z′
n = b0

∂

∂b1
+ b1

∂

∂b2
+ · · ·+ bn−2

∂

∂bn−1
+ bn−1

∂

∂bn
. (2)

Proof. This is a routine computation. For example,

q0 = 1, q1 =
1

n
, q2 =

1

n(n − 1)
, q3 =

1

n(n − 1)(n − 2)
,

and so on.

The following Lemma is a basic one:

Lemma 3. The space of all invariants with respect to the operator Z′
n

on Rn+1[b0, b1, . . . , bn] admits a polynomial Hilbert basis w0, w2, . . . , wn, where w0 =
b0 is of weight zero, and, for each k = 2, . . . , n, wk is a homogeneous polynomial of
degree k with integral coefficients and of weight k in the variables b0, b1, . . . , bk. Its only

summand involving the variable bk is of the form pb0
k−1bk for some integer p.

Proof. We have w0 = b0 and for arbitrary k ≥ 2 we define

wk = b1
k −

k−1

∑
i=1

ckib0
ib1

k−1−ibi+1, cki ∈ R, (3)

From the condition Z′
n(wk) = 0 we obtain a simple system of equations for pa-

rameters cki with the solution ck1 = k and cki = −ck,i−1(k− i) for 2 ≤ i ≤ k− 1.

Example. Let us consider the operator Z′
6. According to the above formula we

obtain invariants

w0 = b0,
w2 = b1

2 − 2 b0b2,
w3 = b1

3 − 3 b0b1b2 + 3 b0
2b3,

w4 = b1
4 − 4 b0b1

2b2 + 8 b0
2b1b3 − 8 b0

3b4,
w5 = b1

5 − 5 b0b1
3b2 + 15 b0

2b1
2b3 − 30 b0

3b1b4 + 30 b0
4b5,

w6 = b1
6 − 6 b0b1

4b2 + 24 b0
2b1

3b3 − 72 b0
3b1

2b4 + 144 b0
4b1b5 − 144 b0

5b6.

Let us define now, for the sake of completeness, the quantity w1 as w1 = b1.
Herewith we obtain a system of polynomials w0, w1, w2, . . . , wn, where, of course,
w1 is not an invariant. Then we have the following

Lemma 4. The variables b0, b1, . . . , bn can be expressed as (proper) rational functions of
the quantities w0, w1, w2, . . . , wn. It holds w0 = b0, w1 = b1 and for each integer k ≥ 2,
we have

bk =
w1

k + (−1)k−1(k − 1)wk + Qk(w0, . . . , wk−1)

k! w0
k−1

, (4)

where the term Qk(w0, . . . , wk−1) is a polynomial in its variables which can involve only
the powers w1

i for i ≤ k − 2. Each numerator in the formula (4) has constant weight k
with respect to variables wi.
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Proof. For k = 2, we have a special formula w2 = b1
2 − 2b0b2, from which

b2 =
b1

2 − w2

2 b0
=

w1
2 − w2

2 w0
.

Thus, Q2(w0, w1) = 0. Now let us fix a number n > 2 and suppose that (4) holds
for k = 2, . . . , n − 1. Then we get

wn = b1
n −

n−1

∑
i=1

cnib0
ib1

n−1−ibi+1 =

= b1
n −

n−2

∑
i=1

cnib0
ib1

n−1−ibi+1 − cn,n−1b0
n−1bn.

Hence

bn =
−wn + b1

n − ∑
n−2
i=1 cnib0

ib1
n−1−ibi+1

cn,n−1b0
n−1

. (5)

Now, we have b0 = w0, b1 = w1 and for b2, . . . , bn−1, we substitute from the
formulas (4). This means that, we can put

bi+1 =
w1

i+1 + (−1)iiwi+1 + Qi+1(w0, . . . , wi)

(i + 1)! w0
i

for i = 1, . . . , n − 2, where Qi+1(w0, . . . , wi) is a polynomial which can involve
only the powers of w1 until the degree i − 1. The formula (5) is now in the form

bn =
−wn + w1

n − ∑
n−2
i=1

cni
(i+1)!

w1
n−1−i

(
w1

i+1 + (−1)iiwi+1 + Qi+1(w0, . . . , wi)
)

cn,n−1w0
n−1

.

Now we multiply the numerator and the denominator by n− 1. In the denomina-
tor, we obtain (n − 1)cn,n−1w0

n−1 = (−1)nn! w0
n−1. A small technical calculation

shows that (n − 1) cni
(i+1)!

= (−1)i+1( n
i+1). In particular, these coefficients are inte-

gers. Another combinatorial calculation shows that the coefficient by w1
n is

(n − 1)−
n−2

∑
i=1

(n − 1)
cni

(i + 1)!
= (n − 1)−

n−2

∑
i=1

(−1)i+1

(
n

i + 1

)
= (−1)n.

Hence, after simplifying the signs, we can write

bn =
w1

n + (−1)n−1(n − 1)wn + Qn(w0, . . . , wn−1)

n! w0
n−1

,

where Qn(w0, . . . , wn−1) is a polynomial which can involve only the powers of w1

until the degree n − 2. The last statement follows easily from Lemma 3.

It is easy to see that Lemma 3 is still valid for the original operator Zn from (1) and
for the original variables ai, because it is obviously invariant with respect to the
transformation of variables from Lemma 2. In particular, this transformation puts
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every polynomial P(b0, b1, . . . , bn) with integral coefficients into a polynomial
P′(a0, a1, . . . , an) with rational coefficients. The polynomials wk(b0, b1, . . . , bn), k =
0, 2, . . . , n change into new polynomials vk(a0, a1, . . . , an), which form a Hilbert
basis of invariants for the original operator Zn. If we multiply all of them by
proper integers, all invariants become those with integral coefficients. We should
stress here that the sequence of invariants wi does not depend on the dimension
n. However, the substitution from Lemma 2 is different for different n. Hence,
coefficients by monomials in polynomials vi depend on the dimension n. See the
examples in the next Section.

For the invariants vi, we cannot provide an explicit analogue of the formula (4),
because of the complicated coefficients. But, we easily get the following

Lemma 5. The expressions of ak through vi are rational mappings with certain powers
of v0 in the denominators. Each numerator in the formula for ak has constant weight k
with respect to variables vi.

Let now the subgroup

g2(t) =

(
1 0

t 1

)

of SL(2, R) act in a standard way on the space Rn+1[a0, a1, . . . , an] of coefficients.
The induced Killing vector field is of the form

Yn = a1
∂

∂a0
+ 2 a2

∂

∂a1
+ · · ·+ (n − 1) an−1

∂

∂an−2
+ n an

∂

∂an−1
. (6)

We can see that the operator (1) is transformed into the operator (6) via the invo-
lutive permutation p : (a0, a1, . . . , an) 7→ (an, an−1, . . . , a1, a0). The corresponding
invariants v0 ◦ p, v2 ◦ p, . . . , vn ◦ p of (6) will be denoted as u0, u2, . . . , un. These
invariants are new functions of a0, a1, . . . , an and they form a Hilbert basis for the
polynomial invariants with respect to the action of g2(t). For the completeness,
we put u1 = an−1.

Lemma 6. The invariants u0, u2 . . . , un are also homogeneous polynomials of constant
weights.

Proof. Let vk be an invariant in Pn which is homogeneous of degree d and weight
s. Because the permutation p changes each variable ai into the variable an−i, the
term uk = vk ◦ p is again homogeneous of degree d and it has constant weight
nd − s.

Now we can formulate our basic result:

Theorem 7. To each standard representation of the group SL(2, R) on the space Rn+1

of parameters we can attach at least one involutive rational mapping of the set Rn+1 \ D
onto itself, where D is a subset of measure zero.
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Proof. Express all variables a0, a1, . . . , an through the quantities v0, v1, . . . , vn as
in Lemma 5 and substitute into the functions u0, u1, . . . , un. We see easily that
the corresponding expressions uk = Rk(v0, v1, . . . , vn), k = 0, 1, . . . , n, are ratio-
nal functions whose denominators are all just powers of the variable v0 = a0.
Using the involutive permutation p : (a0, a1, . . . , an) 7→ (an, an−1, . . . , a1, a0), we
see that, conversely, the variables v0, v1, . . . , vn can be expressed through the vari-
ables u0, u1, . . . , un exactly in the same form, i.e. vk = Rk(u0, u1, . . . , un). In the
denominators of Rk(u0, u1, . . . , un), there are just powers of the variable u0 = an.
It is obvious that both mappings are involutive and mutually inverse. To ensure
the correctness, we have to consider our maps just on the set Rn+1 \ D, where D
is the union of the hyperplanes defined by v0 = 0 and vn = 0.

Lemma 8. The polynomials in the numerators of components uk = Rk(v0, . . . , vn) have
constant weights with respect to variables vi.

Proof. Each ak has weight k with respect to variables vi and each ul has weight
nd − s with respect to variables ak, according to the proof of Lemma 6. After the
substitution, the weight remains nd − s with respect to variables vi.

Let us also remark that we can reduce the degree of polynomials wi, or vi, respec-
tively, in the Hilbert basis. For example, we obtain

w̃4 = (w2
2 − w4)/4 w0

2 =
= 2 b0b4 − 2 b1b3 + b2

2,
w̃5 = (w2w3 − w5)/6 w0

2 =
= −5 b0

2b5 + 5 b0b1b4 − b0b2b3 − 2 b1
2b3 + b1b2

2,
w̃61 = ((w3

2 − w6)/w0
2 − 9w2w̃4)/9 w0 =

= 16 b0
2b6 − 16 b0b1b5 + 4 b0b2b4 + b0b3

2 + 6 b1
2b4 − 6 b1b2b3 + 2 b2

3,
w̃62 = ((w2

3 − w6)/4 w0
2 − 3w2w̃4)/4 w0 =

= 9 b0
2b6 − 9 b0b1b5 + 3 b0b2b4 + 3 b1

2b4 − 3 b1b2b3 + b2
3.

The original invariants wi and the reduced invariants w̃i have the same weight
and, still, the only summand involving the variable bi is of the form pb0

qbi for
some integers p and q. We also see from the invariants w̃61 and w̃62 that this re-
duced basis is not uniquely determined. The reduced invariants are more suitable
for the simplicity of the calculations which will follow.

3 Examples

In this Section, we construct involutive mappings for the examples up to dimen-
sion 5. We start with the operator

Z′
4 = b0

∂

∂b1
+ b1

∂

∂b2
+ b2

∂

∂b3
+ b3

∂

∂b4
. (7)

The invariants with respect to this operator are

w0 = b0,
w2 = 2 b0b2 − b1

2,
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w3 = 3 b0
2b3 − 3 b0b1b2 + b1

3,
w̃4 = 2 b0b4 − 2 b1b3 + b2

2. (8)

We have changed conveniently the sign of w2. In the following, we will denote
the reduced invariant w̃4 simply by w4 and the corresponding invariant ṽ4 also
simply by v4. For the completeness, we have w1 = b1. Now we will start from
dimension 3.

3.1 Dimension 3

We will use polynomials w0, . . . , w2 after the transformation

a0 = b0, a1 = 2 b1, a2 = 2 b2.

The new polynomials are

v0 = a0,
v1 = a1,
v2 = 4 a0a2 − a1

2.

Using the permutation p : (a0, a1, a2) 7→ (a2, a1, a0), we obtain polynomials
u0, . . . , u2 in the form

u0 = a2,
u1 = a1,
u2 = 4 a0a2 − a1

2.

From these formulas, we obtain the expressions of ai using vi, or ui, respectively,
in the form

a0 = v0, a0 =
u1

2 + u2

4 u0
,

a1 = v1, a1 = u1,

a2 =
v1

2 + v2

4 v0
, a2 = u0.

By the substitution of these formulas into the formulas above, we obtain easily
the involutive mappings of D = {(a0, a1, a2) ∈ R3, a0 6= 0 6= a2} onto itself in the
form

u0 =
v1

2 + v2

4 v0
, v0 =

u1
2 + u2

4 u0
,

u1 = v1, v1 = u1,
u2 = v2, v2 = u2.
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3.2 Dimension 4

We will use polynomials w0, . . . , w3 after the transformation

a0 = b0, a1 = 3 b1, a2 = 6 b2, a3 = 6 b3.

The new polynomials are

v0 = a0, u0 = a3,
v1 = a1, u1 = a2,

v2 = 3 a0a2 − a1
2, u2 = 3 a3a1 − a2

2,
v3 = 27 a0

2a3 − 9 a0a1a2 + 2 a1
3, u3 = 27 a3

2a0 − 9 a3a2a1 + 2 a2
3.

For the inverse expressions of ai using vi, we obtain

a0 = v0,
a1 = v1,

a2 =
v1

2 + v2

3 v0
,

a3 =
v1

3 + 3 v1v2 + v3

27 v0
2

.

By the substitution of these formulas into the formulas for ui above, we obtain
the transformation from vi to ui. The transformation from ui to vi is obtained
analogously. We write down only the first transformation, the formulas for the
second one differ just by interchanging ui and vi.

u0 =
v1

3 + 3 v1v2 + v3

27 v0
2

,

u1 =
v1

2 + v2

3 v0
,

u2 =
v1

2v2 + v1v3 − v2
2

9 v0
2

,

u3 =
−v1

3v3 + 6 v1
2v2

2 + 3 v1v2v3 + 2 v2
3 + v3

2

27 v0
3

.

This involutive transformation maps the set
D = {(a0, . . . , a3) ∈ R4, a0 6= 0 6= a3} onto itself.

3.3 Dimension 5

Here we will use polynomials w0, . . . , w4 after the transformation

a0 = b0, a1 = 4 b1, a2 = 12 b2, a3 = 24 b3, a4 = 24b4.

For the new polynomials, we choose

v0 = 4 a0, u0 = 4 a4,
v1 = a1, u1 = a3,
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v2 = 8 a0a2 − 3 a1
2, u2 = 8 a4a2 − 3 a3

2,
v3 = 8 a0

2a3 − 4 a0a1a2 + a1
3, u3 = 8 a4

2a1 − 4 a4a3a2 + a3
3,

v4 = 12 a0a4 − 3 a1a3 + a2
2, u4 = 12 a0a4 − 3 a1a3 + a2

2,

because coefficients in components of involutive transformation will be simpler
with this choice for v0. We obtain the inverse transformation

a0 =
1

4
v0,

a1 = v1,

a2 =
3 v1

2 + v2

2v0
,

a3 =
v1

3 + v1v2 + 2v3

v0
2

,

a4 =
4 v0

2v4 + 24 v1v3 + 6 v1
2v2 + 3 v1

4 − v2
2

12 v0
3

.

By the substitution of these formulas into the formulas for ui above, we obtain
again an involutive mapping which maps the set D = {(a0, . . . , a4) ∈ R5, a0 6=
0 6= a4} onto itself and which is given by the formulas

u0 =
4 v0

2v4 + 3 v1
4 + 6 v1

2v2 + 24 v1v3 − v2
2

3 v0
3

,

u1 =
v1

3 + v1v2 + 2 v3

v0
2

,

u2 =
[
12 v0

2v1
2v4 + 4 v0

2v2v4 + 3 v1
4v2 + 36 v1

3v3

−6 v1
2v2

2 − 12 v1v2v3 − v2
3 − 36 v3

2
]

/3 v0
4,

u3 =
[
8 v0

4v1v4
2 − 6 v0

2v1
5v4 + 60 v0

2v1
2v3v4 − 10 v0

2v1v2
2v4

−12 v0
2v2v3v4 − 9 v1

6v3 + 6 v1
5v2

2 + 45 v1
4v2 v3 + 180 v1

3v3
2

−15 v1
2v2

2v3 + 2 v1v2
4 + 36 v1v2v3

2 + 3 v2
3v3 + 72 v3

3
]
/9 v0

6,
u4 = v4.

4 Complexity of involutive rational mappings

Let us first stress the geometrical aspect of involutive mappings constructed in the
previous Section. It follows from the fact that polynomials vi and ui were invari-
ants of the operators generating the Lie algebra sl(2, R). The involutive property
was induced by the involutive permutation which interchanged the variables of
these polynomials.

Definition 9. Let φ be a rational mapping of Rn+1 \ D, where D is a subset of measure
zero, to itself. Let φi, i = 0, 1, . . . , n be its components expressed in a reduced form (i.e.,
there are no nontrivial common factors in numerators and corresponding denominators).
By the complexity of the mapping φ we mean the highest degree occurring among mono-
mials involved in the numerators of the components φi.
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It can be proved that, with increasing dimension of the representation, the
complexity of corresponding geometrical involutive mappings also increases. But,
the exact estimate from below is not important, because, formally, we are able to
construct rational involutive mapping with any complexity, as the following ex-
ample shows. Let us consider polynomials

y0 = c0, z0 = c3,
y1 = c1, z1 = c2,

y2 = c1
k − 2 c0c2, z2 = c2

k − 2 c3c1,
y3 = c1

m − 3 c0
2c3, z3 = c2

m − 3 c3
2c0,

where k and m are integers, k ≥ 2, m ≥ 3. We obtain the expressions of ci via yi

in the form

c0 = y0,
c1 = y1,

c2 =
y1

k − y2

2 y0
,

c3 =
y1

m − y3

3 y0
2

and the involutive mapping

z0 =
y1

m − y3

3 y0
2

,

z1 =
y1

k − y2

2 y0
,

z2 =
3 (y1

k − y2)
k + 2k+1y0

k−2y1y3 − 2k+1y0
k−2y1

m+1

3 · 2ky0
k

,

z3 =
3 (y1

k − y2)
m − 2my0

m−3y3
2 + 2m+1y0

m−3y1
my3 − 2my0

m−3y1
2m

3 · 2my0
m

.

We see that the complexity of the corresponding “formal” involutive rational
mapping depends essentially on the degree of polynomials y2 and y3. Thus, we
can construct examples of involutive rational mappings of arbitrary complexity.
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