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Abstract

We classify rational homotopy types of elliptic spaces with homotopy Eu-
ler characteristic zero for dim < 8.

1 Introduction

Throughout the paper we consider connected, simply connected spaces.

Definition 1.1. A space X is said to be elliptic if dim π∗(X) ⊗ Q < ∞ and
dim H∗(X; Q) < ∞.

χπ(X) = ∑
p

(−1)p dim πp(X)⊗ Q is called the homotopy Euler characteristic;

χc(X) = ∑
p

(−1)p dim Hp(X; Q) is called the (cohomology) Euler characteristic.

Then in general there hold

χπ(X) ≤ 0 and χc(X) ≥ 0.

Furthermore it is shown in [Ha, Theorem 1, p.175] that the following conditions
are equivalent:

(1) χπ(X) = 0, (2) χc(X) > 0, (3) H∗(X; Q) is evenly graded,
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and that H∗(X; Q) is a polynomial algebra truncated by a Borel ideal in this case.
The purpose of this paper is to classify the rational homotopy types of elliptic

spaces with χπ(X) = 0 for dim H∗(X; Q) < 8.
By the dimension formula (2.2), the cohomology algebra of such a space is

isomorphic to either Q[x1]/( f1) or Q[x1, x2]/( f1, f2) as a graded algebra, where
( f1, f2) is the ideal generated by a regular sequence { f1, f2}, and hence the ratio-
nal homotopy types of this kind are intrinsically f ormal, that is, two spaces with
the isomorphic rational cohomology algebras are rationally homotopy equiva-
lent. Thus, for our purpose, it is sufficient to classify graded algebras of the type
Q[x1, x2]/( f1, f2).

M.R.Hilali tried in his thesis [Hi] to classify such elliptic rational homotopy
types whose dimension of the cohomology algebra is not greater than 6. However
his argument seems to be incorrect. Correcting it is a starting point of our work
[MS]; in fact, there are infinitely many non-isomorphic Q-algebras A such that

A⊗
Q

Q ∼= Q[x1, x2]/(x
2
1 , x2

2).

Let X be a graded algebra over Q and K a Galois extension of Q. A graded
algebra Y over Q is said to be a K/Q form if Y becomes isomorphic to X when
the ground field is extended to K. The set of Q-isomorphism classes of X forms
a set E(K/Q, X). It is known that the set E(K/Q, X) corresponds bijectively to
the Galois cohomology H1(Gal(K/Q), A(K)), where A(K) denotes the group of
K-automorphisms of X (see [W], p.136).

Our result of classifying them is given as follows:

Theorem 1.2. Let A be the cohomology algebra of an elliptic space with χπ = 0. If
dim H∗(X; Q) < 8, then A is isomorphic to one of the following:

dim isomorphic classes of graded algebras

1 Q

2 {Q[x]/(x2), |x| = 2n | n ∈ N}
3 {Q[x]/(x3), |x| = 2n | n ∈ N}
4 {Q[x]/(x4), |x| = 2n | n ∈ N},

{Q[x1, x2]/(x
2
1 + ax2

2, x1x2), |x1| = |x2| = 2n | a ∈ Q×/Q×2, n ∈ N},

{Q[x1, x2]/(x
2
1 , x2

2), |x1| = 2n, |x2| = 2m | (n, m) ∈ N2, n 6= m}
5 {Q[x]/(x5), |x| = 2n | n ∈ N},

{Q[x1, x2]/(x1x2, x3
1 + x2

2), |x1| = 4n, |x2| = 6n | n ∈ N}
6 {Q[x]/(x6), |x| = 2n | n ∈ N},

{Q[x1, x2]/(x
2
1 + ax2

2, sx3
1 + tx2

1x2), |x1| = |x2| = 2n | (a, [s, t]) ∈ T, n ∈ N},

{Q[x1, x2]/(x
2
1 , x3

2), |x1| = 2n, |x2| = 2m | (n, m) ∈ N, n 6= m},

{Q[x1, x2]/(x1x2, x2
2 + ax4

1), |x1| = 2n, |x2| = 4n | n ∈ N, a ∈ Q×/Q×2}
7 {Q[x]/(x7), |x| = 2n | n ∈ N},

{Q[x1, x2]/(x
3
1 + x2

2, x2
1x2), |x1| = 4n, |x2| = 6n | n ∈ N},

{Q[x1, x2]/(x1x2, x5
1 + x2

2), |x1| = 4n, |x2| = 10n | n ∈ N},

{Q[x1, x2]/(x1x2, x4
1 + x3

2), |x1| = 6n, |x2| = 8n | n ∈ N}
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The set T in the table is defined as follows. Let

P1(Q) = Q × Q − {(0, 0)}/ ∼,

where (t1, s1) ∼ (t2, s2) if and only if there is an element r ∈ Q× such that rt1 =
t2 and rs1 = s2. Set M1 = Q× × P1(Q) and M2 = Q×2 × P1(Q). We define an
equivalence relation ∼ on M1\M2 as follows: (α1, [s1, t1]) ∼ (α2, [s2, t2]) if and
only if the following (1) and (2) are satisfied:

1. α1 · α2 ∈ Q×2; ( then the quadratic extensions Q(
√

α1) and Q(
√

α2) coincide,
which we denote by K.)

2.
t2 − s2

√
α2

t2 + s2
√

α2
· t1 + s1

√
α1

t1 − s1
√

α1
∈ K1

×3,

where K1 consists of elements of K whose norms are 1.

Let M̃2 = {(r2, [s, t]) ∈ M2 | t ± sr 6= 0}, and on M̃2 we define an equivalence
relation ∼ as follows:

(r2
1, [s1, t1]) ∼ (r2

2, [s2, t2]) ⇐⇒ t2 − s2r2

t2 + s2r2
· t1 + s1r1

t1 − s1r1
∈ Q×3.

We set
T = (M1\M2)/ ∼ ∪ M̃2/ ∼ .

Then an element (α, [s, t]) ∈ T corresponds to the isomorphism classes of the
algebras

Q[x1, x2]/(x
2
1 − αx2

2, sx3
1 + tx2

1x2)

of regular type. (See the last paragraph of Section 5 for details.)
We denote by B and C the family given in the second line of dim 4 and 6

respectively:

B = {Q[x1, x2]/(x
2
1 + ax2

2, x1x2), |x1| = |x2| = 2n | a ∈ Q×/Q×2, n ∈ N},

C = {Q[x1, x2]/(x
2
1 + ax2

2, sx3
1 + tx2

1x2), |x1| = |x2| = 2n | (a, [s, t]) ∈ T, n ∈ N}.

All the elements of the family in B (resp. C) are isomorphic as Q-algebra
after tensoring Q over Q. However they give us a family of infinitely many non
isomorphic Q-algebras in dimensions 4 and 6 even when ignoring the gradings.

The spaces representing the algebras in the table above can be constructed as
follows:

(1) The space X such that H∗(X; Q) ∼= Q[x]/(xk); Let ϕ : K(Q, |x|) → K(Q, k|x|)
be a map representing the element

xk ∈ Q[x] ∼= H∗(K(Q, |x|); Q).

Then X is given as the homotopy fibre of ϕ.
(2) The space X such that H∗(X; Q) ∼= Q[x1, x2]/( f1, f2), where ( f1, f2) is the

ideal generated by elements fi ∈ Q[x1, x2]; Let ϕi : K(Q, |x1|) × K(Q, |x2|) →
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K(Q, | fi |) be a map representing the element fi ∈ Q[x1, x2] ∼= H∗(K(Q, |x1|) ×
K(Q, |x2|); Q) for i = 1, 2 and let F be the homotopy fibre of ϕ1. Then X is given
as the homotopy fibre of the composite map

ϕ2 ◦ i : F → K(Q, |x1|)× K(Q, |x2|) → K(Q, | f2|),

where i is the inclusion of the fibre.
Our method to classify the algebras is based on the dimension formula (2.2)

for n = 2:
dimQ Q[x1, x2]/( f1, f2) = | f1| · | f2|/|x1| · |x2|

due to Koszul, where |xi| and | fi| denote the degree of xi and fi respectively.
The present work is the revised version of [MS]. However there are no alter-

ations in the results but some minor modifications in the expressions. During
these past years, following our method in [MS], Kono-Tamamura obtain in [KT1]
and [KT2] similar results in dimensions 10, 11, 13; their arguments are entirely
the same as ours given in [MS].

The paper is organized as follows. In Section 2 we consider the case of dimen-
sions 1, 2, 3; in Section 3 the case of dimension 4; in Section 4 the case of dimension
5; in Section 5 the case of dimension 6; in Section 6 the case of dimension 7.

Acknowledgement: We thank T.Yamaguchi for calling our attention to [Hi]
and also N. Iwase, H. Komatu, T. Maeda and T. Tasaka for useful conversations
while preparing the manuscript.

2 The case of dimensions 1, 2, 3

Let { f1, · · · , fn} be a regular sequence of graded elements in a polynomial ring
Q[x1, · · · , xn]. We can assume that each fi (i = 1, · · · , n) has no constant or linear
terms and that

(2.1) |x1| ≤ · · · ≤ |xn|, | f1| ≤ · · · ≤ | fn|.

Put A = Q[x1, · · · , xn]/( f1, · · · , fn). Then by the dimension f ormula (see [FHT;
(32.14), p.446]), we have

(2.2) dimQ A = | f1| · · · | fn|/|x1| · · · |xn|.

Lemma 2.1. 2|xi| ≤ | fi| for i = 1, · · · , n.

Proof. We prove by induction on i. Since f1 has no linear terms, we have | f1| ≥
2|x1|. As inductive hypothesis we assume that 2|xi| ≤ | fi| for i = 1, · · · , k. If
|xk| = |xk+1|, then | fk+1| ≥ | fk| ≥ 2|xk| = 2|xk+1|. Let |xk+1| > |xk| and sup-
pose | fk+1| < 2|xk+1|. Then fk+1 is contained in the ideal (xk+1xi for i ≤ k, xixj

for i, j ≤ k), and hence we see that fk+1 ∈ (x1, · · · , xk), the ideal generated by
{x1, · · · , xk}. Thus f1, · · · , fk+1 are all contained in the ideal (x1, · · · , xk), that is,
( f1, · · · , fk+1) ⊂ (x1, · · · , xk). Then, for (any irreducible component of) varieties
of Q-points, we have

V( f1, · · · , fk+1) ⊃ V(x1, · · · , xk),
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where
V( f1, · · · , fk+1) = {x ∈ Q

n| fi(x) = 0, 1 ≤ i ≤ k + 1},

V(x1, · · · , xk) = {x ∈ Q
n|xi = 0, 1 ≤ i ≤ k}.

Hence we have

dim V( f1, · · · , fk+1) ≥ dim V(x1, · · · , xk) = n − k,

which contradicts the fact that { f1, · · · , fk+1} is a regular sequence.

Combining (2) and Lemma 2.1, we have

(2.3) dimQ A ≥ 2n.

If dimQ A = 1, then n = 0 and A ∼= Q. If dimQ A = 2, then n = 1 and
A ∼= Q[x]/(x2). If dimQ A = 3, then n = 1 and A ∼= Q[x]/(x3).

3 The case of dimension 4

Let A be the cohomology algebra of an elliptic space with χπ = 0 such that
dimQ A = 4. Then n = 1 or 2 in (2). If n = 1, then A ∼= Q[x]/(x4). If n = 2, then
it follows from Lemma 2.1 and (2.2) that

| f1| = 2|x1|, | f2| = 2|x2|.

If |x1| < |x2|, then ( f1) = (x2
1), and f2 is of the following form:

f2 = ax2
2 + bxk1

1 x2 + cxk2
1

with a 6= 0, where k2 > k1 ≥ 2. Hence we obtain that

( f1, f2) = (x2
1, x2

2).

If |x1| = |x2|, then we may set

f1 = ax2
1 + bx1x2 + cx2

2, f2 = dx2
1 + ex1x2 + f x2

2 (a, b, c, d, e, f ∈ Q).

If a = c = 0, then ( f1, f2) = (x1x2, x2
1 + αx2

2), where α =
f

d
∈ Q×. If a 6= 0, by

setting a

(

x1 +
b

2a
x2

)

= u1, we have

f1 = u2
1 + αx2

2, α =
4ac − b2

4a
.

By using f1, we obtain the form ( f1, f2) = (u2
1 + αx2

2, gu1x2 + hx2
2). If g = 0,

then we have ( f1, f2) = (u2
1, x2

2). If g 6= 0, we set v1 = gu1 + hx2. Then f2 = v1x2;
using f2 we have ( f1, f2) = (v2

1 + βx2
2, v1x2) f or some β ∈ Q×. The case c 6= 0 is

similar. Thus we have shown the following
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Lemma 3.1. Let f1 and f2 be homogeneous polynomials of degree 2. Then
Q[x1, x2]/( f1, f2) is isomorphic to Q[x1, x2]/(x

2
1 + αx2

2, x1x2) for some α ∈ Q×.

Remark. Q[x1, x2]/(x
2
1, x2

2) is isomorphic to Q[x1, x2]/(x
2
1 + x2

2, x1x2) as Q- alge-
bras.

Notation. Aγ = Q[x1, x2]/(x
2
1 + γx2

2, x1x2) for γ ∈ Q×.

Proposition 3.2. The algebras Aα and Aβ (α, β ∈ Q×) are isomorphic if and only if

α · β−1 ∈ Q×2.

Proof. Suppose that there is an isomorphism ϕ : Aα → Aβ. Then we can set

ϕ(x1) = p1x1 + q1x2, ϕ(x2) = p2x1 + q2x2 (pi , qi ∈ Q).

Then we have

ϕ(x2
1 + αx2

2) = (p2
1 + αp2

2)x
2
1 + 2(p1q1 + αp2q2)x1x2 + (q2

1 + αq2
2)x

2
2,

ϕ(x1x2) = p1 p2x2
1 + (p1q2 + p2q1)x1x2 + q1q2x2

2.

Since these elements are zero in Aβ, we have (p2
1 + αp2

2)β = q2
1 + αq2

2 and
p1 p2β = q1q2. Thus we have

αβ−1 = (p1/q2)
2 ∈ Q×2.

Conversely, if αβ−1 ∈ Q×2, the map ϕ : Aα → Aβ defined by

ϕ(x1) = x1, ϕ(x2) = rx2

gives an isomorphism ϕ, where r is an element of Q× such that r2 = α−1β.

4 The case of dimension 5

Let A be the cohomology algebra of an elliptic space with χπ = 0 such that
dimQ A = 5. Then n = 1 or 2 in (2.2). If n = 1, then A ∼= Q[x]/(x5). If n = 2,
then we have | f1| · | f2| = 5|x1| · |x2| in (2.2).

(a) Assume that | f1| is an integer multiple of |x1|, that is, | f1| = k|x1| for some
integer k ≥ 2. By Lemma 2.1 we have

2|x2| ≤ | f2| =
5

k
|x2|.

Hence we have k = 2. Then f2 is contained in the ideal generated by x1. By
regularity f1 is not contained in the ideal (x1). Then | f1| = ℓ|x2| for some integer
ℓ ≥ 2. Then we have

2|x2| ≤ | f1| = 2|x1|.

Hence we have |x1| = |x2|. But this contradicts that | f2| =
5

2
|x2|.



On the classification of rational homotopy types of elliptic spaces 931

(b) Assume that | f1| is an integer multiple of |x2|, that is, | f1| = k|x2| for some
integer k ≥ 1. Then by Lemma 2.1 we have

2|x2| ≤ | f2| =
5

k
|x1| ≤

5

k
|x2|.

Thus we have k = 1 or 2.

If k = 1, then f1 is a polynomial of x1 since f1 has no linear terms. But then
| f1| is an integer multiple of |x1|, which is impossible by (a).

If k = 2, then f2 is contained in the ideal (x2), since | f2| =
5

2
|x1|. By regularity

f1 is not contained in the ideal (x2). This implies that | f1| is an integer multiple
of |x1|, which is impossible by (a).

(c) Thus | f1| is neither integer multiple of |x1| nor of |x2|, that is, f1 is contained
in both (x1) and (x2). Hence f2 is an integer multiple of both |x1| and |x2|, that is,
| f2| = k1|x1| = k2|x2| for some integers k1, k2 ≥ 2. Then from the inequality

2|x1| ≤ | f1| =
5

k2
|x1| ≤

5

k2
|x2|,

we deduce k2 = 2. If k1 = 2, then |x1| = |x2|, and so | f1| is an integer multiple of
|x1|. This contradicts the assumptions. Thus k1 ≥ 3. Then we have

5

2
|x1| = | f1| ≥ |x1|+ |x2| = |x1|+

k1

2
|x1|,

which implies that k1 = 3. Then we have

| f1| = |x1|+ |x2|, | f2| = 2|x2|, 3|x1| = 2|x2|.

Thus the only possibility is that

( f1, f2) = (x1x2, x3
1 + αx2

2), α ∈ Q×.

Proposition 4.1. For any α, β ∈ Q×, there is a graded algebra isomorphism

ϕ :
Q[x1, x2]

(x1x2, x3
1 + αx2

2)
−→ Q[x1, x2]

(x1x2, x3
1 + βx2

2)
.

Proof. Since |x1| < |x2|, the graded map is of the following form:

ϕ(x1) = p1x1, ϕ(x2) = q2x2

for some p1, q2 ∈ Q×. This correspondence ϕ defines an isomorphism if and only
if p3

1β = αq2
2. Hence by setting p1 = q2 = αβ−1 ∈ Q×, we obtain the desired

isomorphism.



932 M. Mimura – H. Shiga

5 The case of dimension 6

Let A be the cohomology algebra of an elliptic space with χπ = 0 such that
dimQ A = 6. Then n = 1 or 2 in (2). If n = 1, then A ∼= Q[x]/(x6). So we
let n = 2 for rest of the section.

First we consider the case |x1| < |x2|.
(a) Assume that | f1| is an integer multiple of |x2|, that is, | f1| = k|x2| for some

integer k ≥ 1. Then we have

2|x2| ≤ | f2| =
6

k
|x1| <

6

k
|x2|,

which implies that k = 1 or 2.
If k = 1, then f1 = xm

1 and |x2| = m|x1| with m ≥ 2. By the dimension formula
(2.2) for n = 2 we have

| f2| =
6

m
|x2|.

As f2 is not contained in the ideal (x1), we deduce that | f2| is an integer mul-
tiple of |x2|. Hence m = 2 or 3. If m = 2, then ( f1, f2) = (x2

1, x3
2) with |x2| = 2|x1|.

If m = 3, then ( f1, f2) = (x3
1, x2

2).

If k = 2, then | f1| = 2|x2| and | f2| = 3|x1|. Hence we have |x1| < |x2| ≤
3

2
|x1|.

Suppose |x1| < |x2| <
3

2
|x1|. Then, since we have |x1| + |x2| < 2|x2| = | f1| <

3|x1| = | f2| < 2|x1|+ |x2|, we can deduce

( f1, f2) = (x2
2, x3

1).

Suppose |x2| =
3

2
|x1|. Then we have

f1 = ax3
1 + bx2

2, f2 = cx3
1 + dx2

2

for some a, b, c, d ∈ Q satisfying ad − bc 6= 0. Hence ( f1, f2) = (x3
1, x2

2).
(b) Assume that | f1| is an integer multiple of |x1| and not of |x2|, that is, | f1| =

k|x1| for some integer k ≥ 2. If k ≥ 4, then | f2| ≤
3

2
|x2| and | f1| is an integer

multiple of |x2|, which is not allowed. Hence k = 2 or 3.
If k = 2, then | f1| = 2|x1| and | f2| = 3|x2|. Thus we have

( f1, f2) = (x2
1, x3

2).

If k = 3, then | f1| = 3|x1| and | f2| = 2|x2|. If |x2| 6= 2|x1|, we see ( f1, f2) =
(x3

1, x2
2).

If |x2| = 2|x1|, then we have

( f1, f2) = (ax3
1 + bx1x2, cx2

2 + dx4
1)

for some a, b, c, d ∈ Q such that a2c + b2d 6= 0 and c 6= 0.



On the classification of rational homotopy types of elliptic spaces 933

Proposition 5.1. The graded algebras Q[x1, x2]/(ax3
1 + bx1x2, cx2

2 + dx4
1), where

a, b, c, d ∈ Q, such that a2c + b2d 6= 0 and that c 6= 0 are isomorphic to one of the
following

Q[x1, x2]/(x1x2, x2
2 + αx4

1) with α ∈ Q×, Q[x1, x2]/(x
3
1 , x2

2).

Moreover Q[x1, x2]/(x1x2, x2
2 + αx4

1) and Q[x1, x2]/(x1x2, x2
2 + βx4

1) are isomorphic if

and only if α−1 · β ∈ Q×2.

Proof. If b 6= 0, we set ax2
1 + bx2 = X2. Then

( f1, f2) = (x1X2,
c

b2
X2

2 + (
a2c

b2
+ d)x4

1)

= (x1X2, X2
2 + αx4

1), where α =
a2c + b2d

c
∈ Q×.

The second part of the proposition follows from an easy calculation.
If b = 0, then they are isomorphic to Q[x1, x2]/(x

3
1, x2

2).
(c) If | f1| is not an integer multiple of |x1| and not of |x2|, then by the regularity

| f2| is an integer multiple of |x2|. Let | f2| = k|x2| for some integer k ≥ 2. Then

| f1| =
6

k
|x1| and k ≤ 3. Hence k = 2 or 3, and so we have | f1| = 2|x1| or 3|x1|,

which is not allowed.

The case n = 2 and |x1| < |x2| can be summarized as follows.

Proposition 5.2. The set of isomorphism classes of graded algebras of dimension 6 with
n = 2 satisfying the condition |x1| 6= |x2| are

{Q[x1, x2]/(x
2
1 , x3

2), |x1| = 2n, |x2| = 2m | (n, m) ∈ N2, n 6= m},

{Q[x1, x2]/(x1x2, x2
2 + αx4

1), |x1| = 2n, |x2| = 4n | n ∈ N, α ∈ Q×/Q×2}.

We consider the case |x1| = |x2|. Then f1 and f2 are homogeneous polynomi-
als of degree 2 and 3 respectively. As in Lemma 3.1, we may set

f1 = x2
1 − αx2

2, α ∈ Q.

By the same way as in Proposition 3.2, we have the following: If there is an iso-
morphism

Q[x1, x2]/(x
2
1 − α1x2

2, f2) −→ Q[x1, x2]/(x
2
1 − α2x2

2, f ′2),

then we have
(1) α1 = α2 = 0 or (2) α1 · α2 ∈ Q×2.
For the case (1), we have isomorphisms

Q[x1, x2](x
2
1, f2) ∼= Q[x1, x2](x

2
1, x3

2 + ax1x2
2)

∼= Q[x1, x2]/(x
2
1, x3

2).

Next we consider the case (2). Assume that α1 ∈ Q× and α1 /∈ Q×2 and that
there is an isomorphism

ϕ : Q[x1, x2]/(x
2
1 − α1x2

2, f1) −→ Q[x1, x2]/(x
2
1 − α2x2

2, f2)
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defined by
ϕ(x1) = px1 + qx2, ϕ(x2) = rx1 + sx2

with p, q, r, s ∈ Q×. Then pq = α1rs and

−α2 =
q2 − s2α1

p2 − r2α1
= − qs

rp
, so α1 · α2 =

(q

r

)2
∈ Q×2.

The case that one of p, q, r, s is zero is similar.
So we set α2 = r2α1 for some r ∈ Q×. The polynomials f2, f ′2 can be chosen as

f2 = s1x3
1 + t1x2

1x2, f ′2 = s2x3
1 + t2x2

1x2

with some si, ti ∈ Q (i = 1, 2). Set

(5.3) X1 = x1 +
√

α1x2, X2 = x1 −
√

α1x2.

Let K = Q(
√

α1) be the quadratic field. Then we have an isomorphism

Q[x1, x2]/(x
2
1 − α1x2

2, f1)⊗
Q

K ∼= K[X1, X2]/(X1X2, f̄1),

where f̄1 = (t1 + s1
√

α1)X
3
1 + (−t1 + s1

√
α1)X

3
2 . Hence ϕ induces an isomor-

phism

ϕ : K[X1, X2]/(X1X2, X3
1 + a1X3

2) −→ K[X1, X2]/(X1X2, X3
1 + a2X3

2),

where a1 =
−t1 + s1

√
α1

t1 + s1
√

α1
and a2 =

−t2 + s2r
√

α1

t2 + s2r
√

α1
. Remark here that a1a2 6= 0 by

the regularity of the ideals appearing in the above.
Let

ϕ(Xi) = piX1 + qiX2, pi, qi ∈ K

for i = 1, 2. We have p1p2 = 0 and q1q2 = 0, since ϕ(X1X2) ∈ (X1X2). Thus
p2 = q1 = 0 or p1 = q2 = 0.

First, we consider the case p2 = q1 = 0. Then we have p1q2 6= 0 and that

(5.4) a2a−1
1 = (q2 p−1

1 )3.

It follows from (3) that

(5.5)
ϕ(x1) =

1

2
{(p1 + q2)x1 +

√
α1(p1 − q2)x2},

ϕ(x2) =
1

2
√

α1
{(p1 − q2)x2 +

√
α1(p1 + q2)x2}.

Since ϕ is defined over Q, we have

p1 + q2 ∈ Q and (p1 − q2)
√

α1 ∈ Q,

which implies that p1 and q2 are conjugate elements over Q by the equalities

(5.5). Then q2p−1
1 are of the form uσu−1, where uσ is the conjugate of u ∈ K×
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if we take u = p1 and q2 = uσ. By Hilbert’s Theorem 90 (see [M; p.93]), the set
{uσu−1|u ∈ K×} coincides with the set K×

1 = {γ ∈ K×|NK(γ) = 1}, where

NK(γ) is the norm c2 − α1d2 for the element γ = c + d
√

α1. It follows from the

condition a2a−1
1 ∈ K×3

1 that

(5.6)
t2 − s2r

√
α1

t2 + s2r
√

α1
· t1 − s1

√
α1

t1 + s1
√

α1
∈ K×3

1 .

For the case p1 = q2 = 0, quite similarly to the above we have p2q1 6= 0 and that

a2a−1
1 = (q1 p−1

2 )3.

For the same reasons as the above, p2 and q1 are conjugate over Q. Hence we

also have a2a−1
1 ∈ K×3

1 .
Conversely, we have

Proposition 5.3. Let (αi, [si, ti]) be elements of M1\M2 (i = 1, 2). If (α1, [s1, t1]) and
(α2, [s2, t2]) are equivalent, then there is a graded algebra isomorphism

ϕ : Q[x1, x2]/(x
2
1 − α1x2

2, s1x3
1 + t1x2

1x2) → Q[x1, x2]/(x
2
1 − α2x2

2, s2x3
1 + t2x2

1x3
2).

(See the statement below Theorem 1.2 in Section 1 for the definitions of M1,
M2 and the equivalence relation.)

Proof. Since (α1, [s1, t1]) and (α2, [s2, t2]) are equivalent, there is r ∈ Q× so that
α2 = r2α1, and we may set

t1 + s1
√

α1

t1 − s1
√

α1
· t2 − s2r

√
α1

t2 + s2r
√

α1
= t3, t ∈ K×.

Then t ∈ K1. Again by Hilbert’s Theorem 90, we may write

t =
a + b

√
α1

a − b
√

α1
, a, b ∈ Q.

Let X1 and X2 be as in (5.3). We can define a K-graded algebra map

ψ : K[X1, X2]/(X1X2, X3
1 −

t1 − s1
√

α1

t1 + s1
√

α1
X3

2) −→

K[X1, X2]/(X1X2, X3
1 −

t2 − s2r
√

α2

t2 + s2r
√

α1
X3

2)

by
ψ(X1) = (a + b

√
α1)X1, ψ(X2) = (a − b

√
α1)X2

for some a, b ∈ Q. Then we have

ψ(x1) = ψ
(

X1+X2
2

)

= 1
2{(a + b

√

α1)X1 + (a − b
√

α1)X2}
= 1

2{(a + b
√

α1)(x1 +
√

α1x2))

+(a − b
√

α1)(x1 −
√

α1x2)}
= ax1 + bα1x2,
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ψ(x2) = ψ
(

X1−X2
2
√

α1

)

= 1
2
√

α1
{(a + b

√
α1)(x1 +

√
α1x2)

−(a − b
√

α1)(x1 −
√

α1x2)}
= bx1 + ax2.

Hence ψ is defined over Q. Thus we have a graded Q-algebra isomorphism

ψ : Q[x1, x2]/(x
2
1 − α1x2

2, s1x3
1 + t1x2

1x2) −→ Q[x1, x2]/(x
2
1 − α2x2

2, s2x3
1 + t2x2

1x2).

Next we consider the case that (αi, [si, ti]) ∈ M̃2 (i = 1, 2). (For the definition
of M̃2 see Section 1.)

Proposition 5.4. The two graded algebras

Q[x1, x2]/(x
2
1 − γ2

1x2
2, s1x3

1 + t1x2
1x2) and Q[x1, x2]/(x

2
1 − γ2

2x2
2, s2x3

1 + t2x3
1x2),

where (γ2
i , [si, ti]) ∈ M̃2 (i = 1, 2), are isomorphic if and only if (α1, [s1, t1]) and

(α2, [s2, t2]) are equivalent, that is,

t2 − s2r2

t2 + s2r2
· t1 + s1r1

t1 − s1r1
∈ Q×3.

Proof. By setting
y1 = x1 + r1x2, y2 = x1 − r1x2,

the graded algebra over Q

Q[x1, x2]/(x
2
1 − γ2

1x2
2, s1x3

1 + t1x2
1x2)

is isomorphic to

Q[y1, y2]/(y1y2, (t1 + s1r1)y
3
1 + (−t1 + s1r1)y

3
2).

Observe that there is an isomorphism

ϕ : Q[y1, y2]/(y1y2, (t1 + s1r1)y
3
1 + (−t1 + s1r1)y

3
2) →

Q[y1, y2]/(y1y2, (t2 + s2r2)y
3
1 + (−t2 + s2r2)y

3
2)

if and only if
t2 − s2r2

t2 + s2r2
· t1 + s1r1

t1 − s1r1
∈ Q×3.

In fact, if we set ϕ(yi) = piy1 + qiy2 for pi, qi ∈ Q (i = 1, 2), then p1 p2 = 0 and
q1q2 = 0. The condition t± sr 6= 0 in M2 is equivalent to the one that the sequence
{x2

1 − r2x2
2, sx3

1 + tx2
1x2} is regular.

By Propositions 5.3 and 5.4 we have

Proposition 5.5. The set of isomorphism classes of graded algebras over Q

Q[x1, x2]/(x
2
1 + αx2

2, sx2
1 + tx2

1x2)

corresponds bijectively to the set

T = (M1\M2)/ ∼ ∪ M̃2/ ∼
In the case {0} × P1(Q) it corresponds to the algebra

Q[x1, x2]/(x
2
1, sx3

2 + tx2
2x1) ∼= Q[x1, x2]/(x

2
1, x3

2).
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6 The case of dimension 7

Let A be the cohomology algebra of an elliptic space with χπ = 0 such that
dimQ A = 7. Then n = 1 or 2 in (2). If n = 1, then A ∼= Q[x]/(x7). If n = 2, then
| f1| · | f2| = 7|x1| · |x2|.

(a) Assume that | f1| is an integer multiple of |x1|, that is, | f1| = k|x1| for some
integer k ≥ 2. Then k = 2 or 3.

If k = 2, then | f2| =
7

2
|x2|, which implies f2 ∈ (x1). By regularity f1 contains

the term cx2
2, and hence |x1| = |x2|. This implies that | f2| is an integer multiple of

|x2|. This is a contradiction.

If k = 3, then | f2| =
7

3
|x2| and f2 ∈ (x1). Thus we have that | f1| = 2|x2| and

| f2| =
7

2
|x1|, which implies that ( f1, f2) = (x3

1 + ax2
2, x2

1x2), where a ∈ Q×.

(b) Assume that | f1| is an integer multiple of |x2|, that is, | f1| = k|x2| for some
integer k ≥ 1. Then | f2| = 7

k |x1| and so f2 ∈ (x2). This implies that | f1| is an
integer multiple of |x1|, and so we are reduced to the case (a).

(c) Assume that | f1| is neither an integer multiple of |x1| nor of |x2|. Then

f1 ∈ (x1) ∩ (x2), and hence f2 contains a non zero multiple of xk1
1 and xk2

2 for
some integers k1, k2. Then

| f2| = k1|x1| = k2|x2|

and k1 > k2 ≥ 2.

If k2 ≥ 4, then | f1| ≤
7

4
|x1|, which is impossible by Lemma 2.1.

Thus we can deduce that k2 = 2 or 3.
(1) Let k2 = 2. If k1 ≥ 6, then

| f1| ≥ |x1|+ |x2| ≥
(

1 +
k1

2

)

|x1| ≥ 4|x1|,

and hence we have by (2.2) for n = 2 that

| f2| ≤
7

4
|x2|,

which contradicts Lemma 2.1. Thus k1 = 3 or 4 or 5.
If k1 = 3, then

| f1| =
7

3
|x2| =

7

2
|x1| > 3|x1| = | f2|.

This contradicts the assumption.
If k1 = 4, then |x2| = 2|x1| and | f1| is an integer multiple of |x1|. This contra-

dicts the assumption.

If k1 = 5, then | f1| =
7

5
|x2| =

7

2
|x1| = |x1|+ |x2|. Then we have

( f1, f2) = (x1x2, x5
1 + ax2

2), a ∈ Q×.
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(2) Let k2 = 3. Then we have that

7

3
|x1| = | f1| ≥ |x1|+ |x2| =

(

1 +
k1

3

)

|x1|.

Since k1 > k2, we see that k1 = 4 and | f1| = |x1|+ |x2|, which implies that

( f1, f2) = (x1x2, x4
1 + ax3

2), a ∈ Q×,

where 4|x1| = 3|x2|.
Proposition 6.1. The isomorphism classes of the algebras

Q[x1, x2]/(x
3
1 + ax2

2, x2
1x2), Q[x1, x2]/(x1x2, x5

1 + ax2
2), Q[x1, x2]/(x1x2, x4

1 + ax3
2)

do not depend on the choice of a ∈ Q×.

Proof. The correspondence

ϕ(x1) = px1, ϕ(x2) = qx2 (p, q ∈ Q×)

defines an isomorphism

Q[x1, x2]/(x
3
1 + ax2

2, x2
1x2) −→ Q[x1, x2](x

3
1 + bx2

2, x2
1x2)

if and only if p3b = q2a. Hence, if we take p = q = ab−1, we obtain the desired
isomorphism. The cases of the other algebras can be similarly proved.
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