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Abstract

Using representations of quivers of type A, we define an anticyclic coop-
erad in the category of triangulated categories, which is a categorification of
the linear dual of the Diassociative operad.

1 Introduction

The Diassociative operad has been introduced by Loday [Lod95, Lod97, Lod01].
It can be described as a collection of free abelian groups Dias(n) of rank n and
maps ◦i from Dias(m)⊗ Dias(n) to Dias(m + n − 1) satisfying some kind of as-
sociativity. The composition maps ◦i have a simple combinatorial description,
using grafting of planar trees with a distinguished path from the root to a leaf.

It has been shown in [Cha05] that one can endow this operad with a refined
structure of anticyclic operad. This means that there exists a map of order n + 1
on Dias(n), with some compatibility with the ◦i maps.

The aim of this article is to prove that this whole structure (or rather its linear
dual, which is an anticyclic cooperad) is the shadow of a natural representation-
theoretic object, related to the Dynkin diagrams of type A.

We will not assume any knowledge of operads, but the interested reader can
consult [GK94, Lod01, Smi01, MSS02] for basics of this theory and [Mar99, Cha05]
for the notion of anticyclic operad.

We first define a cooperad A in the category of abelian categories. This amounts
to a collection of abelian categories An for n ≥ 1 and some functors ∇ from these
categories to products of two of these categories. The categories An involved

are just the categories of modules over the
−→
A n quivers. These are very classical

objects in representation theory.
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The ∇ functors are defined as tensor product by some specific multiplicity-
free bimodules. The axioms of cooperads are checked by using a combinatorial
description of the tensor product of such bimodules.

At the level of the Grothendieck groups, one then checks that the induced
cooperad is the linear dual of the Diassociative operad. The classes of simple
modules correspond to the usual basis of Dias(n) and the ∇ functors give the
linear dual of the ◦i maps.

As the ∇ functors are given by the tensor product with projective bimodules,
they are exact. Going to the derived categories DAn, we prove that there is some
compatibility between the ∇ functors and the Auslander-Reiten translations. At
the level of Grothendieck groups, this amounts to the structure of anticyclic co-
operad on the Diassociative cooperad.

2 General facts

2.1 Quivers of type A

For each integer n ≥ 1, let
−→
A n be the quiver 1 → 2 → · · · → n. This is a quiver

on the graph of type An in the classification of Dynkin diagrams.

Let k be a fixed ground field. Let An be the category of finite dimensional

right-modules over the path algebra of
−→
A n over k. This is an abelian category,

with a finite number of isomorphism classes of indecomposable objects.

Let DAn be the bounded derived category of the category An. This is a trian-
gulated category, with a shift functor that will be denoted by S. Indecomposable
objects in DAn are just shifts of the images of the indecomposable objects in An.

There exists a canonical self-equivalence of DAn, called the Auslander-Reiten
translation and denoted by τn.

The Nakayama functor νn is the composite τnS = Sτn. This functor maps, for

each vertex i of
−→
A n, the projective module Pi to the injective module Ii.

2.2 Products of quivers

Let
−→
A m1,m2,...,mk

be the product quiver
−→
A m1

×
−→
A m2 × · · · ×

−→
A mk

. We consider this
as a quiver with relations by imposing all possible commutation relations.

A module over this quiver amounts to a module over the tensor product of the

path algebras of the quivers
−→
A mi

. Therefore, one can forget the action of some of
the factors to define restricted modules.

As there is a canonical isomorphism of quivers from
−→
A m,n to

−→
A n,m, there

are canonical equivalences between the corresponding module and derived cate-
gories. Let us denote by X these flip functors.

More generally, any permutation of the factors in a multiple product of quiv-

ers
−→
A n give rise to a corresponding equivalence.
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2.3 Standard modules

Let M be a module over a quiver
−→
A m1,m2,...,mk

. Let Ms be the vector space associ-
ated with a vertex s. One says that M is multiplicity-free if the dimension of Ms

is at most 1 for every vertex s. Let then S(M) be the support of M, which is the
set of vertices s such that dim Ms = 1.

Let M be a multiplicity-free module. One says that M is standard if, for any
two adjacent vertices s, s′ in S(M), the map between Ms and Ms′ is an isomor-
phism.

To describe a standard module M up to isomorphism, it is clearly enough to
give its support S(M). The support of a standard module cannot be arbitrary,
because of the commuting conditions that must be satisfied. One can then build
back the module using copies of the field k and identity maps between them.

2.4 Tensor product of projective standard modules

There is a simple combinatorial description of the tensor product of two projec-
tive standard modules.

Let us consider only the special case that we will need. Let Ma ; b,c be a
−→
A

op
a ×

−→
A b ×

−→
A c-module and let Mc ; d,e be a

−→
A

op
c ×

−→
A d ×

−→
A e-module. Assume that

Ma ; b,c is
−→
A c-projective and that Mc ; d,e is

−→
A

op
c -projective.

Then one can define the tensor product of Ma ; b,c and Mc ; d,e over (the path

algebra of)
−→
A c. This is a

−→
A

op
a ×

−→
A b ×

−→
A d ×

−→
A e-module denoted by Ma ; b,c ⊗−→

A c

Mc ; d,e.
Assume that Ma ; b,c and Mc ; d,e are standard modules with support Sa ; b,c and

Sc ; d,e. Let us define a set Sa ; b,c ×c Sc ; d,e as follows:

Sa ; b,c ×c Sc ; d,e = {(α, β, δ, ǫ) | ∃γ (α, β, γ) ∈ Sa ; b,c and (γ, δ, ǫ) ∈ Sc ; d,e}.

Proposition 2.1. The tensor product Ma ; b,c ⊗−→
A c

Mc ; d,e is isomorphic to the standard

module with support Sa ; b,c ×c Sc ; d,e.

Proof. The tensor product over the field k has a basis indexed by tuples (α, β, γ, γ′, δ, ǫ)
with (α, β, γ) ∈ Sa ; b,c and (γ′, δ, ǫ) ∈ Sc ; d,e. Then one has to take the quotient by

the action of the idempotents and arrows of the quiver
−→
A c. Abusing notation, we

will identify tuples with the corresponding vectors.
By the action of the idempotents in the path algebra, one can see that all vec-

tors (α, β, γ, γ′, δ, ǫ) with γ 6= γ′ vanish in the tensor product.
There remains to quotient by the action of the arrows. This means that one

has to identify (α, β, γ, γ, δ, ǫ) and (α, β, γ + 1, γ + 1, δ, ǫ), provided that one has
(α, β, γ) ∈ Sa ; b,c and (γ + 1, δ, ǫ) ∈ Sc ; d,e.

By the hypothesis made (considered modules are projective), in this situation,
one also has (α, β, γ + 1) ∈ Sa ; b,c and (γ, δ, ǫ) ∈ Sc ; d,e. Hence both (α, β, γ, γ, δ, ǫ)
and (α, β, γ + 1, γ + 1, δ, ǫ) are non-zero vectors.

Therefore, the tensor product has a basis indexed by tuples (α, β, δ, ǫ) such
that there exists γ with (α, β, γ) ∈ Sa ; b,c and (γ, δ, ǫ) ∈ Sc ; d,e.

One can also see by construction that indeed the module is standard.
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Figure 1: The bimodule N6 corresponding to Nakayama functor ν6

2.5 Fiber-reversal and action of τ

Let Nn be the standard
−→
A

op
n ×

−→
A n module with support

{(i, j) ∈ [1, n]× [1, n] | i ≥ j}. (1)

Note that Nn is injective as a
−→
A

op
n -module and as a

−→
A n-module.

Lemma 2.2. The Nakayama functor νn on the category DAn is the derived tensor prod-
uct ? ⊗L

−→
A n

Nn.

Proof. This follows from the fact that the image by ν of the projective module
Pi is the injective module Ii, by the standard way of representing functors by
bimodules.

Let us now introduce some operations on support sets.
Let S be a subset in the product [1, m1]× · · · × [1, mk]. Fix an index i. Assume

that S is projective in the direction i, i.e. that

if (j1, . . . , ji, . . . , jk) ∈ S then (j1, . . . , ℓ, . . . , jk) ∈ S for all ℓ ≥ ji. (2)

The fiber-reversal of S in the direction i is

{(j1, . . . , ji, . . . , jk) ∈ [1, m1]× · · · × [1, mk] | (j1, . . . , ji − 1, . . . , jk) 6∈ S}. (3)

Note that the fiber-reversal of S in direction i is never disjoint from S, and
really depends on the index i.

One can give a similar definition of the fiber-reversal if the set S is injective in
the direction i, i.e. if the following condition holds:

if (j1, . . . , ji, . . . , jk) ∈ S then (j1, . . . , ℓ, . . . , jk) ∈ S for all ℓ ≤ ji. (4)

Let us now describe the (derived) tensor product with Nn. We consider only
the special case that we will need.

Let Mn;c;d be a
−→
A

op
n ×

−→
A c ×

−→
A d standard module with support Sn;c;d. Assume

that Mn;c,d is projective as a
−→
A

op
n -module.
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Proposition 2.3. The derived tensor product of Nn ⊗L
−→
A n

Mn;c,d is isomorphic to the

standard module with support the fiber-reversal of Sn;c;d in the direction of length n.

Proof. The tensor product Nn ⊗k Mn;c,d has a basis indexed by tuples (α, β, β′, γ, δ)
with α ≥ β and (β′ , γ, δ) ∈ Sn;c;d. Abusing notation, we will identify tuples with
the corresponding vectors.

Using the idempotents in the path algebra, the tensor product over
−→
A n is

spanned by tuples (α, β, β, γ, δ). Then one has to identify (α, β, β, γ, δ) and (α, β+
1, β + 1, γ, δ) as soon as α ≥ β and (β + 1, γ, δ) ∈ Sn;c,d.

Using the hypothesis that Mn;c,d is projective, one has in this situation that
(β, γ, δ) ∈ Sn;c,d.

The only case where one of the two vectors (α, β, β, γ, δ) and (α, β + 1, β +
1, γ, δ) is zero and the other is not zero happens if β + 1 > α, i.e. α = β.

It follows that the vector (α, β, β, γ, δ) is mapped to zero in the tensor product

over
−→
A n if and only if (α + 1, γ, δ) ∈ S(M) and are otherwise just identified. This

is exactly the definition of the fiber-reversal of Sn;c,d in the first direction.
One can easily check that the tensor product is standard.

3 The ∇ functors on module categories

In this section, we define a cooperad structure on the collection of module cat-
egories (An)n≥1. This means that several functors ∇ are introduced and some
kind of associativity properties are proved.

Let n ≥ 1 be an integer and let m, i be integers such that 1 ≤ i ≤ m.
Consider the set Sn

m;i of integer triples (γ, µ, ν) in [1, m + n − 1]× [1, m]× [1, n]
such that

(µ ≤ i − 1 and γ ≤ µ)

or (µ = i and γ ≤ i + ν − 1)

or (i + 1 ≤ µ and γ ≤ µ + n − 1).

This is illustrated in Figure 2 with m = 6, n = 4 and i = 3.
For later use, here is an equivalent description of Sn

m;i :

(γ ≤ i and γ ≤ µ) (5)

or (i + 1 ≤ γ ≤ i + n − 1 and γ ≤ i + ν − 1) and i ≤ µ (6)

or (i + 1 ≤ γ ≤ i + n − 1 and i + ν ≤ γ) and i + 1 ≤ µ (7)

or (i + n ≤ γ and γ − n + 1 ≤ µ). (8)

One can easily check that the set Sn
m;i has the following property : if (γ, µ, ν) ∈

Sn
m;i and if (γ′, µ′, ν′) ∈ [1, m + n − 1]× [1, m]× [1, n] is such that γ′ ≤ γ, µ ≤ µ′

and ν ≤ ν′, then (γ′, µ′, ν′, γ′) ∈ Sn
m;i.

This implies that one can define a representation Mn
m;i of the quiver

−→
A

op
m+n−1 ×

−→
A m ×

−→
A n as the standard module with support Sn

m;i. Note that Mn
m;i is projective

with respect to
−→
A m,

−→
A n and

−→
A

op
m+n−1.
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Figure 2: The module M4
6;3 and its symbolic description

Let then ∇n
m;i be the functor from Am+n−1 to Am,n defined by the tensor prod-

uct over
−→
A m+n−1 by Mn

m;i :

∇n
m;i =? ⊗−→

A m+n−1
Mn

m;i. (9)

Note that ∇n
1;1 is the identity functor of An and that ∇1

m;i is the identity functor
of Am for all i.

3.1 Relation to the Dias cooperad

Let n be an integer and let 1 ≤ j ≤ n. Let Sn
j be the simple

−→
A n-module supported

at vertex j. Let Pn
j be the projective

−→
A n-module associated with vertex j. The

class of a module M in the Grothendieck group K0(An) of An will be denoted by
[M]. The elements [Sn

j ] for 1 ≤ j ≤ n form a basis of K0(An).

Let us now compute the class [∇n
m;i(S

m+n−1
j )].

From the explicit description of the module Mn
m;i, one has

[∇n
m;i(P

m+n−1
j )] =















[Pm,n
j,1 ] if 1 ≤ j ≤ i,

[Pm,n
i+1,1] + [Pm,n

i,j−i+1]− [Pm,n
i+1,j−i+1] if i + 1 ≤ j ≤ i + n − 1,

[Pm,n
j−n+1,1] if i + n ≤ j ≤ m + n − 1,

(10)

where Pm,n
i,j is the projective module associated with vertex (i, j) of

−→
A m ×

−→
A n.

Using a projective resolution of the simple modules, one deduces that

[∇n
m;i(S

m+n−1
j )] =















∑
n
k=1[S

m,n
j,k ] if 1 ≤ j ≤ i − 1,

[Sm,n
i,j−i+1] if i ≤ j ≤ i + n − 1,

∑
n
k=1[S

m,n
j−n+1,k] if i + n ≤ j ≤ m + n − 1,

(11)

where Sm,n
i,j is the simple module at vertex (i, j) for

−→
A m ×

−→
A n.
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Taking the linear dual basis e of the basis [S], one finds that the linear dual
maps ◦ to the ∇ maps are given by

◦n
m;i(e

m
j ⊗ en

k ) =











em+n−1
j if i > j,

em+n−1
i+k−1 if i = j,

em+n−1
j+n−1 if i < j.

(12)

This is exactly the usual description of the Diassociative operad, in the usual
basis e of Dias(n), see [Cha05, §3].

4 Cooperadic properties of ∇ functors

One has to check two different axioms to prove that the ∇ functors define a co-
operad. Let us call them the commutativity axiom and the associativity axiom.

4.1 Commutativity axiom

Let m, n, p and i, j be integers such that 1 ≤ i < j ≤ m.

Proposition 4.1. The modules M have the following property : there is an isomorphism

Mn
m+p−1;i ⊗−→

A m+p−1
M

p
m;j ≃ M

p
m+n−1;j+n−1 ⊗−→

A m+n−1
Mn

m;i, (13)

where both sides are
−→
A

op
m+n+p−2 ×

−→
A m ×

−→
A n ×

−→
A p-modules.

Proof. As the modules M are standard and projective, their tensor products can be
described using their supports. According to the description of tensor products
in Prop. 2.1, one therefore has to compute and compare the sets S

p
m;j ×m+p−1

Sn
m+p−1;i and Sn

m;i ×m+n−1 S
p
m+n−1;j+n−1.

By an elementary computation with boolean combinations of inequalities, one
can show that both sides are given by the set of (γ, µ, ν, π) in [1, m + n + p − 2]×
[1, m]× [1, n]× [1, p] such that

(µ ≤ i − 1 and γ ≤ µ)

or (µ = i and γ ≤ i + ν − 1)

or (i + 1 ≤ µ ≤ j − 1 and γ ≤ µ + n − 1)

or (µ = j and γ ≤ j + n + π − 2)

or (j + 1 ≤ µ and γ ≤ µ + n + p − 2).

Corollary 4.2. The functors ∇ have the following property : there is a natural transfor-
mation

(Idm ×X)(∇
p
m;j × Idn)∇

n
m+p−1;i ≃ (∇n

m;i × Idp)∇
p
m+n−1;j+n−1. (14)
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4.2 Associativity axiom

Let m, n, p and i, j be integers such that 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proposition 4.3. The modules M have the following property : there is an isomorphism

M
n+p−1
m;i ⊗−→

A n+p−1
M

p
n;j ≃ M

p
m+n−1;j+i−1 ⊗−→

A m+n−1
Mn

m;i, (15)

where both sides are
−→
A

op
m+n+p−2 ×

−→
A m ×

−→
A n ×

−→
A p-modules.

Proof. As in the previous section, one just has to compute the supports of these
modules. One can check that they both give the set of (µ, ν, π, γ) in [1, m] ×
[1, n]× [1, p]× [1, m + n + p − 2] such that

(µ ≤ i − 1 and γ ≤ µ)

or (µ = i and ν ≤ j − 1 and γ ≤ i + ν − 1)

or (µ = i and ν = j and γ ≤ i + j + π − 2)

or (µ = i and j + 1 ≤ ν and γ ≤ i + ν + p − 2)

or (i + 1 ≤ µ and γ ≤ µ + n + p − 2).

Corollary 4.4. The functors ∇ have the following property : there is a natural transfor-
mation

(Idm ×∇
p
n;j)∇

n+p−1
m;i ≃ (∇n

m;i × Idp)∇
p
m+n−1;j+i−1. (16)

5 Relations between ∇ and τ

Let us consider the functors ∇n
m;i as the derived tensor product with Mn

m;i. As
the modules Mn

m;i are projective in every direction, this is just the usual tensor
product. Therefore, we obtain a cooperad structure on the collection of derived
categories (DAn)n≥1.

In this section, we define an anticyclic cooperad structure on the collection
of derived categories (DAn)n≥1. This means that some compatibility properties
hold between the functors ∇ and the Auslander-Reiten translations τ. We will
rather work with the Nakayama functors ν, described as derived tensor product
with the modules N.

There are two different axioms for the notion of anticyclic operad : let us call
them the border axiom and the inner axiom.

5.1 Border axiom

Proposition 5.1. The fiber-reversal of Sn
m;1 in the direction of length m + n − 1 is equal

to the fiber-reversal in the direction of length n of the fiber-reversal in the direction of
length m of Sm

n;n. In terms of modules, this means that

Nm+n−1 ⊗
L
−→
A m+n−1

Mn
m;1 ≃ (Mm

n;n ⊗
L
−→
A m

Nm)⊗
L
−→
A n

Nn. (17)
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ν µ

Figure 3: The module M6
4;4, its fiber-reversal in the direction of length 6 and the

fiber-reversal of the result in the direction of length 4

µ
ν

γ

Figure 4: The module M4
6;1, its top-bottom fiber-reversal

Proof. Let us first compute the fiber-reversal of Sn
m;1 in the direction of γ of length

m + n − 1 . One easily gets

(µ = 1 and γ ≥ ν)

or γ ≥ µ + n − 1.

Let us then compute the fiber-reversal of Sm
n;n in the direction of µ of length m.

One gets

(µ = 1 and γ ≤ ν)

or (ν = n and γ ≥ n + µ − 1).

Then one can compute the fiber-reversal of this set in the direction of ν and
check the expected result.

Corollary 5.2. The functors ∇ satisfy

∇n
m;1τm+n−1 ≃ SX(τn × τm)∇

m
n;n. (18)
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µ

γ

ν

Figure 5: The module M7
8;4, its top-bottom fiber-reversal and its fiber-reversal in

the direction of length 8

5.2 Inner axiom

Let us assume here that 2 ≤ i ≤ m.

Proposition 5.3. The fiber-reversal of Sn
m;i in the direction of length m + n − 1 coincides

with the fiber-reversal of Sn
m;i−1 in the direction of length m. In terms of modules, this

means
Nm+n−1 ⊗

L
−→
A m+n−1

Mn
m;i ≃ Mn

m;i−1 ⊗
L
−→
A m

Nm. (19)

Proof. On the one hand, for the fiber-reversal of Sn
m;i in the direction γ of length

m + n − 1, one easily gets

(µ ≤ i − 1 and γ ≥ µ)

or (µ = i and γ ≥ i + ν − 1)

or (i + 1 ≤ µ and γ ≥ µ + n − 1).

On the other hand, using the alternative description (5) of Sn
m;i−1, the fiber-

reversal of Sn
m;i−1 in the direction µ of length m is

(γ ≤ i − 1 and γ ≥ µ)

or (i ≤ γ ≤ i + n − 2 and γ ≤ i + ν − 2) and i − 1 ≥ µ

or (i ≤ γ ≤ i + n − 2 and i − 1 + ν ≤ γ) and i ≥ µ

or (i + n − 1 ≤ γ and γ − n + 1 ≥ µ).

It is then a routine matter to check that they are indeed equal.

Corollary 5.4. The functors ∇ satisfy

∇n
m;iτm+n−1 ≃ (τm × Id)∇n

m;i−1, (20)

for 2 ≤ i ≤ m.
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