On the classification of rational homotopy types of elliptic spaces with homotopy Euler characteristic zero for $\operatorname{dim}<8$

Mamoru Mimura Hiroo Shiga

Abstract

We classify rational homotopy types of elliptic spaces with homotopy Euler characteristic zero for $\operatorname{dim}<8$.

1 Introduction

Throughout the paper we consider connected, simply connected spaces.
Definition 1.1. A space X is said to be elliptic if $\operatorname{dim} \pi_{*}(X) \otimes Q<\infty$ and $\operatorname{dim} H^{*}(X ; Q)<\infty$.
$\chi_{\pi}(X)=\sum(-1)^{p} \operatorname{dim} \pi_{p}(X) \otimes \mathbb{Q}$ is called the homotopy Euler characteristic;
$\chi_{c}(X)=\sum_{p}^{p}(-1)^{p} \operatorname{dim} H^{p}(X ; Q)$ is called the (cohomology) Euler characteristic.
Then in general there hold

$$
\chi_{\pi}(X) \leq 0 \quad \text { and } \quad \chi_{c}(X) \geq 0 .
$$

Furthermore it is shown in [На, Theorem 1, p.175] that the following conditions are equivalent:
(1) $\chi_{\pi}(X)=0$,
(2) $\chi_{c}(X)>0$,
(3) $H^{*}(X ; \mathbb{Q})$ is evenly graded,

[^0]and that $H^{*}(X ; \mathbb{Q})$ is a polynomial algebra truncated by a Borel ideal in this case.
The purpose of this paper is to classify the rational homotopy types of elliptic spaces with $\chi_{\pi}(X)=0$ for $\operatorname{dim} H^{*}(X ; Q)<8$.

By the dimension formula (2.2), the cohomology algebra of such a space is isomorphic to either $\mathbb{Q}\left[x_{1}\right] /\left(f_{1}\right)$ or $\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(f_{1}, f_{2}\right)$ as a graded algebra, where $\left(f_{1}, f_{2}\right)$ is the ideal generated by a regular sequence $\left\{f_{1}, f_{2}\right\}$, and hence the rational homotopy types of this kind are intrinsically formal, that is, two spaces with the isomorphic rational cohomology algebras are rationally homotopy equivalent. Thus, for our purpose, it is sufficient to classify graded algebras of the type $\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(f_{1}, f_{2}\right)$.
M.R.Hilali tried in his thesis [Hi] to classify such elliptic rational homotopy types whose dimension of the cohomology algebra is not greater than 6. However his argument seems to be incorrect. Correcting it is a starting point of our work [MS]; in fact, there are infinitely many non-isomorphic Q-algebras A such that

$$
A \underset{\mathrm{Q}}{\otimes} \overline{\mathbf{Q}} \cong \overline{\mathbb{Q}}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}, x_{2}^{2}\right) .
$$

Let X be a graded algebra over \mathbb{Q} and K a Galois extension of \mathbb{Q}. A graded algebra Y over \mathbb{Q} is said to be a K / \mathbb{Q} form if Y becomes isomorphic to X when the ground field is extended to K. The set of \mathbb{Q}-isomorphism classes of X forms a set $E(K / Q, X)$. It is known that the set $E(K / Q, X)$ corresponds bijectively to the Galois cohomology $H^{1}(\operatorname{Gal}(K / \mathbb{Q}), A(K))$, where $A(K)$ denotes the group of K-automorphisms of X (see [W], p.136).

Our result of classifying them is given as follows:
Theorem 1.2. Let A be the cohomology algebra of an elliptic space with $\chi_{\pi}=0$. If $\operatorname{dim} H^{*}(X ; Q)<8$, then A is isomorphic to one of the following:

```
\(\operatorname{dim} \mid\) isomorphic classes of graded algebras

Q
\(\left\{\mathbf{Q}[x] /\left(x^{2}\right),|x|=2 n \mid n \in \mathbb{N}\right\}\)
\(\left\{\mathbb{Q}[x] /\left(x^{3}\right),|x|=2 n \mid n \in \mathbb{N}\right\}\)
\(\left\{\mathbb{Q}[x] /\left(x^{4}\right),|x|=2 n \mid n \in \mathbb{N}\right\}\),
\(\left\{\mathbf{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}+a x_{2}^{2}, x_{1} x_{2}\right),\left|x_{1}\right|=\left|x_{2}\right|=2 n \mid a \in \mathbf{Q}^{\times} / \mathbf{Q}^{\times 2}, n \in \mathbb{N}\right\}\),
\(\left\{\mathbf{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}, x_{2}^{2}\right),\left|x_{1}\right|=2 n,\left|x_{2}\right|=2 m \mid(n, m) \in \mathbb{N}^{2}, n \neq m\right\}\)
\(\left\{\mathbb{Q}[x] /\left(x^{5}\right),|x|=2 n \mid n \in \mathbb{N}\right\}\),
\(\left\{\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{1}^{3}+x_{2}^{2}\right),\left|x_{1}\right|=4 n,\left|x_{2}\right|=6 n \mid n \in \mathbb{N}\right\}\)
\(\left\{\mathrm{Q}[x] /\left(x^{6}\right),|x|=2 n \mid n \in \mathbb{N}\right\}\),
\(\left\{\mathbf{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}+a x_{2}^{2}, s x_{1}^{3}+t x_{1}^{2} x_{2}\right),\left|x_{1}\right|=\left|x_{2}\right|=2 n \mid(a,[s, t]) \in T, n \in \mathbb{N}\right\}\),
\(\left\{\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}, x_{2}^{3}\right),\left|x_{1}\right|=2 n,\left|x_{2}\right|=2 m \mid(n, m) \in \mathbb{N}, n \neq m\right\}\),
\(\left\{\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{2}^{2}+a x_{1}^{4}\right),\left|x_{1}\right|=2 n,\left|x_{2}\right|=4 n \mid n \in \mathbb{N}, a \in \mathbb{Q}^{\times} / \mathbf{Q}^{\times 2}\right\}\)
\(\left\{\mathbb{Q}[x] /\left(x^{7}\right),|x|=2 n \mid n \in \mathbb{N}\right\}\),
\(\left\{\mathrm{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{3}+x_{2}^{2}, x_{1}^{2} x_{2}\right),\left|x_{1}\right|=4 n,\left|x_{2}\right|=6 n \mid n \in \mathbb{N}\right\}\),
\(\left\{\mathbf{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{1}^{5}+x_{2}^{2}\right),\left|x_{1}\right|=4 n,\left|x_{2}\right|=10 n \mid n \in \mathbb{N}\right\}\),
\(\left\{\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{1}^{4}+x_{2}^{3}\right),\left|x_{1}\right|=6 n,\left|x_{2}\right|=8 n \mid n \in \mathbb{N}\right\}\)

The set \(T\) in the table is defined as follows. Let
\[
P^{1}(\mathbb{Q})=\mathbb{Q} \times \mathbb{Q}-\{(0,0)\} / \sim,
\]
where \(\left(t_{1}, s_{1}\right) \sim\left(t_{2}, s_{2}\right)\) if and only if there is an element \(r \in \mathbb{Q}^{\times}\)such that \(r t_{1}=\) \(t_{2}\) and \(r s_{1}=s_{2}\). Set \(M_{1}=\mathbf{Q}^{\times} \times P^{1}(\mathbf{Q})\) and \(M_{2}=\mathbf{Q}^{\times 2} \times P^{1}(\mathbf{Q})\). We define an equivalence relation \(\sim\) on \(M_{1} \backslash M_{2}\) as follows: \(\left(\alpha_{1},\left[s_{1}, t_{1}\right]\right) \sim\left(\alpha_{2},\left[s_{2}, t_{2}\right]\right)\) if and only if the following (1) and (2) are satisfied:
1. \(\alpha_{1} \cdot \alpha_{2} \in \mathbb{Q}^{\times 2}\); (then the quadratic extensions \(\mathbb{Q}\left(\sqrt{\alpha_{1}}\right)\) and \(\mathbb{Q}\left(\sqrt{\alpha_{2}}\right)\) coincide, which we denote by \(\mathbb{K}\).)
2.
\[
\frac{t_{2}-s_{2} \sqrt{\alpha_{2}}}{t_{2}+s_{2} \sqrt{\alpha_{2}}} \cdot \frac{t_{1}+s_{1} \sqrt{\alpha_{1}}}{t_{1}-s_{1} \sqrt{\alpha_{1}}} \in \mathbb{K}_{1} \times 3,
\]
where \(\mathbb{K}_{1}\) consists of elements of \(\mathbb{K}\) whose norms are 1 .
Let \(\tilde{M}_{2}=\left\{\left(r^{2},[s, t]\right) \in M_{2} \mid t \pm s r \neq 0\right\}\), and on \(\tilde{M}_{2}\) we define an equivalence relation \(\sim\) as follows:
\[
\left(r_{1}^{2},\left[s_{1}, t_{1}\right]\right) \sim\left(r_{2}^{2},\left[s_{2}, t_{2}\right]\right) \Longleftrightarrow \frac{t_{2}-s_{2} r_{2}}{t_{2}+s_{2} r_{2}} \cdot \frac{t_{1}+s_{1} r_{1}}{t_{1}-s_{1} r_{1}} \in \mathbb{Q}^{\times 3} .
\]

We set
\[
T=\left(M_{1} \backslash M_{2}\right) / \sim \cup \tilde{M}_{2} / \sim .
\]

Then an element \((\alpha,[s, t]) \in T\) corresponds to the isomorphism classes of the algebras
\[
\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\alpha x_{2}^{2}, s x_{1}^{3}+t x_{1}^{2} x_{2}\right)
\]
of regular type. (See the last paragraph of Section 5 for details.)
We denote by \(B\) and \(C\) the family given in the second line of \(\operatorname{dim} 4\) and 6 respectively:
\[
\begin{gathered}
B=\left\{\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}+a x_{2}^{2}, x_{1} x_{2}\right),\left|x_{1}\right|=\left|x_{2}\right|=2 n \mid a \in \mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}, n \in \mathbb{N}\right\}, \\
C=\left\{\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}+a x_{2}^{2}, s x_{1}^{3}+t x_{1}^{2} x_{2}\right),\left|x_{1}\right|=\left|x_{2}\right|=2 n \mid(a,[s, t]) \in T, n \in \mathbb{N}\right\} .
\end{gathered}
\]

All the elements of the family in \(B\) (resp. C) are isomorphic as \(\overline{\mathbb{Q}}\)-algebra after tensoring \(\overline{\mathbb{Q}}\) over \(\mathbb{Q}\). However they give us a family of infinitely many non isomorphic \(Q\)-algebras in dimensions 4 and 6 even when ignoring the gradings.

The spaces representing the algebras in the table above can be constructed as follows:
(1) The space \(X\) such that \(H^{*}(X ; \mathbb{Q}) \cong \mathbb{Q}[x] /\left(x^{k}\right) ;\) Let \(\varphi: K(\mathbb{Q},|x|) \rightarrow K(\mathbf{Q}, k|x|)\) be a map representing the element
\[
x^{k} \in \mathbb{Q}[x] \cong H^{*}(K(\mathbb{Q},|x|) ; \mathbf{Q}) .
\]

Then \(X\) is given as the homotopy fibre of \(\varphi\).
(2) The space \(X\) such that \(H^{*}(X ; \mathbb{Q}) \cong \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(f_{1}, f_{2}\right)\), where \(\left(f_{1}, f_{2}\right)\) is the ideal generated by elements \(f_{i} \in \mathbb{Q}\left[x_{1}, x_{2}\right]\); Let \(\varphi_{i}: K\left(\mathbb{Q},\left|x_{1}\right|\right) \times K\left(\mathbb{Q},\left|x_{2}\right|\right) \rightarrow\)
\(K\left(\mathbb{Q},\left|f_{i}\right|\right)\) be a map representing the element \(f_{i} \in \mathbb{Q}\left[x_{1}, x_{2}\right] \cong H^{*}\left(K\left(\mathbb{Q},\left|x_{1}\right|\right) \times\right.\) \(\left.K\left(\mathbb{Q},\left|x_{2}\right|\right) ; \mathbb{Q}\right)\) for \(i=1,2\) and let \(F\) be the homotopy fibre of \(\varphi_{1}\). Then \(X\) is given as the homotopy fibre of the composite map
\[
\varphi_{2} \circ i: F \rightarrow K\left(\mathbb{Q},\left|x_{1}\right|\right) \times K\left(\mathbb{Q},\left|x_{2}\right|\right) \rightarrow K\left(\mathbb{Q},\left|f_{2}\right|\right),
\]
where \(i\) is the inclusion of the fibre.
Our method to classify the algebras is based on the dimension formula (2.2) for \(n=2\) :
\[
\operatorname{dim}_{\mathbb{Q}} \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(f_{1}, f_{2}\right)=\left|f_{1}\right| \cdot\left|f_{2}\right| /\left|x_{1}\right| \cdot\left|x_{2}\right|
\]
due to Koszul, where \(\left|x_{i}\right|\) and \(\left|f_{i}\right|\) denote the degree of \(x_{i}\) and \(f_{i}\) respectively.
The present work is the revised version of [MS]. However there are no alterations in the results but some minor modifications in the expressions. During these past years, following our method in [MS], Kono-Tamamura obtain in [KT1] and [KT2] similar results in dimensions 10, 11, 13; their arguments are entirely the same as ours given in [MS].

The paper is organized as follows. In Section 2 we consider the case of dimensions 1, 2,3; in Section 3 the case of dimension 4; in Section 4 the case of dimension 5 ; in Section 5 the case of dimension 6; in Section 6 the case of dimension 7.

Acknowledgement: We thank T.Yamaguchi for calling our attention to [Hi] and also N. Iwase, H. Komatu, T. Maeda and T. Tasaka for useful conversations while preparing the manuscript.

\section*{2 The case of dimensions 1, 2, 3}

Let \(\left\{f_{1}, \cdots, f_{n}\right\}\) be a regular sequence of graded elements in a polynomial ring \(\mathrm{Q}\left[x_{1}, \cdots, x_{n}\right]\). We can assume that each \(f_{i}(i=1, \cdots, n)\) has no constant or linear terms and that
\[
\begin{equation*}
\left|x_{1}\right| \leq \cdots \leq\left|x_{n}\right|, \quad\left|f_{1}\right| \leq \cdots \leq\left|f_{n}\right| . \tag{2.1}
\end{equation*}
\]

Put \(A=\mathbb{Q}\left[x_{1}, \cdots, x_{n}\right] /\left(f_{1}, \cdots, f_{n}\right)\). Then by the dimension formula (see [FHT; (32.14), p.446]), we have
\[
\begin{equation*}
\operatorname{dim}_{\mathrm{Q}} A=\left|f_{1}\right| \cdots\left|f_{n}\right| /\left|x_{1}\right| \cdots\left|x_{n}\right| \tag{2.2}
\end{equation*}
\]

Lemma 2.1. \(2\left|x_{i}\right| \leq\left|f_{i}\right|\) for \(i=1, \cdots, n\).
Proof. We prove by induction on \(i\). Since \(f_{1}\) has no linear terms, we have \(\left|f_{1}\right| \geq\) \(2\left|x_{1}\right|\). As inductive hypothesis we assume that \(2\left|x_{i}\right| \leq\left|f_{i}\right|\) for \(i=1, \cdots, k\). If \(\left|x_{k}\right|=\left|x_{k+1}\right|\), then \(\left|f_{k+1}\right| \geq\left|f_{k}\right| \geq 2\left|x_{k}\right|=2\left|x_{k+1}\right|\). Let \(\left|x_{k+1}\right|>\left|x_{k}\right|\) and suppose \(\left|f_{k+1}\right|<2\left|x_{k+1}\right|\). Then \(f_{k+1}\) is contained in the ideal ( \(x_{k+1} x_{i}\) for \(i \leq k, x_{i} x_{j}\) for \(i, j \leq k)\), and hence we see that \(f_{k+1} \in\left(x_{1}, \cdots, x_{k}\right)\), the ideal generated by \(\left\{x_{1}, \cdots, x_{k}\right\}\). Thus \(f_{1}, \cdots, f_{k+1}\) are all contained in the ideal \(\left(x_{1}, \cdots, x_{k}\right)\), that is, \(\left(f_{1}, \cdots, f_{k+1}\right) \subset\left(x_{1}, \cdots, x_{k}\right)\). Then, for (any irreducible component of) varieties of \(\overline{\mathrm{Q}}\)-points, we have
\[
V\left(f_{1}, \cdots, f_{k+1}\right) \supset V\left(x_{1}, \cdots, x_{k}\right)
\]
where
\[
\begin{aligned}
& V\left(f_{1}, \cdots, f_{k+1}\right)=\left\{\mathbf{x} \in \overline{\mathbb{Q}}^{n} \mid f_{i}(\mathbf{x})=0, \quad 1 \leq i \leq k+1\right\}, \\
& V\left(x_{1}, \cdots, x_{k}\right)=\left\{\mathbf{x} \in \overline{\mathbb{Q}}^{n} \mid x_{i}=0, \quad 1 \leq i \leq k\right\} .
\end{aligned}
\]

Hence we have
\[
\operatorname{dim} V\left(f_{1}, \cdots, f_{k+1}\right) \geq \operatorname{dim} V\left(x_{1}, \cdots, x_{k}\right)=n-k,
\]
which contradicts the fact that \(\left\{f_{1}, \cdots, f_{k+1}\right\}\) is a regular sequence.
Combining (2) and Lemma 2.1, we have
\[
\begin{equation*}
\operatorname{dim}_{\mathrm{Q}} A \geq 2^{n} \tag{2.3}
\end{equation*}
\]

If \(\operatorname{dim}_{\mathbb{Q}} A=1\), then \(n=0\) and \(A \cong \mathbb{Q}\). If \(\operatorname{dim}_{\mathbb{Q}} A=2\), then \(n=1\) and \(A \cong \mathbb{Q}[x] /\left(x^{2}\right)\). If \(\operatorname{dim}_{\mathbb{Q}} A=3\), then \(n=1\) and \(A \cong \mathbb{Q}[x] /\left(x^{3}\right)\).

\section*{3 The case of dimension 4}

Let \(A\) be the cohomology algebra of an elliptic space with \(\chi_{\pi}=0\) such that \(\operatorname{dim}_{\mathbb{Q}} A=4\). Then \(n=1\) or 2 in (2). If \(n=1\), then \(A \cong \mathbb{Q}[x] /\left(x^{4}\right)\). If \(n=2\), then it follows from Lemma 2.1 and (2.2) that
\[
\left|f_{1}\right|=2\left|x_{1}\right|, \quad\left|f_{2}\right|=2\left|x_{2}\right| .
\]

If \(\left|x_{1}\right|<\left|x_{2}\right|\), then \(\left(f_{1}\right)=\left(x_{1}^{2}\right)\), and \(f_{2}\) is of the following form:
\[
f_{2}=a x_{2}^{2}+b x_{1}^{k_{1}} x_{2}+c x_{1}^{k_{2}}
\]
with \(a \neq 0\), where \(k_{2}>k_{1} \geq 2\). Hence we obtain that
\[
\left(f_{1}, f_{2}\right)=\left(x_{1}^{2}, x_{2}^{2}\right)
\]

If \(\left|x_{1}\right|=\left|x_{2}\right|\), then we may set
\[
f_{1}=a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}, \quad f_{2}=d x_{1}^{2}+e x_{1} x_{2}+f x_{2}^{2} \quad(a, b, c, d, e, f \in \mathbb{Q})
\]

If \(a=c=0\), then \(\left(f_{1}, f_{2}\right)=\left(x_{1} x_{2}, x_{1}^{2}+\alpha x_{2}^{2}\right)\), where \(\alpha=\frac{f}{d} \in \mathbb{Q}^{\times}\). If \(a \neq 0\), by setting \(a\left(x_{1}+\frac{b}{2 a} x_{2}\right)=u_{1}\), we have
\[
f_{1}=u_{1}^{2}+\alpha x_{2}^{2}, \quad \alpha=\frac{4 a c-b^{2}}{4 a} .
\]

By using \(f_{1}\), we obtain the form \(\left(f_{1}, f_{2}\right)=\left(u_{1}^{2}+\alpha x_{2}^{2}, g u_{1} x_{2}+h x_{2}^{2}\right)\). If \(g=0\), then we have \(\left(f_{1}, f_{2}\right)=\left(u_{1}^{2}, x_{2}^{2}\right)\). If \(g \neq 0\), we set \(v_{1}=g u_{1}+h x_{2}\). Then \(f_{2}=v_{1} x_{2}\); using \(f_{2}\) we have \(\left(f_{1}, f_{2}\right)=\left(v_{1}^{2}+\beta x_{2}^{2}, v_{1} x_{2}\right)\) for some \(\beta \in \mathbb{Q}^{\times}\). The case \(c \neq 0\) is similar. Thus we have shown the following

Lemma 3.1. Let \(f_{1}\) and \(f_{2}\) be homogeneous polynomials of degree 2. Then \(\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(f_{1}, f_{2}\right)\) is isomorphic to \(\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}+\alpha x_{2}^{2}, x_{1} x_{2}\right)\) for some \(\alpha \in \mathbb{Q}^{\times}\).

Remark. \(\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}, x_{2}^{2}\right)\) is isomorphic to \(\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}+x_{2}^{2}, x_{1} x_{2}\right)\) as \(\mathbf{Q}\) - algebras.

Notation. \(\quad A_{\gamma}=\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}+\gamma x_{2}^{2}, x_{1} x_{2}\right)\) for \(\gamma \in \mathbb{Q}^{\times}\).
Proposition 3.2. The algebras \(A_{\alpha}\) and \(A_{\beta}\left(\alpha, \beta \in \mathbb{Q}^{\times}\right)\)are isomorphic if and only if \(\alpha \cdot \beta^{-1} \in \mathbb{Q}^{\times 2}\).

Proof. Suppose that there is an isomorphism \(\varphi: A_{\alpha} \rightarrow A_{\beta}\). Then we can set
\[
\varphi\left(x_{1}\right)=p_{1} x_{1}+q_{1} x_{2}, \quad \varphi\left(x_{2}\right)=p_{2} x_{1}+q_{2} x_{2} \quad\left(p_{i}, q_{i} \in \mathbb{Q}\right) .
\]

Then we have
\[
\begin{aligned}
& \varphi\left(x_{1}^{2}+\alpha x_{2}^{2}\right)=\left(p_{1}^{2}+\alpha p_{2}^{2}\right) x_{1}^{2}+2\left(p_{1} q_{1}+\alpha p_{2} q_{2}\right) x_{1} x_{2}+\left(q_{1}^{2}+\alpha q_{2}^{2}\right) x_{2}^{2} \\
& \varphi\left(x_{1} x_{2}\right)=p_{1} p_{2} x_{1}^{2}+\left(p_{1} q_{2}+p_{2} q_{1}\right) x_{1} x_{2}+q_{1} q_{2} x_{2}^{2} .
\end{aligned}
\]

Since these elements are zero in \(A_{\beta}\), we have \(\left(p_{1}^{2}+\alpha p_{2}^{2}\right) \beta=q_{1}^{2}+\alpha q_{2}^{2}\) and \(p_{1} p_{2} \beta=q_{1} q_{2}\). Thus we have
\[
\alpha \beta^{-1}=\left(p_{1} / q_{2}\right)^{2} \in \mathbb{Q}^{\times 2} .
\]

Conversely, if \(\alpha \beta^{-1} \in \mathbb{Q}^{\times 2}\), the map \(\varphi: A_{\alpha} \rightarrow A_{\beta}\) defined by
\[
\varphi\left(x_{1}\right)=x_{1}, \quad \varphi\left(x_{2}\right)=r x_{2}
\]
gives an isomorphism \(\varphi\), where \(r\) is an element of \(\mathbb{Q}^{\times}\)such that \(r^{2}=\alpha^{-1} \beta\).

\section*{4 The case of dimension 5}

Let \(A\) be the cohomology algebra of an elliptic space with \(\chi_{\pi}=0\) such that \(\operatorname{dim}_{\mathbb{Q}} A=5\). Then \(n=1\) or 2 in (2.2). If \(n=1\), then \(A \cong \mathbb{Q}[x] /\left(x^{5}\right)\). If \(n=2\), then we have \(\left|f_{1}\right| \cdot\left|f_{2}\right|=5\left|x_{1}\right| \cdot\left|x_{2}\right|\) in (2.2).
(a) Assume that \(\left|f_{1}\right|\) is an integer multiple of \(\left|x_{1}\right|\), that is, \(\left|f_{1}\right|=k\left|x_{1}\right|\) for some integer \(k \geq 2\). By Lemma 2.1 we have
\[
2\left|x_{2}\right| \leq\left|f_{2}\right|=\frac{5}{k}\left|x_{2}\right| .
\]

Hence we have \(k=2\). Then \(f_{2}\) is contained in the ideal generated by \(x_{1}\). By regularity \(f_{1}\) is not contained in the ideal \(\left(x_{1}\right)\). Then \(\left|f_{1}\right|=\ell\left|x_{2}\right|\) for some integer \(\ell \geq 2\). Then we have
\[
2\left|x_{2}\right| \leq\left|f_{1}\right|=2\left|x_{1}\right| .
\]

Hence we have \(\left|x_{1}\right|=\left|x_{2}\right|\). But this contradicts that \(\left|f_{2}\right|=\frac{5}{2}\left|x_{2}\right|\).
(b) Assume that \(\left|f_{1}\right|\) is an integer multiple of \(\left|x_{2}\right|\), that is, \(\left|f_{1}\right|=k\left|x_{2}\right|\) for some integer \(k \geq 1\). Then by Lemma 2.1 we have
\[
2\left|x_{2}\right| \leq\left|f_{2}\right|=\frac{5}{k}\left|x_{1}\right| \leq \frac{5}{k}\left|x_{2}\right| .
\]

Thus we have \(k=1\) or 2 .
If \(k=1\), then \(f_{1}\) is a polynomial of \(x_{1}\) since \(f_{1}\) has no linear terms. But then \(\left|f_{1}\right|\) is an integer multiple of \(\left|x_{1}\right|\), which is impossible by (a).

If \(k=2\), then \(f_{2}\) is contained in the ideal \(\left(x_{2}\right)\), since \(\left|f_{2}\right|=\frac{5}{2}\left|x_{1}\right|\). By regularity \(f_{1}\) is not contained in the ideal \(\left(x_{2}\right)\). This implies that \(\left|f_{1}\right|\) is an integer multiple of \(\left|x_{1}\right|\), which is impossible by (a).
(c) Thus \(\left|f_{1}\right|\) is neither integer multiple of \(\left|x_{1}\right|\) nor of \(\left|x_{2}\right|\), that is, \(f_{1}\) is contained in both \(\left(x_{1}\right)\) and \(\left(x_{2}\right)\). Hence \(f_{2}\) is an integer multiple of both \(\left|x_{1}\right|\) and \(\left|x_{2}\right|\), that is, \(\left|f_{2}\right|=k_{1}\left|x_{1}\right|=k_{2}\left|x_{2}\right|\) for some integers \(k_{1}, k_{2} \geq 2\). Then from the inequality
\[
2\left|x_{1}\right| \leq\left|f_{1}\right|=\frac{5}{k_{2}}\left|x_{1}\right| \leq \frac{5}{k_{2}}\left|x_{2}\right|
\]
we deduce \(k_{2}=2\). If \(k_{1}=2\), then \(\left|x_{1}\right|=\left|x_{2}\right|\), and so \(\left|f_{1}\right|\) is an integer multiple of \(\left|x_{1}\right|\). This contradicts the assumptions. Thus \(k_{1} \geq 3\). Then we have
\[
\frac{5}{2}\left|x_{1}\right|=\left|f_{1}\right| \geq\left|x_{1}\right|+\left|x_{2}\right|=\left|x_{1}\right|+\frac{k_{1}}{2}\left|x_{1}\right|
\]
which implies that \(k_{1}=3\). Then we have
\[
\left|f_{1}\right|=\left|x_{1}\right|+\left|x_{2}\right|, \quad\left|f_{2}\right|=2\left|x_{2}\right|, \quad 3\left|x_{1}\right|=2\left|x_{2}\right|
\]

Thus the only possibility is that
\[
\left(f_{1}, f_{2}\right)=\left(x_{1} x_{2}, x_{1}^{3}+\alpha x_{2}^{2}\right), \quad \alpha \in \mathbb{Q}^{\times}
\]

Proposition 4.1. For any \(\alpha, \beta \in \mathbb{Q}^{\times}\), there is a graded algebra isomorphism
\[
\varphi: \frac{\mathrm{Q}\left[x_{1}, x_{2}\right]}{\left(x_{1} x_{2}, x_{1}^{3}+\alpha x_{2}^{2}\right)} \longrightarrow \frac{\mathrm{Q}\left[x_{1}, x_{2}\right]}{\left(x_{1} x_{2}, x_{1}^{3}+\beta x_{2}^{2}\right)}
\]

Proof. Since \(\left|x_{1}\right|<\left|x_{2}\right|\), the graded map is of the following form:
\[
\varphi\left(x_{1}\right)=p_{1} x_{1}, \quad \varphi\left(x_{2}\right)=q_{2} x_{2}
\]
for some \(p_{1}, q_{2} \in \mathbb{Q}^{\times}\). This correspondence \(\varphi\) defines an isomorphism if and only if \(p_{1}^{3} \beta=\alpha q_{2}^{2}\). Hence by setting \(p_{1}=q_{2}=\alpha \beta^{-1} \in \mathbb{Q}^{\times}\), we obtain the desired isomorphism.

\section*{5 The case of dimension 6}

Let \(A\) be the cohomology algebra of an elliptic space with \(\chi_{\pi}=0\) such that \(\operatorname{dim}_{\mathbb{Q}} A=6\). Then \(n=1\) or 2 in (2). If \(n=1\), then \(A \cong \mathbb{Q}[x] /\left(x^{6}\right)\). So we let \(n=2\) for rest of the section.

First we consider the case \(\left|x_{1}\right|<\left|x_{2}\right|\).
(a) Assume that \(\left|f_{1}\right|\) is an integer multiple of \(\left|x_{2}\right|\), that is, \(\left|f_{1}\right|=k\left|x_{2}\right|\) for some integer \(k \geq 1\). Then we have
\[
2\left|x_{2}\right| \leq\left|f_{2}\right|=\frac{6}{k}\left|x_{1}\right|<\frac{6}{k}\left|x_{2}\right|,
\]
which implies that \(k=1\) or 2 .
If \(k=1\), then \(f_{1}=x_{1}^{m}\) and \(\left|x_{2}\right|=m\left|x_{1}\right|\) with \(m \geq 2\). By the dimension formula (2.2) for \(n=2\) we have
\[
\left|f_{2}\right|=\frac{6}{m}\left|x_{2}\right|
\]

As \(f_{2}\) is not contained in the ideal \(\left(x_{1}\right)\), we deduce that \(\left|f_{2}\right|\) is an integer multiple of \(\left|x_{2}\right|\). Hence \(m=2\) or 3 . If \(m=2\), then \(\left(f_{1}, f_{2}\right)=\left(x_{1}^{2}, x_{2}^{3}\right)\) with \(\left|x_{2}\right|=2\left|x_{1}\right|\). If \(m=3\), then \(\left(f_{1}, f_{2}\right)=\left(x_{1}^{3}, x_{2}^{2}\right)\).

If \(k=2\), then \(\left|f_{1}\right|=2\left|x_{2}\right|\) and \(\left|f_{2}\right|=3\left|x_{1}\right|\). Hence we have \(\left|x_{1}\right|<\left|x_{2}\right| \leq \frac{3}{2}\left|x_{1}\right|\). Suppose \(\left|x_{1}\right|<\left|x_{2}\right|<\frac{3}{2}\left|x_{1}\right|\). Then, since we have \(\left|x_{1}\right|+\left|x_{2}\right|<2\left|x_{2}\right|=\left|f_{1}\right|<\) \(3\left|x_{1}\right|=\left|f_{2}\right|<2\left|x_{1}\right|+\left|x_{2}\right|\), we can deduce
\[
\left(f_{1}, f_{2}\right)=\left(x_{2}^{2}, x_{1}^{3}\right)
\]

Suppose \(\left|x_{2}\right|=\frac{3}{2}\left|x_{1}\right|\). Then we have
\[
f_{1}=a x_{1}^{3}+b x_{2}^{2}, \quad f_{2}=c x_{1}^{3}+d x_{2}^{2}
\]
for some \(a, b, c, d \in \mathbb{Q}\) satisfying \(a d-b c \neq 0\). Hence \(\left(f_{1}, f_{2}\right)=\left(x_{1}^{3}, x_{2}^{2}\right)\).
(b) Assume that \(\left|f_{1}\right|\) is an integer multiple of \(\left|x_{1}\right|\) and not of \(\left|x_{2}\right|\), that is, \(\left|f_{1}\right|=\) \(k\left|x_{1}\right|\) for some integer \(k \geq 2\). If \(k \geq 4\), then \(\left|f_{2}\right| \leq \frac{3}{2}\left|x_{2}\right|\) and \(\left|f_{1}\right|\) is an integer multiple of \(\left|x_{2}\right|\), which is not allowed. Hence \(k=2\) or 3 .

If \(k=2\), then \(\left|f_{1}\right|=2\left|x_{1}\right|\) and \(\left|f_{2}\right|=3\left|x_{2}\right|\). Thus we have
\[
\left(f_{1}, f_{2}\right)=\left(x_{1}^{2}, x_{2}^{3}\right)
\]

If \(k=3\), then \(\left|f_{1}\right|=3\left|x_{1}\right|\) and \(\left|f_{2}\right|=2\left|x_{2}\right|\). If \(\left|x_{2}\right| \neq 2\left|x_{1}\right|\), we see \(\left(f_{1}, f_{2}\right)=\) \(\left(x_{1}^{3}, x_{2}^{2}\right)\).

If \(\left|x_{2}\right|=2\left|x_{1}\right|\), then we have
\[
\left(f_{1}, f_{2}\right)=\left(a x_{1}^{3}+b x_{1} x_{2}, c x_{2}^{2}+d x_{1}^{4}\right)
\]
for some \(a, b, c, d \in \mathbb{Q}\) such that \(a^{2} c+b^{2} d \neq 0\) and \(c \neq 0\).

Proposition 5.1. The graded algebras \(\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(a x_{1}^{3}+b x_{1} x_{2}, c x_{2}^{2}+d x_{1}^{4}\right)\), where \(a, b, c, d \in \mathbb{Q}\), such that \(a^{2} c+b^{2} d \neq 0\) and that \(c \neq 0\) are isomorphic to one of the following
\[
\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{2}^{2}+\alpha x_{1}^{4}\right) \text { with } \alpha \in \mathbb{Q}^{\times}, \quad \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{3}, x_{2}^{2}\right) .
\]

Moreover \(\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{2}^{2}+\alpha x_{1}^{4}\right)\) and \(\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{2}^{2}+\beta x_{1}^{4}\right)\) are isomorphic if and only if \(\alpha^{-1} \cdot \beta \in \mathbb{Q}^{\times 2}\).
Proof. If \(b \neq 0\), we set \(a x_{1}^{2}+b x_{2}=X_{2}\). Then
\[
\begin{aligned}
\left(f_{1}, f_{2}\right) & =\left(x_{1} X_{2}, \frac{c}{b^{2}} X_{2}^{2}+\left(\frac{a^{2} c}{b^{2}}+d\right) x_{1}^{4}\right) \\
& =\left(x_{1} X_{2}, X_{2}^{2}+\alpha x_{1}^{4}\right), \text { where } \alpha=\frac{a^{2} c+b^{2} d}{c} \in \mathbb{Q}^{\times} .
\end{aligned}
\]

The second part of the proposition follows from an easy calculation.
If \(b=0\), then they are isomorphic to \(\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{3}, x_{2}^{2}\right)\).
(c) If \(\left|f_{1}\right|\) is not an integer multiple of \(\left|x_{1}\right|\) and not of \(\left|x_{2}\right|\), then by the regularity \(\left|f_{2}\right|\) is an integer multiple of \(\left|x_{2}\right|\). Let \(\left|f_{2}\right|=k\left|x_{2}\right|\) for some integer \(k \geq 2\). Then \(\left|f_{1}\right|=\frac{6}{k}\left|x_{1}\right|\) and \(k \leq 3\). Hence \(k=2\) or 3 , and so we have \(\left|f_{1}\right|=2\left|x_{1}\right|\) or \(3\left|x_{1}\right|\), which is not allowed.

The case \(n=2\) and \(\left|x_{1}\right|<\left|x_{2}\right|\) can be summarized as follows.
Proposition 5.2. The set of isomorphism classes of graded algebras of dimension 6 with \(n=2\) satisfying the condition \(\left|x_{1}\right| \neq\left|x_{2}\right|\) are
\[
\begin{gathered}
\left\{\mathbf{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}, x_{2}^{3}\right),\left|x_{1}\right|=2 n,\left|x_{2}\right|=2 m \mid(n, m) \in \mathbb{N}^{2}, n \neq m\right\}, \\
\left\{\mathbf{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{2}^{2}+\alpha x_{1}^{4}\right),\left|x_{1}\right|=2 n,\left|x_{2}\right|=4 n \mid n \in \mathbb{N}, \alpha \in \mathbb{Q}^{\times} / \mathbf{Q}^{\times 2}\right\} .
\end{gathered}
\]

We consider the case \(\left|x_{1}\right|=\left|x_{2}\right|\). Then \(f_{1}\) and \(f_{2}\) are homogeneous polynomials of degree 2 and 3 respectively. As in Lemma 3.1, we may set
\[
f_{1}=x_{1}^{2}-\alpha x_{2}^{2}, \quad \alpha \in \mathbb{Q} .
\]

By the same way as in Proposition 3.2, we have the following: If there is an isomorphism
\[
\mathrm{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\alpha_{1} x_{2}^{2}, f_{2}\right) \longrightarrow \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\alpha_{2} x_{2}^{2}, f_{2}^{\prime}\right)
\]
then we have
(1) \(\alpha_{1}=\alpha_{2}=0\) or (2) \(\alpha_{1} \cdot \alpha_{2} \in \mathbb{Q}^{\times 2}\).

For the case (1), we have isomorphisms
\[
\mathbb{Q}\left[x_{1}, x_{2}\right]\left(x_{1}^{2}, f_{2}\right) \cong \mathbb{Q}\left[x_{1}, x_{2}\right]\left(x_{1}^{2}, x_{2}^{3}+a x_{1} x_{2}^{2}\right) \cong \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}, x_{2}^{3}\right)
\]

Next we consider the case (2). Assume that \(\alpha_{1} \in \mathbb{Q}^{\times}\)and \(\alpha_{1} \notin \mathbb{Q}^{\times 2}\) and that there is an isomorphism
\[
\varphi: \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\alpha_{1} x_{2}^{2}, f_{1}\right) \longrightarrow \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\alpha_{2} x_{2}^{2}, f_{2}\right)
\]
defined by
\[
\varphi\left(x_{1}\right)=p x_{1}+q x_{2}, \quad \varphi\left(x_{2}\right)=r x_{1}+s x_{2}
\]
with \(p, q, r, s \in \mathbb{Q}^{\times}\). Then \(p q=\alpha_{1} r s\) and
\[
-\alpha_{2}=\frac{q^{2}-s^{2} \alpha_{1}}{p^{2}-r^{2} \alpha_{1}}=-\frac{q s}{r p}, \text { so } \alpha_{1} \cdot \alpha_{2}=\left(\frac{q}{r}\right)^{2} \in \mathbb{Q}^{\times 2} .
\]

The case that one of \(p, q, r, s\) is zero is similar.
So we set \(\alpha_{2}=r^{2} \alpha_{1}\) for some \(r \in \mathbb{Q}^{\times}\). The polynomials \(f_{2}, f_{2}^{\prime}\) can be chosen as
\[
f_{2}=s_{1} x_{1}^{3}+t_{1} x_{1}^{2} x_{2}, \quad f_{2}^{\prime}=s_{2} x_{1}^{3}+t_{2} x_{1}^{2} x_{2}
\]
with some \(s_{i}, t_{i} \in \mathbb{Q}(i=1,2)\). Set
\[
\begin{equation*}
X_{1}=x_{1}+\sqrt{\alpha_{1}} x_{2}, \quad X_{2}=x_{1}-\sqrt{\alpha_{1}} x_{2} . \tag{5.3}
\end{equation*}
\]

Let \(\mathbb{K}=\mathbb{Q}\left(\sqrt{\alpha_{1}}\right)\) be the quadratic field. Then we have an isomorphism
\[
\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\alpha_{1} x_{2}^{2}, f_{1}\right) \underset{\mathbb{Q}}{\otimes} \mathbb{K} \cong \mathbb{K}\left[X_{1}, X_{2}\right] /\left(X_{1} X_{2}, \bar{f}_{1}\right),
\]
where \(\bar{f}_{1}=\left(t_{1}+s_{1} \sqrt{\alpha_{1}}\right) X_{1}^{3}+\left(-t_{1}+s_{1} \sqrt{\alpha_{1}}\right) X_{2}^{3}\). Hence \(\varphi\) induces an isomorphism
\[
\bar{\varphi}: \mathbb{K}\left[X_{1}, X_{2}\right] /\left(X_{1} X_{2}, X_{1}^{3}+a_{1} X_{2}^{3}\right) \longrightarrow \mathbb{K}\left[X_{1}, X_{2}\right] /\left(X_{1} X_{2}, X_{1}^{3}+a_{2} X_{2}^{3}\right),
\]
where \(a_{1}=\frac{-t_{1}+s_{1} \sqrt{\alpha_{1}}}{t_{1}+s_{1} \sqrt{\alpha_{1}}}\) and \(a_{2}=\frac{-t_{2}+s_{2} r \sqrt{\alpha_{1}}}{t_{2}+s_{2} r \sqrt{\alpha_{1}}}\). Remark here that \(a_{1} a_{2} \neq 0\) by the regularity of the ideals appearing in the above.

Let
\[
\bar{\varphi}\left(X_{i}\right)=p_{i} X_{1}+q_{i} X_{2}, p_{i}, q_{i} \in \mathbb{K}
\]
for \(i=1,2\). We have \(p_{1} p_{2}=0\) and \(q_{1} q_{2}=0\), since \(\bar{\varphi}\left(X_{1} X_{2}\right) \in\left(X_{1} X_{2}\right)\). Thus \(p_{2}=q_{1}=0\) or \(p_{1}=q_{2}=0\).

First, we consider the case \(p_{2}=q_{1}=0\). Then we have \(p_{1} q_{2} \neq 0\) and that
\[
\begin{equation*}
a_{2} a_{1}^{-1}=\left(q_{2} p_{1}^{-1}\right)^{3} . \tag{5.4}
\end{equation*}
\]

It follows from (3) that
\[
\begin{align*}
& \bar{\varphi}\left(x_{1}\right)=\frac{1}{2}\left\{\left(p_{1}+q_{2}\right) x_{1}+\sqrt{\alpha_{1}}\left(p_{1}-q_{2}\right) x_{2}\right\} \\
& \bar{\varphi}\left(x_{2}\right)=\frac{1}{2 \sqrt{\alpha_{1}}}\left\{\left(p_{1}-q_{2}\right) x_{2}+\sqrt{\alpha_{1}}\left(p_{1}+q_{2}\right) x_{2}\right\} \tag{5.5}
\end{align*}
\]

Since \(\bar{\varphi}\) is defined over \(Q\), we have
\[
p_{1}+q_{2} \in \mathbb{Q} \quad \text { and } \quad\left(p_{1}-q_{2}\right) \sqrt{\alpha_{1}} \in \mathbb{Q}
\]
which implies that \(p_{1}\) and \(q_{2}\) are conjugate elements over \(\mathbb{Q}\) by the equalities (5.5). Then \(q_{2} p_{1}^{-1}\) are of the form \(u^{\sigma} u^{-1}\), where \(u^{\sigma}\) is the conjugate of \(u \in \mathbb{K}^{\times}\)
if we take \(u=p_{1}\) and \(q_{2}=u^{\sigma}\). By Hilbert's Theorem 90 (see [M; p.93]), the set \(\left\{u^{\sigma} u^{-1} \mid u \in \mathbb{K}^{\times}\right\}\)coincides with the set \(\mathbb{K}_{1}^{\times}=\left\{\gamma \in \mathbb{K}^{\times} \mid N_{\mathbb{K}}(\gamma)=1\right\}\), where \(N_{\mathbb{K}}(\gamma)\) is the norm \(c^{2}-\alpha_{1} d^{2}\) for the element \(\gamma=c+d \sqrt{\alpha_{1}}\). It follows from the condition \(a_{2} a_{1}^{-1} \in \mathbb{K}_{1}^{\times 3}\) that
\[
\begin{equation*}
\frac{t_{2}-s_{2} r \sqrt{\alpha_{1}}}{t_{2}+s_{2} r \sqrt{\alpha_{1}}} \cdot \frac{t_{1}-s_{1} \sqrt{\alpha_{1}}}{t_{1}+s_{1} \sqrt{\alpha_{1}}} \in \mathbb{K}_{1}^{\times 3} . \tag{5.6}
\end{equation*}
\]

For the case \(p_{1}=q_{2}=0\), quite similarly to the above we have \(p_{2} q_{1} \neq 0\) and that
\[
a_{2} a_{1}^{-1}=\left(q_{1} p_{2}^{-1}\right)^{3} .
\]

For the same reasons as the above, \(p_{2}\) and \(q_{1}\) are conjugate over \(\mathbb{Q}\). Hence we also have \(a_{2} a_{1}^{-1} \in \mathbb{K}_{1}^{\times 3}\).

Conversely, we have
Proposition 5.3. Let \(\left(\alpha_{i},\left[s_{i}, t_{i}\right]\right)\) be elements of \(M_{1} \backslash M_{2}(i=1,2)\). If \(\left(\alpha_{1},\left[s_{1}, t_{1}\right]\right)\) and \(\left(\alpha_{2},\left[s_{2}, t_{2}\right]\right)\) are equivalent, then there is a graded algebra isomorphism
\[
\bar{\varphi}: \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\alpha_{1} x_{2}^{2}, s_{1} x_{1}^{3}+t_{1} x_{1}^{2} x_{2}\right) \rightarrow \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\alpha_{2} x_{2}^{2}, s_{2} x_{1}^{3}+t_{2} x_{1}^{2} x_{2}^{3}\right) .
\]
(See the statement below Theorem 1.2 in Section 1 for the definitions of \(M_{1}\), \(M_{2}\) and the equivalence relation.)

Proof. Since \(\left(\alpha_{1},\left[s_{1}, t_{1}\right]\right)\) and \(\left(\alpha_{2},\left[s_{2}, t_{2}\right]\right)\) are equivalent, there is \(r \in \mathbb{Q}^{\times}\)so that \(\alpha_{2}=r^{2} \alpha_{1}\), and we may set
\[
\frac{t_{1}+s_{1} \sqrt{\alpha_{1}}}{t_{1}-s_{1} \sqrt{\alpha_{1}}} \cdot \frac{t_{2}-s_{2} r \sqrt{\alpha_{1}}}{t_{2}+s_{2} r \sqrt{\alpha_{1}}}=t^{3}, t \in \mathbb{K}^{\times} .
\]

Then \(t \in \mathbb{K}_{1}\). Again by Hilbert's Theorem 90, we may write
\[
t=\frac{a+b \sqrt{\alpha_{1}}}{a-b \sqrt{\alpha_{1}}}, a, b \in \mathbb{Q} .
\]

Let \(X_{1}\) and \(X_{2}\) be as in (5.3). We can define a \(\mathbb{K}\)-graded algebra map
\[
\begin{aligned}
\psi: \mathbb{K}\left[X_{1}, X_{2}\right] /\left(X_{1} X_{2}, X_{1}^{3}-\frac{t_{1}-s_{1} \sqrt{\alpha_{1}}}{t_{1}+s_{1} \sqrt{\alpha_{1}}} X_{2}^{3}\right) \longrightarrow \\
\mathbb{K}\left[X_{1}, X_{2}\right] /\left(X_{1} X_{2}, X_{1}^{3}-\frac{t_{2}-s_{2} r \sqrt{\alpha_{2}}}{t_{2}+s_{2} r \sqrt{\alpha_{1}}} X_{2}^{3}\right)
\end{aligned}
\]
by
\[
\psi\left(X_{1}\right)=\left(a+b \sqrt{\alpha_{1}}\right) X_{1}, \psi\left(X_{2}\right)=\left(a-b \sqrt{\alpha_{1}}\right) X_{2}
\]
for some \(a, b \in \mathbb{Q}\). Then we have
\[
\begin{aligned}
& \psi\left(x_{1}\right)=\psi\left(\frac{X_{1}+X_{2}}{2}\right)=\frac{1}{2}\left\{\left(a+b \sqrt{\alpha_{1}}\right) X_{1}+\left(a-b \sqrt{\alpha_{1}}\right) X_{2}\right\} \\
&=\frac{1}{2}\left\{\left(a+b \sqrt{\alpha_{1}}\right)\left(x_{1}+\sqrt{\alpha_{1}} x_{2}\right)\right) \\
&=a x_{1}+b \alpha_{1} x_{2}, \\
&\left.\quad+\left(a-b \sqrt{\alpha_{1}}\right)\left(x_{1}-\sqrt{\alpha_{1}} x_{2}\right)\right\}
\end{aligned}
\]
\[
\begin{aligned}
& \psi\left(x_{2}\right)=\psi\left(\frac{X_{1}-X_{2}}{2 \sqrt{\alpha_{1}}}\right)=\frac{1}{2 \sqrt{\alpha_{1}}}\left\{\left(a+b \sqrt{\alpha_{1}}\right)\left(x_{1}+\sqrt{\alpha_{1}} x_{2}\right)\right. \\
&=b x_{1}+a x_{2} . \\
&\left.-\left(a-b \sqrt{\alpha_{1}}\right)\left(x_{1}-\sqrt{\alpha_{1}} x_{2}\right)\right\}
\end{aligned}
\]

Hence \(\psi\) is defined over \(\mathbb{Q}\). Thus we have a graded Q -algebra isomorphism \(\bar{\psi}: \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\alpha_{1} x_{2}^{2}, s_{1} x_{1}^{3}+t_{1} x_{1}^{2} x_{2}\right) \longrightarrow \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\alpha_{2} x_{2}^{2}, s_{2} x_{1}^{3}+t_{2} x_{1}^{2} x_{2}\right)\).

Next we consider the case that \(\left(\alpha_{i},\left[s_{i}, t_{i}\right]\right) \in \tilde{M}_{2}(i=1,2)\). (For the definition of \(\tilde{M}_{2}\) see Section 1.)
Proposition 5.4. The two graded algebras
\[
\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\gamma_{1}^{2} x_{2}^{2}, s_{1} x_{1}^{3}+t_{1} x_{1}^{2} x_{2}\right) \text { and } \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\gamma_{2}^{2} x_{2}^{2}, s_{2} x_{1}^{3}+t_{2} x_{1}^{3} x_{2}\right)
\]
where \(\left(\gamma_{i}^{2},\left[s_{i}, t_{i}\right]\right) \in \tilde{M}_{2}(i=1,2)\), are isomorphic if and only if \(\left(\alpha_{1},\left[s_{1}, t_{1}\right]\right)\) and \(\left(\alpha_{2},\left[s_{2}, t_{2}\right]\right)\) are equivalent, that is,
\[
\frac{t_{2}-s_{2} r_{2}}{t_{2}+s_{2} r_{2}} \cdot \frac{t_{1}+s_{1} r_{1}}{t_{1}-s_{1} r_{1}} \in \mathbb{Q}^{\times 3}
\]

Proof. By setting
\[
y_{1}=x_{1}+r_{1} x_{2}, \quad y_{2}=x_{1}-r_{1} x_{2}
\]
the graded algebra over \(\mathbb{Q}\)
\[
\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-\gamma_{1}^{2} x_{2}^{2}, s_{1} x_{1}^{3}+t_{1} x_{1}^{2} x_{2}\right)
\]
is isomorphic to
\[
\mathbb{Q}\left[y_{1}, y_{2}\right] /\left(y_{1} y_{2},\left(t_{1}+s_{1} r_{1}\right) y_{1}^{3}+\left(-t_{1}+s_{1} r_{1}\right) y_{2}^{3}\right)
\]

Observe that there is an isomorphism
\[
\begin{aligned}
& \varphi: \mathbb{Q}\left[y_{1}, y_{2}\right] /\left(y_{1} y_{2},\left(t_{1}+s_{1} r_{1}\right) y_{1}^{3}+\left(-t_{1}+s_{1} r_{1}\right) y_{2}^{3}\right) \rightarrow \\
& \mathbb{Q}\left[y_{1}, y_{2}\right] /\left(y_{1} y_{2},\left(t_{2}+s_{2} r_{2}\right) y_{1}^{3}+\left(-t_{2}+s_{2} r_{2}\right) y_{2}^{3}\right)
\end{aligned}
\]
if and only if
\[
\frac{t_{2}-s_{2} r_{2}}{t_{2}+s_{2} r_{2}} \cdot \frac{t_{1}+s_{1} r_{1}}{t_{1}-s_{1} r_{1}} \in \mathbb{Q}^{\times 3}
\]

In fact, if we set \(\varphi\left(y_{i}\right)=p_{i} y_{1}+q_{i} y_{2}\) for \(p_{i}, q_{i} \in \mathbb{Q}(i=1,2)\), then \(p_{1} p_{2}=0\) and \(q_{1} q_{2}=0\). The condition \(t \pm s r \neq 0\) in \(M_{2}\) is equivalent to the one that the sequence \(\left\{x_{1}^{2}-r^{2} x_{2}^{2}, s x_{1}^{3}+t x_{1}^{2} x_{2}\right\}\) is regular.

By Propositions 5.3 and 5.4 we have
Proposition 5.5. The set of isomorphism classes of graded algebras over \(\mathbb{Q}\)
\[
\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}+\alpha x_{2}^{2}, s x_{1}^{2}+t x_{1}^{2} x_{2}\right)
\]
corresponds bijectively to the set
\[
T=\left(M_{1} \backslash M_{2}\right) / \sim \cup \tilde{M}_{2} / \sim
\]

In the case \(\{0\} \times P^{1}(\mathbb{Q})\) it corresponds to the algebra
\[
\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}, s x_{2}^{3}+t x_{2}^{2} x_{1}\right) \cong \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}, x_{2}^{3}\right)
\]

\section*{6 The case of dimension 7}

Let \(A\) be the cohomology algebra of an elliptic space with \(\chi_{\pi}=0\) such that \(\operatorname{dim}_{\mathbb{Q}} A=7\). Then \(n=1\) or 2 in (2). If \(n=1\), then \(A \cong \mathbb{Q}[x] /\left(x^{7}\right)\). If \(n=2\), then \(\left|f_{1}\right| \cdot\left|f_{2}\right|=7\left|x_{1}\right| \cdot\left|x_{2}\right|\).
(a) Assume that \(\left|f_{1}\right|\) is an integer multiple of \(\left|x_{1}\right|\), that is, \(\left|f_{1}\right|=k\left|x_{1}\right|\) for some integer \(k \geq 2\). Then \(k=2\) or 3 .

If \(k=2\), then \(\left|f_{2}\right|=\frac{7}{2}\left|x_{2}\right|\), which implies \(f_{2} \in\left(x_{1}\right)\). By regularity \(f_{1}\) contains the term \(c x_{2}^{2}\), and hence \(\left|x_{1}\right|=\left|x_{2}\right|\). This implies that \(\left|f_{2}\right|\) is an integer multiple of \(\left|x_{2}\right|\). This is a contradiction.

If \(k=3\), then \(\left|f_{2}\right|=\frac{7}{3}\left|x_{2}\right|\) and \(f_{2} \in\left(x_{1}\right)\). Thus we have that \(\left|f_{1}\right|=2\left|x_{2}\right|\) and \(\left|f_{2}\right|=\frac{7}{2}\left|x_{1}\right|\), which implies that \(\left(f_{1}, f_{2}\right)=\left(x_{1}^{3}+a x_{2}^{2}, x_{1}^{2} x_{2}\right)\), where \(a \in \mathbb{Q}^{\times}\).
(b) Assume that \(\left|f_{1}\right|\) is an integer multiple of \(\left|x_{2}\right|\), that is, \(\left|f_{1}\right|=k\left|x_{2}\right|\) for some integer \(k \geq 1\). Then \(\left|f_{2}\right|=\frac{7}{k}\left|x_{1}\right|\) and so \(f_{2} \in\left(x_{2}\right)\). This implies that \(\left|f_{1}\right|\) is an integer multiple of \(\left|x_{1}\right|\), and so we are reduced to the case (a).
(c) Assume that \(\left|f_{1}\right|\) is neither an integer multiple of \(\left|x_{1}\right|\) nor of \(\left|x_{2}\right|\). Then \(f_{1} \in\left(x_{1}\right) \cap\left(x_{2}\right)\), and hence \(f_{2}\) contains a non zero multiple of \(x_{1}^{k_{1}}\) and \(x_{2}^{k_{2}}\) for some integers \(k_{1}, k_{2}\). Then
\[
\left|f_{2}\right|=k_{1}\left|x_{1}\right|=k_{2}\left|x_{2}\right|
\]
and \(k_{1}>k_{2} \geq 2\).
If \(k_{2} \geq 4\), then \(\left|f_{1}\right| \leq \frac{7}{4}\left|x_{1}\right|\), which is impossible by Lemma 2.1.
Thus we can deduce that \(k_{2}=2\) or 3 .
(1) Let \(k_{2}=2\). If \(k_{1} \geq 6\), then
\[
\left|f_{1}\right| \geq\left|x_{1}\right|+\left|x_{2}\right| \geq\left(1+\frac{k_{1}}{2}\right)\left|x_{1}\right| \geq 4\left|x_{1}\right|
\]
and hence we have by (2.2) for \(n=2\) that
\[
\left|f_{2}\right| \leq \frac{7}{4}\left|x_{2}\right|
\]
which contradicts Lemma 2.1. Thus \(k_{1}=3\) or 4 or 5 .
If \(k_{1}=3\), then
\[
\left|f_{1}\right|=\frac{7}{3}\left|x_{2}\right|=\frac{7}{2}\left|x_{1}\right|>3\left|x_{1}\right|=\left|f_{2}\right| .
\]

This contradicts the assumption.
If \(k_{1}=4\), then \(\left|x_{2}\right|=2\left|x_{1}\right|\) and \(\left|f_{1}\right|\) is an integer multiple of \(\left|x_{1}\right|\). This contradicts the assumption.

If \(k_{1}=5\), then \(\left|f_{1}\right|=\frac{7}{5}\left|x_{2}\right|=\frac{7}{2}\left|x_{1}\right|=\left|x_{1}\right|+\left|x_{2}\right|\). Then we have
\[
\left(f_{1}, f_{2}\right)=\left(x_{1} x_{2}, x_{1}^{5}+a x_{2}^{2}\right), \quad a \in \mathbb{Q}^{\times} .
\]
(2) Let \(k_{2}=3\). Then we have that
\[
\frac{7}{3}\left|x_{1}\right|=\left|f_{1}\right| \geq\left|x_{1}\right|+\left|x_{2}\right|=\left(1+\frac{k_{1}}{3}\right)\left|x_{1}\right| .
\]

Since \(k_{1}>k_{2}\), we see that \(k_{1}=4\) and \(\left|f_{1}\right|=\left|x_{1}\right|+\left|x_{2}\right|\), which implies that
\[
\left(f_{1}, f_{2}\right)=\left(x_{1} x_{2}, x_{1}^{4}+a x_{2}^{3}\right), \quad a \in \mathbb{Q}^{\times}
\]
where \(4\left|x_{1}\right|=3\left|x_{2}\right|\).
Proposition 6.1. The isomorphism classes of the algebras
\(\mathrm{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{3}+a x_{2}^{2}, x_{1}^{2} x_{2}\right), \mathrm{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{1}^{5}+a x_{2}^{2}\right), \quad \mathrm{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{1}^{4}+a x_{2}^{3}\right)\)
do not depend on the choice of \(a \in \mathbb{Q}^{\times}\).
Proof. The correspondence
\[
\varphi\left(x_{1}\right)=p x_{1}, \quad \varphi\left(x_{2}\right)=q x_{2} \quad\left(p, q \in \mathbb{Q}^{\times}\right)
\]
defines an isomorphism
\[
\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{3}+a x_{2}^{2}, x_{1}^{2} x_{2}\right) \longrightarrow \mathbb{Q}\left[x_{1}, x_{2}\right]\left(x_{1}^{3}+b x_{2}^{2}, x_{1}^{2} x_{2}\right)
\]
if and only if \(p^{3} b=q^{2} a\). Hence, if we take \(p=q=a b^{-1}\), we obtain the desired isomorphism. The cases of the other algebras can be similarly proved.

\section*{References}
[FHT] Y. Félix, S. Halperin and J.C. Thomas : Rational Homotopy Theory, GTM 205, Springer-Verlag (2001).
[Ha] S. Halperin : Finiteness in the minimal models of Sullivan, Trans. AMS, 230(1977), 173-199.
[Hi] M. R. Hilali : Classification des types d’homotopies rationnelles des espaces \(X\) elliptiques, 1-connexes et \(\operatorname{dim} H^{*}(X, Q) \leq 6\), Rapport-Université Catholique de Louvain, Institut de Mathématique Pure et Appliquée, 146(1988), 179-195.
[KT1] S. Kono and A. Tamamura : Graded commutative Q-algebra \(\mathbb{Q}\left[x_{1}, \cdots, x_{m}\right] /\left(f_{1}, \cdots, f_{n}\right)\) of dimension 10 over \(\mathbb{Q}\), Bull. Okayama Univ. of Science, \(36 \mathrm{~A}(2000), 11-18\).
[KT2] S. Kono and A. Tamamura : Elliptic graded commutative Q-algebras of dimension 11 and 13 over Q, Bull. Okayama Univ. of Science, 37 A(2001), 29-34.
[MS] M. Mimura and H. Shiga : On the classification of rational homotopy types of elliptic spaces with homotopy Euler characteristic zero for dim \(\leq 7\), preprint (1997).
[M] P. Morandi : Field and Galois Theory, GTM 167, Springer-Verlag (1996).
[W] W. C. Waterhouse : Introduction to Affine Group Schemes, GTM 66, Springer-Verlag (1979).

Department of Mathematics, Faculty of Science
Okayama University;
3-1-1 Tsushima-Naka, Okayama 700-8530, Japan email:mimura@math.okayama-u.ac.jp

Department of Mathematical Sciences, Faculty of Science
University of Ryukyus;
Nishihara-cho, Okinawa 903-0213, Japan
email:shiga@sci.u-ryukyu.ac.jp```


[^0]:    Received by the editors December 2010.
    Communicated by Y. Félix.
    2000 Mathematics Subject Classification : 55P62.
    Key words and phrases : Classification, rational homotopy types, elliptic space.

