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Abstract

Given non empty open subsets Ω of Rr and Ω′ of Rs, and sequences
M and M ′, we recall the definition of the space D{M ,M ′}(Ω × Ω′). Given

p ∈ [1,+∞[, we also introduce the space D
{M ,M ′}
(Lp)

(Ω × Ω′). By use of a basic

idea due to Valdivia, we obtain a global representation of the correspond-
ing ultradistributions, i.e. of the elements of the topological duals of these
spaces.

1 Introduction

For the notations, we refer to the Paragraphs 2 and 5.
Classically the non quasi-analytic classes of ultradifferentiable functions are

defined by use of special sequences of positive numbers or of weights, the ba-
sic references are [2] and [1] respectively. These two possibilities lead to similar
properties but are not completely equivalent.

In this paper, we adopt the first possibility and continue the study of the
locally convex properties of the mixed non quasi-analytic classes of ultradiffer-
entiable functions initiated in [3] to [8]. This time we consider the problem of
obtaining a global representation of some mixed ultradistributions, i.e. explic-

itly of the elements of the topological duals of the spaces D{M ,M ′}(Ω × Ω′) and

D
{M ,M ′}
(Lp)

(Ω × Ω′).
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The paper is based on a method developed by Valdivia in [10], [11] and [12] to
get a global representation of the elements of the topological duals of the spaces

D{M }(Ω) and D
{M }
(Lp)

(Ω). In [8] we already used this method to get a global

representation of the elements of the dual of the projective limits D (M)(Ω) and

D
(M′)
(Lp)

(Ω).

In Paragraph 3, we adapt to our case the basic abstract construction leading to
a global representation.

In Paragraph 4, we recall the definition of the space D{M ,M ′}(Ω × Ω′) and
obtain a global representation of the elements of its topological dual by means of
series using Radon measures on Ω × Ω′.

Starting with Paragraph 5, we do the same for the space D
{M ,M ′}
(Lp)

(Ω × Ω′).

2 Notations

Throughout the paper,
a) r and s belong to N;
b) Ω and Ω′ are non empty open subsets of Rr and Rs respectively;
c) m = (mp)p∈N0

and m
′ = (m′

p)p∈N0
are two sequences of real numbers such that

m0 = m′
0 = 1, which are increasing and non quasi-analytic, i.e. ∑

∞
p=0 1/mp < ∞

and ∑
∞
p=0 1/m′

p < ∞. The sequences M = (Mp)p∈N0
and M ′ = (M′

p)p∈N0
are

defined by Mp = m0 . . . mp and M′
p = m′

0 . . . m′
p for every p ∈ N0.

d) the space D{M ,M ′}(Ω × Ω′) is defined as in [3]. For the sake of clarity, let us
briefly recall its definition.

The notation D (M ,M ′),h(K × K′) requires that h is a positive number and that
K and K′ are non empty compact subsets of Rr and Rs respectively. It designates
the following Banach space: its elements are the C∞-functions ϕ on R

r ×R
s which

have their support contained in K × K′ and such that

‖ϕ‖K×K′,h := sup
(α,β)∈Nr

0×Ns
0

||D(α,β)ϕ||K×K′

h|α|+|β|M|α|M
′
|β|

< ∞,

endowed with the norm ‖.‖K×K′,h.

The space D{M ,M ′}(K × K′) is then the inductive limit of the spaces

D (M ,M ′),m(K × K′) with m ∈ N; it is a (DFS)-space.

Finally the space D{M ,M ′}(Ω × Ω′) is the inductive limit of the spaces

D{M ,M ′}(Kn × K′
n) where (Kn)n∈N and (K′

n)n∈N are exhaustions of Ω and Ω′

respectively by strictly regular compact sets such that Kn ⊂ K◦
n+1 and K′

n ⊂ K′◦
n+1

for every n ∈ N. It is a (DFS)-space.
To be complete, let us recall that a compact subset H of Rn is strictly regular

if it has a finite number of connected components and if each of these connected
components B verifies the following two properties:
(i) B is regular, i.e. B = B◦−;
(ii) there is a positive constant C such that, for every x, y ∈ B, there is a polygonal
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path joining x and y in B◦, of length L ≤ C |x − y|.

e) the space D
{M ,M ′}
(Lp)

(Ω × Ω′) is new; it is defined in Paragraph 5.

Let us also mention that, if E is a locally convex space, E′ designates its strong
topological dual.

3 Basic construction

Let X = (X, ‖.‖) be a Banach space.
Then, for every n ∈ N, Yn designates the following Banach space: it is the

vector subspace of XNr
0×Ns

0 which elements κ = (xα,β)(α,β)∈Nr
0×Ns

0
verify

‖κ‖n := sup
(α,β)∈Nr

0×Ns
0

∥∥xα,β

∥∥

n|α|+|β|M|α|M
′
|β|

< ∞,

endowed with the norm ‖.‖n.
It is clear that, for every n ∈ N, Yn is a vector subspace of Yn+1 and that the

canonical inclusion map is continuous. Therefore we may consider the inductive
limit Y of these spaces; it is clear that Y is a Hausdorff (LB)-space.

Let us improve this knowledge. It is well known that the strong topological
dual Y′ of Y is a Fréchet space. Moreover, if B(Yn) denotes the closed unit ball of
Yn, the polar sets Un of nB(Yn) in Y′ constitute a 0-neighbourhood basis in Y′. So
the polar set of any bounded subset B of Y contains some Un which implies that
B is contained in the closure of some nB(Yn) in Y.

Proposition 3.1. For every n ∈ N, B(Yn) is a closed subset of Y.
Therefore Y is a Hausdorff regular (LB)-space.

Proof. Let (κj)j∈J be a generalized sequence of B(Yn) converging to κ in Y.
Then, for every (α, β) ∈ Nr

0 × Ns
0 and v ∈ X′, it is clear that

u : Y → C; κ 7→
〈

xα,β, v
〉

is a well defined continuous linear functional. This implies

lim
j

〈
xα,β,j − xα,β, v

〉
= lim

j

〈
κj −κ, u

〉
= 0;

i.e. the generalized sequence (xα,β,j)j∈J converges weakly to xα,β in X. As the gen-
eralized sequence (xα,β,j)j∈J is made of elements of the closed ball

n|α|+|β|M|α|M
′
|β|B(X), a weakly closed subset of X indeed, we conclude at once.

Notation. a) For every u ∈ Y′ and n ∈ N, we set

‖u‖(n) := sup
κ∈B(Yn)

|〈κ, u〉| .

b) To every u ∈ Y′, we associate for every (α, β) ∈ Nr
0 × Ns

0 the following
continuous linear functional on X

uα,β : X → C; x 7→ 〈κ, u〉

where κ is defined by xα,β = x and xγ,δ = 0 if (γ, δ) 6= (α, β).



94 J. Schmets – M. Valdivia

Proposition 3.2. For every u ∈ Y′, we have

sup
(α,β)∈Nr

0×Ns
0

n|α|+|β|M|α|M
′
|β|

∥∥uα,β

∥∥ ≤ ‖u‖(n) , ∀n ∈ N,

as well as
〈κ, u〉 = ∑

(α,β)∈Nr
0×Ns

0

〈xα,β, uα,β〉, ∀κ ∈ Y,

the series converging absolutely and uniformly on the bounded subsets of Y.

Proof. As B(Yn) certainly contains

n|α|+|β|M|α|M
′
|β|{κ : xα,β ∈ B(X), xγ,δ = 0 if (γ, δ) 6= (α, β)}

the inequality is clear.

For every κ ∈ Y and (α, β) ∈ Nr
0 × Ns

0, let us denote by κ
(α,β) the element of

Y defined by x
(α,β)
α,β = xα,β and x

(α,β)
γ,δ = 0 if (γ, δ) 6= (α, β). Then, for every κ ∈ Yn,

m ≥ 2n and q ∈ N, we certainly have
∥∥∥∥∥∥
κ − ∑

|α|+|β|≤q

κ
(α,β)

∥∥∥∥∥∥
m

= sup
|α|+|β|>q

∥∥xα,β

∥∥

m|α|+|β|M|α|M
′
β

≤ 2−q ‖κ‖n .

This implies that the family (κ(α,β))(α,β)∈Nr
0×Ns

0
is summable to κ in Ym hence the

representation formula as well as the convergence property of the series.

Proposition 3.3. For every family (zα,β)(α,β)∈Nr
0×Ns

0
of elements of X′ such that

Ah := sup
(α,β)∈Nr

0×Ns
0

h|α|+|β|M|α|M
′
|β|

∥∥zα,β

∥∥ < ∞, ∀h > 0,

there is a unique element u of Y′ such that uα,β = zα,β for every (α, β) ∈ N
r
0 × N

s
0.

Proof. For every κ ∈ Yn and (α, β) ∈ Nr
0 × Ns

0, we certainly have

∣∣〈xα,β, zα,β

〉∣∣ ≤
∥∥xα,β

∥∥
C

.C
∥∥zα,β

∥∥
≤

A2(r+s)n

(2(r + s))|α|+|β|
‖κ‖n

with C := (2(r + s)n)|α|+|β|M|α|M
′
|β|

, hence

u : Y → C; κ 7→ ∑
(α,β)∈Nr

0×Ns
0

〈xα,β, zα,β〉

is a well defined continuous linear functional on Y.
To conclude we just have then to note that, for every x ∈ X and (α, β) ∈

Nr
0 × Ns

0, if κ ∈ Y is defined by xα,β = x and xγ,δ = 0 if (γ, δ) 6= (α, β), the
representation formula of Proposition 3.2 leads to

〈
x, uα,β

〉
= 〈κ, u〉 = ∑

(γ,δ)∈Nr
0×Ns

0

〈
xγ,δ, zγ,δ

〉
=

〈
x, zα,β

〉
.
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4 Case of the space D{M ,M ′}(Ω × Ω′)

From now on we identify the Banach space X of the basic construction with
C0(Ω × Ω′), the space of the continuous functions f on Ω × Ω′ “tending to 0
at infinity” (i.e. for every ε > 0, there is a compact subset H of Ω × Ω′ such that
‖ f‖(Ω×Ω′)\H ≤ ε), endowed with the norm ‖·‖Ω×Ω′ . By the Riesz representa-

tion theorem, for every continuous linear functional u on C0(Ω × Ω′), there is
a Borel measure µ on Ω × Ω′ such that 〈u, ·〉 =

∫
Ω×Ω′ · dµ on C0(Ω × Ω′) and

‖u‖ = |µ| (Ω × Ω′).
As Radon measures will also occur, let us mention the following. Given a non

void compact subset H of Rk, K (H) is the following Banach space: its elements
are the continuous functions on Rk with support contained in H; its norm is ‖.‖H;
it is topologically isomorphic to C0(H◦). Then K (Ω) is the inductive limit of the
spaces K (H) where H runs through the family of the non void compact subsets
of Ω. The Radon measures on Ω are the continuous linear functionals on K (Ω).
Given a Radon measure u on Ω, ‖u‖ (H) designates the norm of the restriction of
u to K (H).

Notation. For every n ∈ N, the linear map

ξn : D
(M ,M ′),n(K × K′) → Yn; ϕ 7→ (D(α,β)ϕ)(α,β)∈Nr

0×Ns
0

clearly is an isometry from D (M ,M ′),n(K × K′) onto its image Pn considered as a
topological vector subspace of Yn. We then introduce P as the topological vector
subspace ∪∞

n=1Pn of Y and consider the map

ξ : D
{M ,M ′}(K × K′) → P; ϕ 7→ (D(α,β)ϕ)(α,β)∈Nr

0×Ns
0
.

It is clear that ξ is a continuous linear bijection. In the next result we prove that
in fact ξ is a topological isomorphism; its proof makes use of the following re-
sult (cf. [11], Proposition 6): let E be a locally convex space whose dual is a Fréchet
space. If every absolutely convex, closed and bounded subset of the vector subspace F of
E is locally compact, then F endowed with the ρ(E, E′)-topology is a (LB)-space, where
ρ(E, E′) designates the topology on E of the uniform convergence on the abso-
lutely convex compact subsets of E′.

Proposition 4.1. The spaces D{M ,M ′}(K × K′) and P are topologically isomorphic;
more specifically, the map ξ is a topological isomorphism.

Proof. We know that the strong dual of Y(= E) is a Fréchet space. Let now
A be any absolutely convex, closed and bounded subset of P(= F). By Proposi-
tion 3.1, there is n ∈ N such that A is a bounded subset of Pn. Therefore ξ−1

n (A) =

ξ−1(A) is an absolutely convex and bounded subset of D (M ,M ′),n(K × K′) that is

closed in D{M ,M ′}(K × K′), hence A is a compact subset of Pn+1. Therefore, by
use of Proposition 6 of [11], Q := (P, ρ(Y, Y′)) is a (LB)-space. If R denotes the
inductive limit of the Banach spaces (Pn)n∈N, the identity maps from R into P
and from P into Q are of course continuous. Hence the conclusion by use of the
closed graph theorem.



96 J. Schmets – M. Valdivia

Proposition 4.2. Let K and K′ be non void compact subsets of Ω and Ω′ respectively.

For every continuous linear functional S on D{M ,M ′}(Ω × Ω′), there is a family
(µα,β)(α,β)∈Nr

0×Ns
0

of Borel measures on Ω × Ω′ such that

sup
(α,β)∈Nr

0×Ns
0

n|α|+|β|M|α|M
′
|β||µα,β|(Ω × Ω′) < ∞, ∀n ∈ N, (1)

and

〈S, ϕ〉 = ∑
(α,β)∈Nr

0×Ns
0

∫

Ω×Ω′
D(α,β)ϕ dµα,β, ∀ϕ ∈ D

{M ,M ′}(K × K′), (2)

these series converging absolutely and uniformly on the bounded subsets of

D{M ,M ′}(K × K′).

Proof. Let us denote by η the map ξ considered as a map from the space

D{M ,M ′}(K × K′) into Y. By the previous result we know that its transpose tη is
surjective.

Now let S∗ denote the restriction of S onto D{M ,M ′}(K × K′). As tη is surjec-
tive, there is u ∈ Y′ such that tη(u) = S∗ and the conclusion follows at once from
Proposition 3.2.

In the next result we are going to represent the continuous linear functionals

S on D{M ,M ′}(Ω × Ω′), having a compact support contained in H × H′ where H
and H′ are non void compact subsets of Ω and Ω′ respectively.

For this purpose, let us introduce some notations. First of all we chose com-
pact subsets K of Ω and K′ of Ω′ such that H ⊂ K◦ and H′ ⊂ K′◦. Then we
apply Proposition 4.2 and obtain a family (µα,β)(α,β)∈Nr

0×Ns
0

of Borel measures on

Ω × Ω′ verifying the inequalities (1) and giving rise to the representation for-
mula (2), the series converging absolutely and uniformly on the bounded subsets

of D{M ,M ′}(K × K′). Next we chose ψ ∈ D{M ,M ′}(Ω × Ω′), identically 1 on a
neighbourhood of H × H′ and of support contained in K◦ × K′◦. Finally we chose

n0 ∈ N such that ψ ∈ D (M ,M ′),n0(Kn0 × K′
n0
).

This leads to the following property. For every ϕ ∈ D{M ,M ′}(K × K′), ψϕ of

course belongs to D{M ,M ′}(K × K′) and verifies 〈S, ϕ〉 = 〈S, ψϕ〉. Let us analyse
〈S, ψϕ〉: we have

〈S, ψϕ〉 = ∑
(α,β)∈Nr

0×Ns
0

∫

Ω×Ω′
∑

γ≤α,δ≤β

(
α

γ

)(
β

δ

)
D(γ,δ)ψD(α−γ,β−δ)ϕ dµα,β

and, choosing an integer p > n0 such that ϕ ∈ D (M ,M ′),p(K × K′), we succes-
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sively get

∑
γ≤α,δ≤β

(
α

γ

)(
β

δ

) ∫

Ω×Ω′
|D(γ,δ)ψ||D(α−γ,β−δ)ϕ| d|µα,β|

≤ ‖ψ‖n0 ∑
γ≤α,δ≤β

(
α

γ

)(
β

δ

)
n
|γ|+|δ|
0 M|γ|M

′
|δ|‖D(α−γ,β−δ)ϕ‖K×K′|µα,β|(Ω × Ω′)

≤ ‖ψ‖n0
2|α|+|β| ‖ϕ‖p p|α|+|β|M|α|M

′
|β||µα,β|(Ω × Ω′)

≤
‖ψ‖n0

‖ϕ‖p

(2(r + s))|α|+|β|
sup

(γ,δ)∈Nr
0×Ns

0

(4p(r + s))|γ|+|δ|M|γ|M
′
|δ||µγ,δ|(Ω × Ω′),

which implies the absolute convergence of the series giving the value of 〈S, ψϕ〉.
Setting ζ = α − γ and ξ = β − δ, we finally obtain the representation

〈S, ψϕ〉 = ∑
(ζ,ξ)∈Nr

0×Ns
0

(γ,δ)∈Nr
0×Ns

0

(γ + ζ)!

γ!ζ!

(δ + ξ)!

δ!ξ!

∫

Ω×Ω′
D(γ,δ)ψD(ζ,ξ)ϕ dµγ+ζ,δ+ξ ,

this series being absolutely converging.

Theorem 4.3. Let H and K be compact subsets of Ω such that H ⊂ K◦ and let H′

and K′ be compact subsets of Ω′ such that H′ ⊂ K′◦.

If S ∈ D{M ,M ′}(Ω × Ω′)
′

has its support contained in H × H′, there is a family
(µα,β)(α,β)∈Nr

0×Ns
0

of Borel measures on Ω × Ω′ such that

a) sup(α,β)∈Nr
0×Ns

0
n|α|+|β|M|α|M

′
|β||µα,β|(Ω × Ω′) < ∞, ∀n ∈ N;

b) supp(µα,β) ⊂ K × K′, ∀(α, β) ∈ Nr
0 × Ns

0;

c) 〈S, ϕ〉 = ∑(α,β)∈Nr
0×Ns

0

∫
Ω×Ω′ D(α,β)ϕ dµα,β, ∀ϕ ∈ D{M ,M ′}(Ω × Ω′),

the series converging absolutely and uniformly on the bounded subsets of

D{M ,M ′}(Ω × Ω′′).

Proof. The Proposition 4.2 provides a family (µα,β)(α,β)∈Nr
0×Ns

0
of Borel mea-

sures on Ω×Ω′ verifying the inequalities (1) and the representation (2), the series

converging absolutely and uniformly on the bounded subsets of D{M ,M ′}(K × K′).
So we may use the notations and the representation formula of 〈S, ψϕ〉 we just
obtained.

Let us now consider (ζ, ξ) in Nr
0 × Ns

0. Given f ∈ C0(Ω × Ω′), let us consider
the expression

vζ,ξ( f ) := ∑
(γ,δ)∈Nr

0×Ns
0

(γ + ζ)!

γ!ζ!

(δ + ξ)!

δ!ξ!

∫

Ω×Ω′
D(γ,δ)ψ f dµγ+ζ,δ+ξ.

We first observe that this series converges absolutely since

∑
(γ,δ)∈Nr

0×Ns
0

2|γ+ζ|2|δ+ξ| ‖ψ‖n0
n
|γ|+|δ|
0 M|γ|M

′
|δ| ‖ f‖Ω×Ω′ |µγ+ζ,δ+ξ|(Ω × Ω′)

≤ ‖ψ‖n0
‖ f‖Ω×Ω′ ∑

(γ,δ)∈Nr
0×Ns

0

1

(2(r + s))|γ|+|δ|
A
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with

A := sup
(α,β)∈Nr

0×Ns
0

(4n0(r + s))|α|+|β|M|α|M
′
|β||µα,β|(Ω × Ω′) < ∞.

This implies that vζ,ξ is a continuous linear functional on C0(Ω × Ω′). Therefore
there is a Borel measure νζ,ξ on Ω × Ω′ such that

vζ,ξ( f ) =
∫

Ω×Ω′
f dνζ,ξ , ∀ f ∈ C0(Ω × Ω′).

Summarizing what we obtained so far leads to the following representation:
we have

〈S, ψϕ〉 = ∑
(ζ,ξ)∈Nr

0×Ns
0

∫

Ω×Ω′
D(ζ,ξ)ϕ dνζ,ξ , ∀ϕ ∈ D

{M ,M ′}(K × K′),

the Borel measures νζ,ξ on Ω × Ω′ having of course their support contained in
supp(ψ) ⊂ K × K′.

Now for every (ζ, ξ) ∈ Nr
0 ×Ns

0, we chose g ∈ C0(Ω × Ω′) such that ‖g‖Ω×Ω′ ≤
2 and

∫
Ω×Ω′ g dνζ,ξ = |νζ,ξ |(Ω × Ω′) and observe that, for every integer n ≥ n0,

we have

n|ζ|+|ξ|M|ζ|M
′
|ξ||νζ,ξ |(Ω × Ω′) = n|ζ|+|ξ|M|ζ|M

′
|ξ|vζ,ξ(g)

≤ 2 ‖ψ‖n0 ∑
(γ,δ)∈Nr

0×Ns
0

1

(2(r + s))|γ|+|δ|
B

with
B := sup

(α,β)∈Nr
0×Ns

0

(4n(r + s))|α|+|β|M|α|M
′
|β||µα,β|(Ω × Ω′) < ∞.

This leads to

sup
(ζ,ξ)∈Nr

0×Ns
0

n|ζ|+|ξ|M|ζ|M
′
|ξ||νζ,ξ |(Ω × Ω′) < ∞, ∀n ∈ N.

So, for every compact subsets L of Ω and L′ of Ω′, by the propositions 4.1, 3.2
and 3.3, we know that

TL,L′ : D
{M ,M ′}(L × L′) → C; ϕ 7→ ∑

(α,β)∈Nr
0×

s
0

∫

Ω×Ω′
D(α,β)ϕ dνα,β

is a well defined continuous linear functional, the series converging absolutely

and uniformly on the bounded subsets of D{M ,M ′}(L × L′). This implies that

T : D
{M ,M ′}(Ω × Ω′) → C; ϕ 7→ ∑

(α,β)∈Nr
0×

s
0

∫

Ω×Ω′
D(α,β)ϕ dνα,β

is a well defined continuous linear functional, the series converging absolutely

and uniformly on the bounded subsets of D{M ,M ′}(Ω × Ω′).
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Finally we note that, for every ϕ ∈ D{M ,M ′}(K × K′), we have 〈S, ϕ〉 =

〈S, ψϕ〉 = 〈T, ϕ〉. So, if χ ∈ D{M ,M ′}(Ω × Ω′) is identically 1 on a neighbour-
hood of supp(ψ) and has its support contained in K◦ × K′◦, we successively get

〈T, ϕ〉 = 〈T, χϕ〉 = 〈S, ψχϕ〉 = 〈S, ψϕ〉 = 〈S, ϕ〉

for every ϕ ∈ D{M ,M ′}(Ω × Ω′). Hence the conclusion.

Theorem 4.4. Let (uα,β)(α,β)∈Nr
0×Ns

0
be a family of Radon measures on Ω×Ω′ such

that, for every n ∈ N and compact subsets K of Ω and K′ of Ω′,

sup
(α,β)∈Nr

0×Ns
0

n|α|+|β|M|α|M
′
|β|||uα,β||K×K′ < ∞.

Then
S : D

{M ,M ′}(Ω × Ω′) → C; ϕ 7→ ∑
(α,β)∈Nr

0×Ns
0

〈uα,β, D(α,β)ϕ〉

is a well defined continuous linear functional, the series converging absolutely and uni-

formly on the bounded subsets of D{M ,M ′}(Ω × Ω′).

Proof. For every n ∈ N and (α, β) ∈ N
r
0 × N

s
0, let un

α,β be the restriction

of uα,β to C0(K
◦
n × K′◦

n ). The Riesz representation theorem provides then a Borel
measure µα,β,n on K◦

n × K′◦
n such that

〈un
α,β, f 〉 =

∫

K◦
n×K′◦

n

f dµα,β,n, ∀ f ∈ C0(K
◦
n × K′◦

n ),

and
||un

α,β||Kn×K′
n
= |µα,β,n|(K

◦
n × K′◦

n )|.

Therefore, by the propositions 3.3, 3.2 and 4.1,

Sn : D
{M ,M ′}(Kn × K′

n) → C; ϕ 7→ ∑
(α,β)∈Nr

0×Ns
0

∫

K◦
n×K′◦

n

D(α,β)ϕ dµα,β,n

is a well defined continuous linear functional, the series converging absolutely

and uniformly on the bounded subsets of D{M ,M ′}(Kn × K′
n).

For every ϕ ∈ D{M ,M ′}(Ω × Ω′), there is n ∈ N such that supp(ϕ) ⊂ K◦
n ×

K′◦
n . As we then have 〈Sn, ϕ〉 =

〈
Sn+1, ϕ

〉
, it is easy to conclude.

Theorem 4.5. For every continuous linear functional S on the space

D{M ,M ′}(Ω × Ω′), there is a family (uα,β)(α,β)∈Nr
0×Ns

0
of Radon measures on Ω × Ω′

such that
sup

(α,β)∈Nr
0×Ns

0

n|α|+|β|M|α|M
′
|β|||uα,β||Kn×K′

n
< ∞

for every n ∈ N and

〈S, ϕ〉 = ∑
(α,β)∈Nr

0×Ns
0

〈uα,β, D(α,β)ϕ〉, ∀ϕ ∈ D
{M ,M ′}(Ω × Ω′),

the series converging absolutely and uniformly on the bounded subsets of

D{M ,M ′}(Ω × Ω′).
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Proof. Let {Om : m ∈ N} and {O′
m : m ∈ N} be locally finite open cov-

ers of Ω and Ω′ respectively, every Om being relatively compact in Ω and every

O′
m being relatively compact in Ω′. Let moreover {ψm : m ∈ N} be a D (M )(Ω)-

partition of unity on Ω subordinate to {Om : m ∈ N} and {ψ′
m : m ∈ N} be a

D (M ′)(Ω′)-partition of unity on Ω′ subordinate to {O′
m : m ∈ N}.

For every m, m′ ∈ N, ψm(x)ψ′
m′(y)S belongs then to D{M ,M ′}(Ω × Ω′)

′
and

has its support contained in the product of a compact subset of Om by a compact

subset of O′
m′ . By Proposition 4.3, there is then a family (µm,m′

α,β )(α,β)∈Nr
0×Ns

0
of

Borel measures on Ω × Ω′ such that

sup
(α,β)∈Nr

0×Ns
0

n|α|+|β|M|α|M
′
|β||µ

m,m′

α,β |(Ω × Ω′) < ∞, ∀n ∈ N;

supp(µm,m′

α,β ) ⊂ Om ×O′
m′ , ∀(α, β) ∈ N

r
0 × N

s
0;

〈ψm(x)ψ
′
m′(y)S, ϕ〉 = ∑

(α,β)∈Nr
0×Ns

0

∫

Ω×Ω′
D(α,β)ϕ dµm,m′

α,β ,

for every ϕ ∈ D{M ,M ′}(Ω × Ω′), the series converging absolutely and uniformly

on the bounded subsets of D{M ,M ′}(Ω × Ω′).

Now, for every (α, β) ∈ Nr
0 × Ns

0, uα,β := ∑m,m′∈N µm,m′

α,β clearly defines a

Radon measure on Ω × Ω′. Moreover, for every n ∈ N, there is N ∈ N such that

supp(µm,m′

α,β ) ∩ (Kn × K′
n) = ∅ if m, m′ ≥ N; this leads to

||uα,β||Kn×K′
n
≤ ∑

m,m′≤N

|µm,m′

α,β |(Ω × Ω′)

hence
sup

(α,β)∈Nr
0×Ns

0

n|α|+|β|M|α|M
′
|β|||uα,β||Kn×K′

n
< ∞.

So we may apply Theorem 4.4 and obtain that

T : D
{M ,M ′}(Ω × Ω′) → C; ϕ 7→ ∑

(α,β)∈Nr
0×Ns

0

〈uα,β, D(α,β)ϕ〉

is a continuous linear functional, the series converging absolutely and uniformly

on the bonded subsets of D{M ,M ′}(Ω × Ω′).

As it is a direct matter to prove that 〈T, .〉 = 〈S, .〉 on D{M ,M ′}(Ω × Ω′), we
conclude at once.
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5 Case of the space D
{M ,M ′}
(Lp)

(Ω × Ω′)

Given p ∈ [1, ∞], Lp(Ω × Ω′) and L p(Ω × Ω′) designate the classical Lebesgue

spaces and for f ∈ f̃ ∈ Lp(Ω × Ω′), we set

‖ f‖p = || f̃ ||p = (
∫

Ω×Ω′
| f (x, y)|p dx dy)1/p if 1 ≤ p < ∞

and
‖ f‖∞ = || f̃ ||∞ = sup ess{| f (x, y)| : (x, y) ∈ Ω × Ω′}.

From now on, in this paragraph, for p ∈ [1, ∞[, we identify the Banach space
X of the basic construction with Lp(Ω × Ω′).

Given p ∈ [1, ∞[, we now adapt the introduction by Schwartz of the space
DLp(Rk) (cf. [9], p. 199) to our setting.

The notation D
(M ,M ′),h
(Lp)

(K × K′) requires that K and K′ are non empty compact

subsets of Rr and Rs respectively and that h is a positive number. It designates the
following Banach space: its elements are the C∞-functions ϕ on R

r × R
s having

their support contained in K × K′ and such that

|ϕ|p,h := sup
(α,β)∈Nr

0×Ns
0

||D(α,β)ϕ||p

h|α|+|β|M|α|M
′
|β|

< ∞;

its norm is |·|p,h.

The space D
{M ,M ′}
(Lp)

(K × K′) is then the inductive limit of the spaces

D
(M ,M ′),n
(Lp)

(K × K′) for n ∈ N and the space D
{M ,M ′}
(Lp)

(Ω × Ω′) is the inductive

limit of the spaces D
{M ,M ′}
(Lp)

(Kn × K′
n). Clearly these spaces are Hausdorff (LB)-

spaces. In fact we have a lot more.

Proposition 5.1. For every n ∈ N, the closed unit ball Bn of the space

D
(M ,M ′),n
(Lp)

(K × K′) is a compact subset of D
(M ,M ′),n+1
(Lp)

(K × K′).

So D
{M ,M ′}
(Lp)

(K × K′) and D
{M ,M ′}
(Lp)

(Ω × Ω′) are regular (LB)-spaces.

Proof. We first establish that, for every (α, β) ∈ Nr
0 × Ns

0, the set

{D(α,β)ϕ : ϕ ∈ Bn} is uniformly bounded; as a consequence, these sets will also
be equicontinuous. Indeed, setting 1k = (1, . . . , 1) ∈ Nk

0, we know that, for every
ϕ ∈ Bn, we have

D(α,β)ϕ(x, y) =
∫ x1

−∞
. . .

∫ xr

−∞

∫ y1

−∞
. . .

∫ ys

−∞
D(α+1r ,β+1s)ϕ(t) dt

hence, with q defined by 1/p + 1/q = 1,

|D(α,β)ϕ(x, y)| ≤ µ(K × K′)1/qn|α|+|β|+r+sM|α|+rM′
|β|+s |ϕ|p,n

where µ is the Lebesgue measure.
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So, given a sequence (ϕm)m∈N of Bn, the Arzela-Ascoli theorem provides a
subsequence (ϕm(k))k∈N as well as a function ϕ ∈ C∞(Rr × Rs) such that, for

every (α, β) ∈ Nr
0 × Ns

0, the sequence (D(α,β)ϕm(k))k∈N converges uniformly on

Rr × Rs to D(α,β)ϕ. Therefore it is clear that ϕ belongs to Bn.
To conclude, it suffices to prove that the sequence (ϕm(k))k∈N converges to ϕ in

D
(M ,M ′),n+1
(Lp)

(K × K′). Given ε > 0, we first fix m0 ∈ N such that (n/(n + 1))m0 ≤

ε/4 and next chose k0 ∈ N such that

µ(K × K′)1/p||D(α,β)ϕm(k) − D(α,β)ϕ||Rr×Rs ≤
ε

2

for every (α, β) ∈ Nr
0 × Ns

0 such that |α| ≤ m0, |β| ≤ m0 and k ≥ k0. Then, for
k ≥ k0, we successively obtain

||ϕm(k) − ϕ||p,n+1

≤ sup
|α|,|β|≤m0

||D(α,β)ϕm(k) − D(α,β)ϕ||p + sup
|α|+|β|≥m0

||D(α,β)ϕm(k) − D(α,β)ϕ||p

(n + 1)|α|+|β|M|α|M
′
|β|

≤ µ(K × K′)1/p sup
|α|,|β|≤m0

||D(α,β)ϕm(k) − D(α,β)ϕ||Rr×Rs

+
ε

4
(|ϕm(k)|p,n + |ϕ|p,n) ≤ ε.

Hence the conclusion.

Notation. For every n ∈ N, the linear map

ξn : D
(M ,M ′),n
(Lp)

(K × K′) → Yn; ϕ 7→ (D̃(α,β)ϕ)(α,β)∈Nr
0×Ns

0

clearly is an isometry from D
(M ,M ′),n
(Lp)

(K × K′) onto its image Pn considered as a

topological vector subspace of Yn. We then introduce P as the topological vector
subspace ∪∞

n=1Pn of Y and consider the map

ξ : D
{M ,M ′}
(Lp)

(K × K′) → P; : ϕ 7→ (D̃(α,β)ϕ)(α,β)∈Nr
0×Ns

0
.

It is clear that ξ is a continuous linear bijection. Acting as in the proof of Proposi-
tion 4.1 leads to the following property.

Proposition 5.2. The spaces D
{M ,M ′}
(Lp)

(K × K′) and P are topologically isomorphic;

more specifically ξ is a topological isomorphism.

The following property justifies the fact that the elements of the topological

dual of D
{M ,M ′}
(Lp)

(Ω × Ω′) may be considered as ultradistributions.

Proposition 5.3. For every p ∈ [1, ∞[ and n ∈ N, the inclusion maps

In : D
(M ,M ′),n(K × K′) → D

(M ,M ′),n
(Lp)

(K × K′),

I : D
{M ,M ′}(K × K′) → D

{M ,M ′}
(Lp)

(K × K′)
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and

J : D
{M ,M ′}(Ω × Ω′) → D

{M ,M ′}
(Lp)

(Ω × Ω′)

are well defined continuous linear maps. Moreover J has a dense image.

Proof. It is a direct matter to establish that these maps are well defined,
continuous and linear.

To conclude, let us prove the following deeper property: every element ϕ

of D
(M ,M ′),n
(Lp)

(Kn × K′
n) is the limit in D

(M ,M ′),n+1
(Lp)

(Kn+1 × K′
n+1) of a sequence

(ϕm)m∈N of D (M ,M ′),n+1(Kn+1 × K′
n+1).

Setting Bk(d) := {x ∈ Rk : |x| ≤ d} for d > 0, we first chose a strictly decreas-
ing sequence of positive numbers converging to 0 and such that (Kn × K′

n) +
(Br(d1)× Bs(d1)) ⊂ K◦

n+1 × K′◦
n+1. We next chose a sequence (ψm)m∈N such that,

for every m ∈ N, ψm belongs to D (M ,M ′),n(Br(dm)× Bs(dm))),∫
Rr×Rs ψm(x, y) dx dy = 1 and ψm(x, y) ≥ 0 for every (x, y) ∈ Rr × Rs. We then

set ϕm = ϕ ⋆ ψm for every m ∈ N. It is a direct matter to check that ϕm belongs to

D (M ,M ′),n(Kn+1 × K′
n+1).

Let us prove that this sequence (ϕm)m∈N converges to ϕ in the space

D
(M ,M ′),n+1
(Lp)

(Kn+1 × K′
n+1). Given ε > 0, we first fix n0 ∈ N0 such that (n/(n +

1))n0 ‖ϕ‖p,n ≤ ε/4. As we know that, for every (α, β) ∈ Nr
0 × Ns

0, the sequence

(D(α,β)ϕm)m∈N converges uniformly on Rr × Rs to D(α,β)ϕ, we next fix m0 ∈ N

such that

||D(α,β)ϕm − D(α,β)ϕ||Rr×Rs ≤
ε

2µ(Kn+1 × K′
n+1)

1/p

hence ||D(α,β)ϕm − D(α,β)ϕ||p ≤ ε/2 for every m ≥ m0 and (α, β) ∈ Nr
0 × Ns

0
such that |α|, |β| ≤ n0, µ designating the Lebesgue measure. Let us remark now

that, given m ∈ N and (α, β) ∈ N
r
0 × N

s
0, we have D(α,β)ϕ ∈ Lp(Rr × R

s) and

ψm ∈ L1(Rs × Rs) hence D(α,β)ϕm = (D(α,β)ϕ) ⋆ ψm ∈ Lp(Rr × Rs) with

||D(α,β)ϕm||p ≤ ||D(α,β)ϕ||p||ψm||1 = ||D(α,β)ϕ||p.

This leads directly to ||ϕm − ϕ||p,n+1 ≤ ε for every m ≥ m0. Hence the conclusion.

Proposition 5.4. If M and M ′ are stable under differential operators, then, for every

p ∈ [1, ∞[, the canonical injection from D{M ,M ′}(K × K′) [resp. D{M ,M ′}(Ω × Ω′)]

into D
{M ,M ′}
(Lp)

(K × K′) [resp. D
{M ,M ′}
(Lp)

(Ω × Ω′)] is a topological isomorphism.

Proof. As M and M ′ are stable under differential operators, there are con-
stants A, H > 0 such that Mp+r ≤ AHrpMp and M′

p+r ≤ AHspM′
p for every

p ∈ N0.
To conclude, we just need to prove that, for t = sup{r, s} and every n ∈ N, the

inclusion map from D
(M ,M ′),n
(Lp)

(K × K′) into D (M ,M ′),Htn(K × K′) is well defined,

continuous and linear.
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Let us set 1k = (1, . . . , 1) ∈ N
k
0 and chose C > 0 such that K ×K′ ⊂ [−C, C]r+s.

For every ϕ ∈ D
(M ,M ′),n
(Lp)

(K × K′), (α, β) ∈ Nr
0 × Ns

0 and (x, y) ∈ Rr × Rs, we

then have

D(α,β)ϕ(x, y) =
∫ x1

−∞
· · ·

∫ xr

−∞

∫ y1

−∞
· · ·

∫ ys

−∞
D(α+1r,β+1s)ϕ(t) dt

hence
||D(α,β)ϕ||K×K′ ≤ (2C)(r+s)/q||D(α+1r,β+1s)ϕ||p

with q defined by 1/p + 1/q = 1. This leads easily to

‖ϕ‖K×K′,Htn ≤ A2(2C)(r+s)/qnr+s|ϕ|p,n.

Hence the conclusion.

Proceeding as in the proofs of the Proposition 4.2 and the Theorems 4.3, 4.4
and 4.5 leads directly to the following results.

Proposition 5.5. Let K and K′ be non void compact subsets of Ω and Ω′ respectively.

For every continuous linear functional S on D
{M ,M ′}
(Lp)

(Ω × Ω′), there is a family

(gα,β)(α,β)∈Nr
0×Ns

0
of elements of L q(Ω × Ω′) such that

sup
(α,β)∈Nr

0×Ns
0

n|α|+|β|M|α|M
′
|β|||gα,β||q < ∞, ∀n ∈ N,

and

〈S, ϕ〉 = ∑
(α,β)∈Nr

0×Ns
0

∫

Ω×Ω′
D(α,β)ϕ.gα,β dx dy, ∀ϕ ∈ D

{M ,M ′}
(Lp)

(K × K′),

these series converging absolutely and uniformly on the bounded subsets of

D
{M ,M ′}
(Lp)

(K × K′).

Theorem 5.6. Let H and K be compact subsets of Ω such that H ⊂ K◦ and let H′

and K′ be compact subsets of Ω′ such that H′ ⊂ K′◦.

If S ∈ D
{M ,M ′}
(Lp)

(Ω × Ω′)′ has its support contained in H × H′, there is a family

(gα,β)(α,β)∈Nr
0×Ns

0
of elements of L q(Ω × Ω′) such that

a) sup(α,β)∈Nr
0×Ns

0
n|α|+|β|M|α|M

′
|β|||gα,β||q < ∞, ∀n ∈ N;

b) supp(gα,β) ⊂ K × K′, ∀(α, β) ∈ Nr
0 × Ns

0;

c) 〈S, ϕ〉 = ∑(α,β)∈Nr
0×Ns

0

∫
Ω×Ω′ D(α,β)ϕ.gα,β dx dy, ∀ϕ ∈ D

{M ,M ′}
(Lp)

(Ω × Ω′),

the series converging absolutely and uniformly on the bounded subsets of

D
{M ,M ′}
(Lp)

(Ω × Ω′).

Theorem 5.7. Let (gα,β)(α,β)∈Nr
0×Ns

0
be a family of elements of L

q
loc(Ω × Ω′) such

that, for every n ∈ N and compact subsets K of Ω and K′ of Ω′,

sup
(α,β)∈Nr

0×Ns
0

n|α|+|β|M|α|M
′
|β|||gα,β|K×K′||q < ∞.
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Then

S : D
{M ,M ′}
(Lp)

(Ω × Ω′) → C; ϕ 7→ ∑
(α,β)∈Nr

0×Ns
0

∫

Ω×Ω′
D(α,β)ϕ.gα,β dx dy

is a well defined continuous linear functional, the series converging absolutely and uni-

formly on the bounded subsets of D
{M ,M ′}
(Lp)

(Ω × Ω′).

Theorem 5.8. For every continuous linear functional S on the space

D
{M ,M ′}
(Lp)

(Ω × Ω′), there is a family (gα,β)(α,β)∈Nr
0×Ns

0
of elements of L

q
loc(Ω × Ω′)

such that
sup

(α,β)∈Nr
0×Ns

0

n|α|+|β|M|α|M
′
|β|||gα,β|K×K′||q < ∞

for every n ∈ N and compact subsets K and K′ of Ω and Ω′ respectively, as well as

〈S, ϕ〉 = ∑
(α,β)∈Nr

0×Ns
0

∫

Ω×Ω′
D(α,β)ϕ.gα,β dx dy, ∀ϕ ∈ D

{M ,M ′}
(Lp)

(Ω × Ω′),

the series converging absolutely and uniformly on the bounded subsets of

D
{M ,M ′}
(Lp)

(Ω × Ω′).
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