Rational involutive automorphisms related with standard representations of $\operatorname{SL}(2, \mathbb{R})$

Zdeněk Dušek
Oldřich Kowalski

Abstract

Standard irreducible representations of the group SL $(2, \mathbb{R})$ on coefficients of homogeneous polynomials in two variables are studied in a new context. It is proved that any standard representation of $\operatorname{SL}(2, \mathbb{R})$ on \mathbb{R}^{n+1} induces an involutive rational mapping of an open dense subset of \mathbb{R}^{n+1} onto itself. Examples in low dimensions are presented. We also construct formal involutive rational mappings with "arbitrary complexity".

1 Introduction

In [2], the first author studied an irreducible representation of $\operatorname{SL}(2, \mathbb{R})$ on the space of symmetric equiaffine connections with constant Christoffel symbols on \mathbb{R}^{2}. During the study of this representation and the attempts to find all invariants, a remarkable rational involutive map of an open dense subset of \mathbb{R}^{6} onto itself appeared.

Involutive transformations play an important role in integrable dynamical systems, see e.g. [1], [3], [4], [7] and the references inside. Unfortunately, all the works known to the authors investigate in general, or apply to dynamics, involutive automorphisms of the type $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ or involutive transformations of the real projective plane. In [6], involutive mappings appear as transformations of differential equations. Probably, no systematic studies in higher dimensions are known.

[^0]It is well known that the group $\operatorname{SL}(2, \mathbb{R})$ admits an irreducible representation in any dimension, namely the representation on homogeneous polynomials of degree n in two variables ("binary forms of degree n "). In the present paper, these representations are studied. It is proved that each such representation induces an involutive mapping of an open dense subset of \mathbb{R}^{n+1} onto itself. In dimensions 3, 4 and 5, corresponding involutive mappings are constructed explicitly.

2 Main result

We will consider spaces P_{n} of homogeneous polynomials of degree n in two variables (binary forms) denoted as

$$
a_{0} x^{n}+a_{1} x^{n-1} y+\cdots+a_{n} y^{n}
$$

and the corresponding spaces $\mathbb{R}^{n+1}\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ of their coefficients. This notation is essential for the further considerations. Let the subgroup

$$
g_{1}(t)=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

of the group SL $(2, \mathbb{R})$ act in the standard way on P_{n} for each $n \geq 2$. This determines the action of this group on the space $\mathbb{R}^{n+1}\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ of coefficients. The induced Killing vector field is of the form

$$
\begin{equation*}
Z_{n}=n a_{0} \frac{\partial}{\partial a_{1}}+(n-1) a_{1} \frac{\partial}{\partial a_{2}}+\cdots+2 a_{n-2} \frac{\partial}{\partial a_{n-1}}+a_{n-1} \frac{\partial}{\partial a_{n}} \tag{1}
\end{equation*}
$$

(cf. [5], Theorem 3.40, for instance). Let us define the weight of a monomial in the variables a_{0}, \ldots, a_{n} as the sum of all indices contained in this monomial (counting also the multiplicities). On the ground of this we define a polynomial of weight k. Let us emphasize that the notion "weight" will be used in this particular meaning everywhere and it should not be confused with the standard meaning of "weight" as used in the representation theory. It is well known fact that the space of all invariants of the operator (1) admits a polynomial Hilbert basis.

Lemma 1. Let J be a polynomial invariant of the operator (1) which is of the form $p_{1} J_{1}+$ $\cdots+p_{k} J_{k}$, where J_{1}, \ldots, J_{k} are homogeneous polynomials of mutually distinct constant weights or of mutually distinct degrees. Then J_{1}, \ldots, J_{k} are invariants, too.

Proof. The operator Z_{n} has the property that

$$
Z_{n}\left(a_{k}\right)=(n-k+1) a_{k-1}, \quad k=1, \ldots, n
$$

Hence we see easily, that Z_{n} converts each polynomial of the constant weight s into a polynomial of the constant weight $s-1$ and each homogeneous polynomial of degree d again into a homogeneous polynomial of degree d. In particular, $p_{1} Z_{n}\left(J_{1}\right)+\cdots+p_{k} Z_{n}\left(J_{k}\right)=0$ and hence $Z_{n}\left(J_{1}\right)=\cdots=Z_{n}\left(J_{k}\right)=0$.

Lemma 2. For each fixed n, there is a substitution of the form $b_{i}=q_{i} a_{i}, q_{i} \in \mathbb{Q}, i=$ $0,1, \ldots, n$, such that the operator Z_{n} takes on the form

$$
\begin{equation*}
Z_{n}^{\prime}=b_{0} \frac{\partial}{\partial b_{1}}+b_{1} \frac{\partial}{\partial b_{2}}+\cdots+b_{n-2} \frac{\partial}{\partial b_{n-1}}+b_{n-1} \frac{\partial}{\partial b_{n}} . \tag{2}
\end{equation*}
$$

Proof. This is a routine computation. For example,

$$
q_{0}=1, \quad q_{1}=\frac{1}{n}, \quad q_{2}=\frac{1}{n(n-1)}, \quad q_{3}=\frac{1}{n(n-1)(n-2)},
$$

and so on.
The following Lemma is a basic one:
Lemma 3. The space of all invariants with respect to the operator Z_{n}^{\prime} on $\mathbb{R}^{n+1}\left[b_{0}, b_{1}, \ldots, b_{n}\right]$ admits a polynomial Hilbert basis $w_{0}, w_{2}, \ldots, w_{n}$, where $w_{0}=$ b_{0} is of weight zero, and, for each $k=2, \ldots, n, w_{k}$ is a homogeneous polynomial of degree k with integral coefficients and of weight k in the variables $b_{0}, b_{1}, \ldots, b_{k}$. Its only summand involving the variable b_{k} is of the form $p b_{0}{ }^{k-1} b_{k}$ for some integer p.

Proof. We have $w_{0}=b_{0}$ and for arbitrary $k \geq 2$ we define

$$
\begin{equation*}
w_{k}=b_{1}{ }^{k}-\sum_{i=1}^{k-1} c_{k i} b_{0}{ }^{i} b_{1}{ }^{k-1-i} b_{i+1}, \quad c_{k i} \in \mathbb{R} \tag{3}
\end{equation*}
$$

From the condition $Z_{n}^{\prime}\left(w_{k}\right)=0$ we obtain a simple system of equations for parameters $c_{k i}$ with the solution $c_{k 1}=k$ and $c_{k i}=-c_{k, i-1}(k-i)$ for $2 \leq i \leq k-1$.
Example. Let us consider the operator Z_{6}^{\prime}. According to the above formula we obtain invariants

$$
\begin{aligned}
& w_{0}=b_{0}, \\
& w_{2}=b_{1}{ }^{2}-2 b_{0} b_{2}, \\
& w_{3}=b_{1}{ }^{3}-3 b_{0} b_{1} b_{2}+3 b_{0}{ }^{2} b_{3}, \\
& w_{4}=b_{1}{ }^{4}-4 b_{0} b_{1}{ }^{2} b_{2}+8 b_{0}{ }^{2} b_{1} b_{3}-8 b_{0}{ }^{3} b_{4}, \\
& w_{5}=b_{1}{ }^{5}-5 b_{0} b_{1}{ }^{3} b_{2}+15 b_{0}{ }^{2} b_{1}{ }^{2} b_{3}-30 b_{0}{ }^{3} b_{1} b_{4}+30 b_{0}{ }^{4} b_{5}, \\
& w_{6}=b_{1}{ }^{6}-6 b_{0} b_{1}{ }^{4} b_{2}+24 b_{0}{ }^{2} b_{1}{ }^{3} b_{3}-72 b_{0}{ }^{3} b_{1}{ }^{2} b_{4}+144 b_{0}{ }^{4} b_{1} b_{5}-144 b_{0}{ }^{5} b_{6} .
\end{aligned}
$$

Let us define now, for the sake of completeness, the quantity w_{1} as $w_{1}=b_{1}$. Herewith we obtain a system of polynomials $w_{0}, w_{1}, w_{2}, \ldots, w_{n}$, where, of course, w_{1} is not an invariant. Then we have the following

Lemma 4. The variables $b_{0}, b_{1}, \ldots, b_{n}$ can be expressed as (proper) rational functions of the quantities $w_{0}, w_{1}, w_{2}, \ldots, w_{n}$. It holds $w_{0}=b_{0}, w_{1}=b_{1}$ and for each integer $k \geq 2$, we have

$$
\begin{equation*}
b_{k}=\frac{w_{1}^{k}+(-1)^{k-1}(k-1) w_{k}+Q_{k}\left(w_{0}, \ldots, w_{k-1}\right)}{k!w_{0}^{k-1}} \tag{4}
\end{equation*}
$$

where the term $Q_{k}\left(w_{0}, \ldots, w_{k-1}\right)$ is a polynomial in its variables which can involve only the powers $w_{1}{ }^{i}$ for $i \leq k-2$. Each numerator in the formula (4) has constant weight k with respect to variables w_{i}.

Proof. For $k=2$, we have a special formula $w_{2}=b_{1}{ }^{2}-2 b_{0} b_{2}$, from which

$$
b_{2}=\frac{b_{1}^{2}-w_{2}}{2 b_{0}}=\frac{w_{1}^{2}-w_{2}}{2 w_{0}}
$$

Thus, $Q_{2}\left(w_{0}, w_{1}\right)=0$. Now let us fix a number $n>2$ and suppose that (4) holds for $k=2, \ldots, n-1$. Then we get

$$
\begin{aligned}
w_{n} & =b_{1}{ }^{n}-\sum_{i=1}^{n-1} c_{n i} b_{0}{ }^{i} b_{1}{ }^{n-1-i} b_{i+1}= \\
& =b_{1}{ }^{n}-\sum_{i=1}^{n-2} c_{n i} b_{0}{ }^{i} b_{1}{ }^{n-1-i} b_{i+1}-c_{n, n-1} b_{0}{ }^{n-1} b_{n}
\end{aligned}
$$

Hence

$$
\begin{equation*}
b_{n}=\frac{-w_{n}+b_{1}{ }^{n}-\sum_{i=1}^{n-2} c_{n i} b_{0}{ }^{i} b_{1}{ }^{n-1-i} b_{i+1}}{c_{n, n-1} b_{0}{ }^{n-1}} \tag{5}
\end{equation*}
$$

Now, we have $b_{0}=w_{0}, b_{1}=w_{1}$ and for b_{2}, \ldots, b_{n-1}, we substitute from the formulas (4). This means that, we can put

$$
b_{i+1}=\frac{w_{1}^{i+1}+(-1)^{i} i w_{i+1}+Q_{i+1}\left(w_{0}, \ldots, w_{i}\right)}{(i+1)!w_{0}{ }^{i}}
$$

for $i=1, \ldots, n-2$, where $Q_{i+1}\left(w_{0}, \ldots, w_{i}\right)$ is a polynomial which can involve only the powers of w_{1} until the degree $i-1$. The formula (5) is now in the form
$b_{n}=\frac{-w_{n}+w_{1}^{n}-\sum_{i=1}^{n-2} \frac{c_{n i}}{(i+1)!} w_{1}^{n-1-i}\left(w_{1}^{i+1}+(-1)^{i} i w_{i+1}+Q_{i+1}\left(w_{0}, \ldots, w_{i}\right)\right)}{c_{n, n-1} w_{0}^{n-1}}$.
Now we multiply the numerator and the denominator by $n-1$. In the denominator, we obtain $(n-1) c_{n, n-1} w_{0}{ }^{n-1}=(-1)^{n} n!w_{0}{ }^{n-1}$. A small technical calculation shows that $(n-1) \frac{c_{n i}}{(i+1)!}=(-1)^{i+1}\binom{n}{i+1}$. In particular, these coefficients are integers. Another combinatorial calculation shows that the coefficient by $w_{1}{ }^{n}$ is

$$
(n-1)-\sum_{i=1}^{n-2}(n-1) \frac{c_{n i}}{(i+1)!}=(n-1)-\sum_{i=1}^{n-2}(-1)^{i+1}\binom{n}{i+1}=(-1)^{n} .
$$

Hence, after simplifying the signs, we can write

$$
b_{n}=\frac{w_{1}^{n}+(-1)^{n-1}(n-1) w_{n}+Q_{n}\left(w_{0}, \ldots, w_{n-1}\right)}{n!w_{0}^{n-1}}
$$

where $Q_{n}\left(w_{0}, \ldots, w_{n-1}\right)$ is a polynomial which can involve only the powers of w_{1} until the degree $n-2$. The last statement follows easily from Lemma 3.
It is easy to see that Lemma 3 is still valid for the original operator Z_{n} from (1) and for the original variables a_{i}, because it is obviously invariant with respect to the transformation of variables from Lemma 2. In particular, this transformation puts
every polynomial $P\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ with integral coefficients into a polynomial $P^{\prime}\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ with rational coefficients. The polynomials $w_{k}\left(b_{0}, b_{1}, \ldots, b_{n}\right), k=$ $0,2, \ldots, n$ change into new polynomials $v_{k}\left(a_{0}, a_{1}, \ldots, a_{n}\right)$, which form a Hilbert basis of invariants for the original operator Z_{n}. If we multiply all of them by proper integers, all invariants become those with integral coefficients. We should stress here that the sequence of invariants w_{i} does not depend on the dimension n. However, the substitution from Lemma 2 is different for different n. Hence, coefficients by monomials in polynomials v_{i} depend on the dimension n. See the examples in the next Section.

For the invariants v_{i}, we cannot provide an explicit analogue of the formula (4), because of the complicated coefficients. But, we easily get the following

Lemma 5. The expressions of a_{k} through v_{i} are rational mappings with certain powers of v_{0} in the denominators. Each numerator in the formula for a_{k} has constant weight k with respect to variables v_{i}.

Let now the subgroup

$$
g_{2}(t)=\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right)
$$

of $\operatorname{SL}(2, \mathbb{R})$ act in a standard way on the space $\mathbb{R}^{n+1}\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ of coefficients. The induced Killing vector field is of the form

$$
\begin{equation*}
Y_{n}=a_{1} \frac{\partial}{\partial a_{0}}+2 a_{2} \frac{\partial}{\partial a_{1}}+\cdots+(n-1) a_{n-1} \frac{\partial}{\partial a_{n-2}}+n a_{n} \frac{\partial}{\partial a_{n-1}} . \tag{6}
\end{equation*}
$$

We can see that the operator (1) is transformed into the operator (6) via the involutive permutation $p:\left(a_{0}, a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}\right)$. The corresponding invariants $v_{0} \circ p, v_{2} \circ p, \ldots, v_{n} \circ p$ of (6) will be denoted as $u_{0}, u_{2}, \ldots, u_{n}$. These invariants are new functions of $a_{0}, a_{1}, \ldots, a_{n}$ and they form a Hilbert basis for the polynomial invariants with respect to the action of $g_{2}(t)$. For the completeness, we put $u_{1}=a_{n-1}$.

Lemma 6. The invariants $u_{0}, u_{2} \ldots, u_{n}$ are also homogeneous polynomials of constant weights.

Proof. Let v_{k} be an invariant in P_{n} which is homogeneous of degree d and weight s. Because the permutation p changes each variable a_{i} into the variable a_{n-i}, the term $u_{k}=v_{k} \circ p$ is again homogeneous of degree d and it has constant weight $n d-s$.

Now we can formulate our basic result:
Theorem 7. To each standard representation of the group $\operatorname{SL}(2, \mathbb{R})$ on the space \mathbb{R}^{n+1} of parameters we can attach at least one involutive rational mapping of the set $\mathbb{R}^{n+1} \backslash D$ onto itself, where D is a subset of measure zero.

Proof. Express all variables $a_{0}, a_{1}, \ldots, a_{n}$ through the quantities $v_{0}, v_{1}, \ldots, v_{n}$ as in Lemma 5 and substitute into the functions $u_{0}, u_{1}, \ldots, u_{n}$. We see easily that the corresponding expressions $u_{k}=R_{k}\left(v_{0}, v_{1}, \ldots, v_{n}\right), k=0,1, \ldots, n$, are rational functions whose denominators are all just powers of the variable $v_{0}=a_{0}$. Using the involutive permutation $p:\left(a_{0}, a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}\right)$, we see that, conversely, the variables $v_{0}, v_{1}, \ldots, v_{n}$ can be expressed through the variables $u_{0}, u_{1}, \ldots, u_{n}$ exactly in the same form, i.e. $v_{k}=R_{k}\left(u_{0}, u_{1}, \ldots, u_{n}\right)$. In the denominators of $R_{k}\left(u_{0}, u_{1}, \ldots, u_{n}\right)$, there are just powers of the variable $u_{0}=a_{n}$. It is obvious that both mappings are involutive and mutually inverse. To ensure the correctness, we have to consider our maps just on the set $\mathbb{R}^{n+1} \backslash D$, where D is the union of the hyperplanes defined by $v_{0}=0$ and $v_{n}=0$.

Lemma 8. The polynomials in the numerators of components $u_{k}=R_{k}\left(v_{0}, \ldots, v_{n}\right)$ have constant weights with respect to variables v_{i}.

Proof. Each a_{k} has weight k with respect to variables v_{i} and each u_{l} has weight $n d-s$ with respect to variables a_{k}, according to the proof of Lemma 6 . After the substitution, the weight remains $n d-s$ with respect to variables v_{i}.
Let us also remark that we can reduce the degree of polynomials w_{i}, or v_{i}, respectively, in the Hilbert basis. For example, we obtain

$$
\begin{aligned}
\widetilde{w}_{4} & =\left(w_{2}{ }^{2}-w_{4}\right) / 4 w_{0}{ }^{2}= \\
& =2 b_{0} b_{4}-2 b_{1} b_{3}+b_{2}{ }^{2} \\
\widetilde{w}_{5} & =\left(w_{2} w_{3}-w_{5}\right) / 6 w_{0}{ }^{2}= \\
& =-5 b_{0}{ }^{2} b_{5}+5 b_{0} b_{1} b_{4}-b_{0} b_{2} b_{3}-2 b_{1}{ }^{2} b_{3}+b_{1} b_{2}{ }^{2}, \\
\widetilde{w}_{61} & =\left(\left(w_{3}{ }^{2}-w_{6}\right) / w_{0}{ }^{2}-9 w_{2} \widetilde{w}_{4}\right) / 9 w_{0}= \\
& =16 b_{0}{ }^{2} b_{6}-16 b_{0} b_{1} b_{5}+4 b_{0} b_{2} b_{4}+b_{0} b_{3}{ }^{2}+6 b_{1}{ }^{2} b_{4}-6 b_{1} b_{2} b_{3}+2 b_{2}{ }^{3}, \\
\widetilde{w}_{62} & =\left(\left(w_{2}{ }^{3}-w_{6}\right) / 4 w_{0}{ }^{2}-3 w_{2} \widetilde{w}_{4}\right) / 4 w_{0}= \\
& =9 b_{0}{ }^{2} b_{6}-9 b_{0} b_{1} b_{5}+3 b_{0} b_{2} b_{4}+3 b_{1}{ }^{2} b_{4}-3 b_{1} b_{2} b_{3}+b_{2}{ }^{3} .
\end{aligned}
$$

The original invariants w_{i} and the reduced invariants \widetilde{w}_{i} have the same weight and, still, the only summand involving the variable b_{i} is of the form $p b_{0}{ }^{q} b_{i}$ for some integers p and q. We also see from the invariants \widetilde{w}_{61} and \widetilde{w}_{62} that this reduced basis is not uniquely determined. The reduced invariants are more suitable for the simplicity of the calculations which will follow.

3 Examples

In this Section, we construct involutive mappings for the examples up to dimension 5 . We start with the operator

$$
\begin{equation*}
Z_{4}^{\prime}=b_{0} \frac{\partial}{\partial b_{1}}+b_{1} \frac{\partial}{\partial b_{2}}+b_{2} \frac{\partial}{\partial b_{3}}+b_{3} \frac{\partial}{\partial b_{4}} . \tag{7}
\end{equation*}
$$

The invariants with respect to this operator are

$$
\begin{aligned}
& w_{0}=b_{0}, \\
& w_{2}=2 b_{0} b_{2}-b_{1}^{2}
\end{aligned}
$$

$$
\begin{align*}
& w_{3}=3 b_{0}^{2} b_{3}-3 b_{0} b_{1} b_{2}+b_{1}^{3} \\
& \widetilde{w}_{4}=2 b_{0} b_{4}-2 b_{1} b_{3}+b_{2}^{2} \tag{8}
\end{align*}
$$

We have changed conveniently the sign of w_{2}. In the following, we will denote the reduced invariant \widetilde{w}_{4} simply by w_{4} and the corresponding invariant \widetilde{v}_{4} also simply by v_{4}. For the completeness, we have $w_{1}=b_{1}$. Now we will start from dimension 3.

3.1 Dimension 3

We will use polynomials w_{0}, \ldots, w_{2} after the transformation

$$
a_{0}=b_{0}, \quad a_{1}=2 b_{1}, \quad a_{2}=2 b_{2} .
$$

The new polynomials are

$$
\begin{aligned}
& v_{0}=a_{0} \\
& v_{1}=a_{1} \\
& v_{2}=4 a_{0} a_{2}-a_{1}{ }^{2} .
\end{aligned}
$$

Using the permutation $p:\left(a_{0}, a_{1}, a_{2}\right) \mapsto\left(a_{2}, a_{1}, a_{0}\right)$, we obtain polynomials u_{0}, \ldots, u_{2} in the form

$$
\begin{aligned}
& u_{0}=a_{2} \\
& u_{1}=a_{1} \\
& u_{2}=4 a_{0} a_{2}-a_{1}^{2} .
\end{aligned}
$$

From these formulas, we obtain the expressions of a_{i} using v_{i}, or u_{i}, respectively, in the form

$$
\begin{array}{lll}
a_{0}=v_{0}, & & a_{0}=\frac{u_{1}^{2}+u_{2}}{4 u_{0}}, \\
a_{1}=v_{1}, & & a_{1}=u_{1}, \\
a_{2}=\frac{v_{1}^{2}+v_{2}}{4 v_{0}}, & & a_{2}=u_{0} .
\end{array}
$$

By the substitution of these formulas into the formulas above, we obtain easily the involutive mappings of $\mathcal{D}=\left\{\left(a_{0}, a_{1}, a_{2}\right) \in \mathbb{R}^{3}, a_{0} \neq 0 \neq a_{2}\right\}$ onto itself in the form

$$
\begin{aligned}
& u_{0}=\frac{v_{1}^{2}+v_{2}}{4 v_{0}}, \\
& u_{0}=\frac{u_{1}^{2}+u_{2}}{4 u_{0}}, \\
& u_{1}=v_{1}, v_{1}=u_{1}, \\
& u_{2}=u_{2} .
\end{aligned}
$$

3.2 Dimension 4

We will use polynomials w_{0}, \ldots, w_{3} after the transformation

$$
a_{0}=b_{0}, \quad a_{1}=3 b_{1}, \quad a_{2}=6 b_{2}, \quad a_{3}=6 b_{3}
$$

The new polynomials are

$$
\begin{aligned}
v_{0}=a_{0}, & u_{0}=a_{3}, \\
v_{1}=a_{1}, & u_{1}=a_{2}, \\
v_{2}=3 a_{0} a_{2}-a_{1}{ }^{2}, & u_{2}=3 a_{3} a_{1}-a_{2}{ }^{2}, \\
v_{3}=27 a_{0}{ }^{2} a_{3}-9 a_{0} a_{1} a_{2}+2 a_{1}{ }^{3}, & u_{3}=27 a_{3}{ }^{2} a_{0}-9 a_{3} a_{2} a_{1}+2 a_{2}{ }^{3} .
\end{aligned}
$$

For the inverse expressions of a_{i} using v_{i}, we obtain

$$
\begin{aligned}
& a_{0}=v_{0} \\
& a_{1}=v_{1} \\
& a_{2}=\frac{v_{1}^{2}+v_{2}}{3 v_{0}}, \\
& a_{3}=\frac{v_{1}^{3}+3 v_{1} v_{2}+v_{3}}{27 v_{0}^{2}} .
\end{aligned}
$$

By the substitution of these formulas into the formulas for u_{i} above, we obtain the transformation from v_{i} to u_{i}. The transformation from u_{i} to v_{i} is obtained analogously. We write down only the first transformation, the formulas for the second one differ just by interchanging u_{i} and v_{i}.

$$
\begin{aligned}
& u_{0}=\frac{v_{1}^{3}+3 v_{1} v_{2}+v_{3}}{27 v_{0}^{2}}, \\
& u_{1}=\frac{v_{1}^{2}+v_{2}}{3 v_{0}}, \\
& u_{2}=\frac{v_{1}^{2} v_{2}+v_{1} v_{3}-v_{2}^{2}}{9 v_{0}^{2}}, \\
& u_{3}=\frac{-v_{1}^{3} v_{3}+6 v_{1}^{2} v_{2}^{2}+3 v_{1} v_{2} v_{3}+2 v_{2}^{3}+v_{3}^{2}}{27 v_{0}^{3}} .
\end{aligned}
$$

This involutive transformation maps the set $\mathcal{D}=\left\{\left(a_{0}, \ldots, a_{3}\right) \in \mathbb{R}^{4}, a_{0} \neq 0 \neq a_{3}\right\}$ onto itself.

3.3 Dimension 5

Here we will use polynomials w_{0}, \ldots, w_{4} after the transformation

$$
a_{0}=b_{0}, \quad a_{1}=4 b_{1}, \quad a_{2}=12 b_{2}, \quad a_{3}=24 b_{3}, \quad a_{4}=24 b_{4}
$$

For the new polynomials, we choose

$$
\begin{aligned}
v_{0}=4 a_{0}, & u_{0}=4 a_{4} \\
v_{1}=a_{1}, & u_{1}=a_{3}
\end{aligned}
$$

$$
\begin{array}{cl}
v_{2}=8 a_{0} a_{2}-3 a_{1}{ }^{2}, & u_{2}=8 a_{4} a_{2}-3 a_{3}{ }^{2}, \\
v_{3}=8 a_{0}{ }^{2} a_{3}-4 a_{0} a_{1} a_{2}+a_{1}{ }^{3}, & u_{3}=8 a_{4}{ }^{2} a_{1}-4 a_{4} a_{3} a_{2}+a_{3}{ }^{3}, \\
v_{4}=12 a_{0} a_{4}-3 a_{1} a_{3}+a_{2}{ }^{2}, & u_{4}=12 a_{0} a_{4}-3 a_{1} a_{3}+a_{2}{ }^{2},
\end{array}
$$

because coefficients in components of involutive transformation will be simpler with this choice for v_{0}. We obtain the inverse transformation

$$
\begin{aligned}
& a_{0}=\frac{1}{4} v_{0} \\
& a_{1}=v_{1}, \\
& a_{2}=\frac{3 v_{1}^{2}+v_{2}}{2 v_{0}}, \\
& a_{3}=\frac{v_{1}^{3}+v_{1} v_{2}+2 v_{3}}{v_{0}^{2}}, \\
& a_{4}=\frac{4 v_{0}^{2} v_{4}+24 v_{1} v_{3}+6 v_{1}^{2} v_{2}+3 v_{1}^{4}-v_{2}^{2}}{12 v_{0}^{3}}
\end{aligned}
$$

By the substitution of these formulas into the formulas for u_{i} above, we obtain again an involutive mapping which maps the set $\mathcal{D}=\left\{\left(a_{0}, \ldots, a_{4}\right) \in \mathbb{R}^{5}, a_{0} \neq\right.$ $\left.0 \neq a_{4}\right\}$ onto itself and which is given by the formulas

$$
\begin{aligned}
u_{0}= & \frac{4 v_{0}^{2} v_{4}+3 v_{1}^{4}+6 v_{1}^{2} v_{2}+24 v_{1} v_{3}-v_{2}^{2}}{3 v_{0}^{3}}, \\
u_{1}= & \frac{v_{1}^{3}+v_{1} v_{2}+2 v_{3}}{v_{0}^{2}}, \\
u_{2}= & {\left[12 v_{0}^{2} v_{1}^{2} v_{4}+4 v_{0}^{2} v_{2} v_{4}+3 v_{1}^{4} v_{2}+36 v_{1}^{3} v_{3}\right.} \\
& \left.-6 v_{1}^{2} v_{2}^{2}-12 v_{1} v_{2} v_{3}-v_{2}^{3}-36 v_{3}^{2}\right] / 3 v_{0}^{4}, \\
u_{3}= & {\left[8 v_{0}^{4} v_{1} v_{4}^{2}-6 v_{0}^{2} v_{1}^{5} v_{4}+60 v_{0}^{2} v_{1}^{2} v_{3} v_{4}-10 v_{0}^{2} v_{1} v_{2}^{2} v_{4}\right.} \\
& -12 v_{0}^{2} v_{2} v_{3} v_{4}-9 v_{1}^{6} v_{3}+6 v_{1}^{5} v_{2}^{2}+45 v_{1}^{4} v_{2} v_{3}+180 v_{1}^{3} v_{3}^{2} \\
& \left.-15 v_{1}^{2} v_{2}^{2} v_{3}+2 v_{1} v_{2}^{4}+36 v_{1} v_{2} v_{3}^{2}+3 v_{2}^{3} v_{3}+72 v_{3}^{3}\right] / 9 v_{0}^{6}, \\
u_{4}= & v_{4} .
\end{aligned}
$$

4 Complexity of involutive rational mappings

Let us first stress the geometrical aspect of involutive mappings constructed in the previous Section. It follows from the fact that polynomials v_{i} and u_{i} were invariants of the operators generating the Lie algebra $\mathfrak{s l}(2, \mathbb{R})$. The involutive property was induced by the involutive permutation which interchanged the variables of these polynomials.

Definition 9. Let ϕ be a rational mapping of $\mathbb{R}^{n+1} \backslash D$, where D is a subset of measure zero, to itself. Let $\phi_{i}, i=0,1, \ldots, n$ be its components expressed in a reduced form (i.e., there are no nontrivial common factors in numerators and corresponding denominators). By the complexity of the mapping ϕ we mean the highest degree occurring among monomials involved in the numerators of the components ϕ_{i}.

It can be proved that, with increasing dimension of the representation, the complexity of corresponding geometrical involutive mappings also increases. But, the exact estimate from below is not important, because, formally, we are able to construct rational involutive mapping with any complexity, as the following example shows. Let us consider polynomials

$$
\begin{aligned}
y_{0}=c_{0}, & z_{0}=c_{3} \\
y_{1}=c_{1}, & z_{1}=c_{2} \\
y_{2}=c_{1}^{k}-2 c_{0} c_{2}, & z_{2}=c_{2}^{k}-2 c_{3} c_{1} \\
y_{3}=c_{1}^{m}-3 c_{0}^{2} c_{3}, & z_{3}=c_{2}^{m}-3 c_{3}^{2} c_{0}
\end{aligned}
$$

where k and m are integers, $k \geq 2, m \geq 3$. We obtain the expressions of c_{i} via y_{i} in the form

$$
\begin{aligned}
c_{0} & =y_{0}, \\
c_{1} & =y_{1}, \\
c_{2} & =\frac{y_{1}{ }^{k}-y_{2}}{2 y_{0}} \\
c_{3} & =\frac{y_{1}{ }^{m}-y_{3}}{3 y_{0}^{2}}
\end{aligned}
$$

and the involutive mapping

$$
\begin{aligned}
& z_{0}=\frac{y_{1}{ }^{m}-y_{3}}{3 y_{0}{ }^{2}}, \\
& z_{1}=\frac{y_{1}{ }^{k}-y_{2}}{2 y_{0}}, \\
& z_{2}=\frac{3\left(y_{1}{ }^{k}-y_{2}\right)^{k}+2^{k+1} y_{0}{ }^{k-2} y_{1} y_{3}-2^{k+1} y_{0}{ }^{k-2} y_{1}{ }^{m+1}}{3 \cdot 2^{k} y_{0}{ }^{k}}, \\
& z_{3}=\frac{3\left(y_{1}{ }^{k}-y_{2}\right)^{m}-2^{m} y_{0}{ }^{m-3} y_{3}{ }^{2}+2^{m+1} y_{0}{ }^{m-3} y_{1}{ }^{m} y_{3}-2^{m} y_{0}{ }^{m-3} y_{1}{ }^{2 m}}{3 \cdot 2^{m} y_{0}{ }^{m}} .
\end{aligned}
$$

We see that the complexity of the corresponding "formal" involutive rational mapping depends essentially on the degree of polynomials y_{2} and y_{3}. Thus, we can construct examples of involutive rational mappings of arbitrary complexity.

Acknowledgements

The authors were supported by the grant GAČR 201/11/0356. The first author was supported by the research project MSM 6198959214, the second author was supported by the research project MSM 0021620839 of the Czech Ministry MŠMT.

References

[1] Adler, V.E.: On a class of third order mappings with two rational invariants, arXiv:nlin/0606056v1.
[2] Dušek, Z.: Scalar invariants on special spaces of equiaffine connections, J. Lie Theory, 20 (2010), 295-309.
[3] Gómez, A., Meiss, J.D.: Reversible polynomial automorphisms of the plane: the involutory case, Physics Letters A 312 (2003) 49-58.
[4] Gómez, A., Meiss, J.D.: Reversors and symmetries for polynomial automorphisms of the complex plane, Nonlinearity 17 (2004) 975-1000.
[5] Olver, P.: Equivalence, Invariants and Symmetry, Cambridge University Press, 1995.
[6] Repnikov, V.D.: On an Involutive Mapping of solutions of Differential Equations, Differential Equations, 43 No. 10 (2007), 1376-1381.
[7] Veselov, A.P.: Yang-Baxter maps: dynamical point of view, Combinatorial aspect of integrable systems, 145-167, MSJ Mem., 17, Math. Soc. Japan, Tokyo, 2007.

Palacky University, Faculty of Science
17. listopadu 12, 77146 Olomouc, Czech Republic dusek@prfnw.upol.cz

Charles University, Mathematical Institute
Sokolovská 83, 18675 Praha 8, Czech Republic
kowalski@karlin.mff.cuni.cz

[^0]: Received by the editors April 2011.
 Communicated by L. Vanhecke.
 2000 Mathematics Subject Classification : 53A55, 53B05, 16R50.
 Key words and phrases : Representation of a Lie group, invariant function, Hilbert basis of invariants, involutive mapping, rational mapping.

