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Abstract

Some results and criteria of existence concerning bounded approximate
identities in Banach algebras are extended to the topological algebras setting.
We thereby prove that the bidual of a commutative locally C*-algebra with
either of the two Arens products is a unital commutative algebra, and that
a quasinormable Fréchet m-convex algebra has a left (resp. right) bounded
approximate identity if and only if it can be represented as an inverse limit of
Banach algebras each of which has a left (resp. right) bounded approximate
identity.

1 Introduction

The notion of a bounded approximate identity first appeared in harmonic analy-
sis and soon gained ground in Banach algebra theory due to its connection with
factorization problems and Johnson’s amenability (see [6, 2.9] for a succinct ac-
count of results and references). In topological homology, which studies the ho-
mological properties of topological algebras, it is closely related both to amenabil-
ity and the notion of flatness. Specifically, a Banach algebra A is amenable if and
only if it has a bounded approximate identity and it is flat as Banach A-bimodule
[12, VII.2.20]. Our attempt to extend this characterization of amenability to the
context of locally convex non-normed algebras, resulted in [25, §5], gave rise to
this paper.
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The fundamental concepts and techniques on which the aforementioned ex-
tension is based had been already developed by the author since 2005 in an earlier
extended form of [23]. However, while [23] was being reduced in size during the
refereeing process, the arXiv version of [22] was revised and completed, without
acknowledgment, using some ideas and results of the original version of [23],
which we now include in the present paper. More precisely, Propositions 3.1 and
3.2, Theorems 3.9(1; i⇔ii) and 4.2(2), and Corollary 4.4 of this paper have also
appeared in [22]. However, Proposition 3.2 was mentioned without proof in [22],
and we prove Theorem 4.2(2) and Corollary 4.4 in a more direct way. Moreover,
by introducing the dual module of a locally convex module and extending the
notions of approximate units and of Arens regularity to the topological algebra
setting, the proofs of all the other results are very streamlined and rather direct.
Finally, the present manuscript is largely based on the doctoral thesis of the au-
thor, completed in 2006. The manuscript [25] also contains some results of that
thesis, using auxiliary results of the present paper.

Acknowledgments. I am most grateful to Hendrik Van Maldeghem for his
kind support. My heartfelt thanks are also due to Françoise Bastin and to the
referee for their understanding and help.

2 Preliminaries

The topological vector spaces (tvs) considered throughout are complex and Haus-
dorff. We denote by N0(X) the filter basis of all balanced 0-neighborhoods in a
tvs X and by B(X) the family of all non-empty bounded subsets of X.

A tvs which is an (associative) algebra with separately continuous multipli-
cation is called topological algebra. A topological algebra with locally convex un-
derlying tvs is called locally convex (lca). In particular, an m-convex algebra is a
lca whose topology is defined by a family of m- (i.e., submultiplicative) semi-
norms. According to the Arens-Michael representation theorem, such an alge-
bra is topological algebraically embedded into an inverse limit of Banach alge-
bras. More precisely, if (sµ)µ∈M is a defining family of m-seminorms for an
m-convex algebra A, then each A/Ker(sµ) is a normed algebra with the norm
‖a + Ker(sµ)‖µ := sµ(a) and A ⊂

→
lim←−(A/Ker(sµ))̃ holds up to a topological al-

gebra embedding, which turns isomorphism if A is complete (cf. [3], [18]). In
case A is complete involutive and the sµ are C*-seminorms (i.e., sµ(a∗a) = sµ(a)2

∀ a ∈ A), the previous normed algebras are C*-algebras and A is called locally
C*-algebra [13]. For properties and examples of locally C*-algebras, we refer to [9]
and [21].

A net (eλ)λ∈Λ in a topological algebra A is called left (resp. right) approximate
identity (ai) if, for every a ∈ A, limλ eλ a = a (resp. limλ a eλ = a) holds and
approximate identity if it is both a left and a right ai. If the previous limit/-s is/are
taken for the weak topology of A, then the ai is called weak. An ai whose elements
form a bounded set is called bounded (bai).

A left module over a topological algebra A which is a tvs with separately
continuous outer multiplication is called topological left A-module. A topological
right or bi-module over A is similarly defined. Naturally, a locally convex module
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(lcm) is a topological module with locally convex underlying tvs.
If the outer multiplication of a topological left A-module X is B(X)- (resp.

B(A)-) hypocontinuous, that is, for each V ∈ N0(X) and B ∈ B(X), there is a
U ∈ N0(A) such that U · B ⊂ V (resp. for each V ∈ N0(X) and C ∈ B(A), there
is a U ∈ N0(X) such that C ·U ⊂ V), then we call X left (resp. right) hypotopolog-
ical. We say that X is hypotopological if it is left and right hypotopological. These
notions are accordingly modified for a topological right A-module. Obviously,
every topological module with continuous outer multiplication is hypotopologi-
cal. Moreover, every lc left (resp. right) module over a barreled lca is left (resp.
right) hypotopological (cf. [15, 40.2(3)]). In a left or right hypotopological left A-
module X, C · B ∈ B(X) holds, for any C ∈ B(A), B ∈ B(X). Indeed, if X is e.g.
right hypotopological, take U ∈ N0(X). By the B(A)-hypocontinuity of X’s outer
multiplication, there is V ∈ N0(X) such that C ·V ⊂ U. Since B is bounded, there
is ρ > 0 with B ⊂ ρ V. Hence C · B ⊂ ρ U and so C · B is bounded. A topological
algebra A is termed left, right or just hypotopological if it is respectively left, right
or just hypotopological as a topological left (or right) A-module.

Let X be a left A-lcm. Then its dual space X′ is a right A-module with respect
to (w.r.t.) the map X′ × A→ X′ : ( f , a) 7→ f · a : X → C : x 7→ f (a · x). It is easy
to see that this map is separately continuous for the weak* topology on X′. For
the strong topology, it is continuous w.r.t. the first variable and continuous w.r.t.
the second if and only if A × X → Xσ is B(X)-hypocontinuous (which occurs
when A is barreled lc; ibid.). If we consider a right A-lcm X, then X′ is a left
A-module w.r.t. A× X′ → X′ : (a, f ) 7→ a · f : X → C : x 7→ f (x · a), which has
analogous continuity properties. Given two topological A-bimodules X and Y,
the vector space Ah(X, Y) of all continuous left A-module morphisms X → Y is
an A-bimodule w.r.t. (a, T) 7→ a ·T : x 7→ T(x · a), (T, a) 7→ T · a : x 7→ T(x) · a and
the vector space hA(X, Y) of all continuous right A-module morphisms X → Y is
an A-bimodule w.r.t. (a, T) 7→ a · T : x 7→ a · T(x), (T, a) 7→ T · a : x 7→ T(a · x). In
particular, the last two products render the vector space h(X,Y) (= 0h(X, Y)) of
continuous (linear) operators X → Y an A-bimodule [12, §0.4.2].

3 Approximate identities and approximate units

Proposition 3.1. Let A be a topological algebra. Then A has a left ai if and only if, for
each F ⊂ A finite and U ∈ N0(A), there exists u ∈ A with a− ua ∈ U ∀ a ∈ F. In
particular, A has a left bai if and only if there is a B ∈ B(A) such that for each F ⊂ A
finite and U ∈ N0(A), there exists u ∈ B with a− ua ∈ U ∀ a ∈ F.

Proof. Considering both cases, (⇒) follows from repeated application of the def-
initions. (⇐) If F is the family of all non-empty finite sets in A, then F ×N0(A)

is a directed set w.r.t. the order (F1, U1) ≤ (F2, U2)
def
⇐⇒ F1 ⊂ F2 and U1 ⊃ U2. By

the hypothesis, ∀ (F, U) ∈ F ×N0(A) ∃ eF,U ∈ A : a− eF,U a ∈ U ∀ a ∈ F (resp.
∃ B ∈ B(A) ∀ (F, U) ∈ F × N0(A) ∃ eF,U ∈ B : a − eF,U a ∈ U ∀ a ∈ F). This
yields that (eF,U)(F,U)∈F×N0(A) is a left ai (resp. bai) for A.
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Proposition 3.2. If a hypotopological algebra A has a left and a right bai, then it has a
bai.

Proof. Let (eλ)λ∈Λ be a left and ( fµ)µ∈M a right bai for A. We will show that
( fµ ◦ eλ)(λ,µ)∈Λ×M, where fµ ◦ eλ := fµ + eλ − fµeλ, is a bai. Take a ∈ A and U ∈
N0(A). Choose V ∈ N0(A) such that V + V ⊂ U. By the right hypocontinuity of
A’s multiplication, there is W ∈ N0(A) with fµW ⊂ V ∀ µ ∈ M. For some λ0 ∈ Λ,
we have eλa− a ∈ V ∩W ∀ λ ≥ λ0. Therefore, for every λ ≥ λ0 and µ ∈ M, we
get ( fµ ◦ eλ) a − a = fµ(a − eλa) + (eλa − a) ∈ fµW + V ⊂ V + V ⊂ U, which
proves that ( fµ ◦ eλ) is a left ai for A. Similarly, ( fµ ◦ eλ) is a right ai. To show
that it is bounded, let U ∈ N0(A) and choose V ∈ N0(A) with V + V + V ⊂ U.
Since (eλ), ( fµ) and ( fµeλ) are bounded, there exist ρ1, ρ2, ρ3 > 0 with eλ ∈ ρ1V,
fµ ∈ ρ2V and fµeλ ∈ ρ3V ∀(λ, µ) ∈ Λ×M. Setting ρ = max{ρ1, ρ2, ρ3}, we get
fµ ◦ eλ ∈ ρ(V + V + V) ⊂ ρ U ∀ (λ, µ) ∈ Λ×M.

The A-bimodule h(A, X)b in the next lemma carries the topology of uniform
convergence on the bounded sets of A: a 0-neighborhood basis of this tvs is
formed by the sets U (B, U) := {T ∈ h(A, X) : T(B) ⊂ U}, B ∈ B(A), U ∈ N0(X)
[14, 2.10.A]. The map jX : X → hA(A, X)b : x 7→ jX(x) : A→ X : a 7→ x · a con-
sidered thereto is an A-bimodule morphism.

Lemma 3.3. Let A be a right hypotopological algebra and X a topological A-bimodule
whose left outer multiplication is B(X)-hypocontinuous. Then h(A, X)b is a topological
A-bimodule. If the right outer multiplication of X is B(A)-hypocontinuous, then jX ∈

AhA(X, hA(A, X)b).

Proof. Say L : (a, T) 7→ a ·T : A→ X : b 7→ a ·T(b) and R : (T, a) 7→ T · a : A→ X :
b 7→ T(ab) are the outer multiplications of h(A, X)b . Let a ∈ A and U (B, U) a
0-neighborhood in h(A, X)b where B ∈ B(A), U ∈ N0(X). Choose V ∈ N0(X)
such that a · V ⊂ U. Then a · T ∈ U (B, U) ∀ T ∈ U (B, V) and T · a ∈ U (B, U)
∀ T ∈ U (aB, U). Namely, L is continuous w.r.t. the second variable and R is
continuous w.r.t. the first variable. Now, let T ∈ h(A, X) and U (B, U) as be-
fore. By the B(X)-hypocontinuity of the left outer multiplication of X, there is
W1 ∈ N0(A) such that W1 · T(B) ⊂ U. Thus, a · T ∈ U (B, U) ∀ a ∈ W1 and
so L is continuous w.r.t. the first variable. In addition, if W2 ∈ N0(A) is such
that T(W2) ⊂ U, by the right hypocontinuity of A’s multiplication, there is a
W3 ∈ N0(A) with W3 B ⊂ W2. Hence, T · a ∈ U (B, U) ∀ a ∈ W3 and so R is
continuous w.r.t. the second variable. Finally, it is easily seen that the continuity
of jX is equivalent to the B(A)-hypocontinuity of the right outer multiplication
of X.

Corollary 3.4. Let A be a barreled lca and X a lc A-bimodule. Then the next hold:
(1) h(A, X)b is a lc A-bimodule and, if X is barreled, then jX ∈ AhA(X, hA(A, X)b).
(2) h(A, X′b)b is a lc A-bimodule and jX′ ∈ AhA(X

′
b, hA(A, X′b)b).

Proof. (1) stems from 3.3. (2) Since, for every B ∈ B(X) and C ∈ B(A), one has
C · B ∈ B(X) and (C · B)o · C ⊂ Bo, the right outer multiplication of X′b is B(A)-
hypocontinuous. The left outer multiplication of X′b beingB(X′b)-hypocontinuous
as A is barreled, we apply 3.3 again.
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A topological left A-module X that coincides with the closed linear span of
A · X := {a · x : a ∈ A, x ∈ X} is called essential. We note that a right hypotopo-
logical left A-module X is essential if and only if a left bai (eλ)λ∈Λ for A is a left
bai for X (i.e., x = limλ eλ x ∀ x ∈ X) [23, 3.2].

Proposition 3.5. Let A be a barreled lca with a left bai and X an essential quasi-barreled
lc A-bimodule. Then hA(A, X′b)b = X′b holds up to a topological isomorphism of lc
A-bimodules.

Proof. Let (eλ)λ∈Λ be a left bai for A. We shall show that jX′ in 3.4 is a topological
isomorphism. Since X is essential, jX′ is injective. To show that jX′ is surjective,
let T ∈ hA(A, X′b)b. Since (T(eλ))λ is bounded and X is quasi-barreled (hence
any bounded set in X′b is equicontinuous [15, 39.3(3)]), by the Alaoglu-Bourbaki
theorem there is fT ∈ X′ with T(eλ)→ fT in X′σ∗ . So, for all a ∈ A, x ∈ X,
(jX′( fT)(a))(x) = limλ T(eλ)(a · x) = limλ T(eλa)(x) = T(a)(x). Now, set C ≡
{eλ : λ ∈ Λ} and let B ∈ B(X). For each T ∈ hA(A, X′b) with |T(eλ)(x)| ≤ 1

(x ∈ B, λ ∈ Λ), we have | fT(x)| ≤ 1, i.e., U (C, Bo) ⊂ jX′(B
o). Hence j−1

X′ is
continuous.

A continuous operator D : A→ X from a topological algebra A into a topo-
logical A-bimodule X is called derivation if it satisfies the “Leibnitz identity”:
D(ab) = a · D(b) + D(a) · b, for every a, b ∈ A. A derivation of the form
Dx : A→ X : a 7→ a · x− x · a, where x ∈ X, is called inner, generated by x.

Proposition 3.6. Let A be a barreled lca with a right bai and X a quasi-barreled lc A-
bimodule such that A · X = 0. Then each derivation from A into X′b is inner.

Proof. Let (eλ)λ be a right bai for A and D : A→ X′b a derivation. Arguing as in
3.5, we get an fD ∈ X′ such that D(eλ)→ fD in X′σ∗ . Then, for any a ∈ A and
x ∈ X, we have D(a)(x) = limλ D(aeλ)(x) = limλ D(eλ)(x · a) = fD(x · a − a ·
x) = (a · fD − fD · a)(x).

A fruitful weakening of the notion of an ai is given now (see [8, I.9] for normed
algebras).

Definition 3.7. A topological algebra A is said to have left (resp. right) approximate
units if, for each a ∈ A and U ∈ N0(A), there exists u ∈ A with a− ua ∈ U (resp.
a− au ∈ U) and approximate units if, for each a ∈ A and U ∈ N0(A), there exists
u ∈ A with a− ua ∈ U and a− au ∈ U. If there is a B ∈ B(A) such that, for each
a ∈ A and U ∈ N0(A), there exists u ∈ B with a − ua ∈ U (resp. a − au ∈ U,
both), then A is said to have left (resp. right, just) bounded approximate units (baus,
for short).

Lemma 3.8. A right hypotopological algebra A has left baus if and only if there is
B ∈ B(A) such that, for each F ⊂ A finite and U ∈ N0(A), there exists u ∈ B
with a− ua ∈ U ∀ a ∈ F.

Proof. Consider B ∈ B(A) as in 3.7. Take F = {a1, . . . , an} ⊂ A and U ∈ N0(A).
Choose V ∈ N0(A) with V + V + V ⊂ U and W ∈ N0(A) with W ⊂ V,
BW ⊂ V and WF ⊂ V. Then, pick W+ ∈ N0(A+) such that W+ ∩ A = W
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and set B+
i = (e − B)n−i ⊂ A+ ∀ i = 1, . . . , n (where e is the identity of A+). For

each i ∈ {1, . . . , n}, there is W+
i ∈ N0(A+) such that B+

i W+
i ⊂ W+. Clearly,

Wi ≡ W+
i ∩ A ∈ N0(A) and B+

i Wi ⊂ W. Now choose u1, . . . , un ∈ B suc-
cessively such that (e − ui) · · · (e − u1) ai ∈ Wi ∀ i = 1, . . . , n. And define v ∈
A by e − v = (e − un) · · · (e − u1). Then, for every i ∈ {1, . . . , n}, we have
ai − vai = (e − un) · · · (e − ui+1)(e − ui) · · · (e − u1) ai ∈ B+

i Wi ⊂ W. By pick-
ing u ∈ B such that v− uv ∈ W, we finally get, for each i ∈ {1, . . . , n}, ai − uai =
(ai − vai) + (v− uv) ai + u(vai − ai) ∈W + WF + BW ⊂ V + V + V ⊂ U.

In view of the following theorem, recall that a topological algebra A is called
polynomially generated by a set S if the smallest subalgebra generated by S (i.e.,
C0[S] = {p(a1, . . . , an) : p ∈ C[X1, . . . , Xn], p(0) = 0, a1, . . . , an ∈ S, n ∈ N}) is
dense in A.

Theorem 3.9. Let A be a right hypotopological algebra. Then:
(1) The following are equivalent:

(i) A has a left bai. (ii) A has left baus. (iii) A has a weak left bai.
(2) If A has a dense subset D, then it has a left bai if and only if there is a B ∈ B(A) such
that, for each a ∈ D and U ∈ N0(A), there exists u ∈ B with a− ua ∈ U.
(3) If A is polynomially generated by a set S, then (eλ)λ∈Λ is a left bai for A if and only
if eλb→ b, for every b ∈ S.

Proof. (1; i⇔ii) stems from 3.1 and 3.8. In (1; i⇔iii), (2) and (3), we need only
prove the “if” part.

(1; i⇐iii) Let (eλ)λ∈Λ be a weak left bai of A and set B ≡ co {eλ : λ ∈ Λ}.

Take a ∈ A and U ∈ N0(A). Then a
σ
= limλ eλa ∈ Ba

σ
= Ba, where the second

equality holds due to the fact that the closure of a convex subset of A is the same
for all (A, A′)-compatible topologies [26, IV.3.1]. So, there exists u ∈ B such that
a− ua ∈ U and the claim follows from (1; ii⇒i).

(2) Take a ∈ A and U ∈ N0(A). Choose V ∈ N0(A) with V + V + V ⊂ U and
W ∈ N0(A) with W ⊂ V and BW ⊂ V. Pick d ∈ D with a − d ∈ W and u ∈ B
with d− ud ∈ V. Then a− ua = (a− d) + (d− ud) + u(d− a) ∈W + V + BW ⊂
V + V + V ⊂ U.

(3) Clearly, eλb→ b, for any b ∈ C0[S]. So, the conclusion follows by arguing
as in (2).

Proposition 3.10. Let A be a metrizable right hypotopological algebra with a left bai
and S ⊂ A a countable set. Then there exists a closed separable subalgebra D of A that
contains S and has a sequential left bai.

Proof. Let S = {an : n ∈ N}, (Un)n∈N a 0-neighborhood basis in A and B ∈
B(A) as in 3.7 (cf. 3.9). Define inductively a sequence (en)n∈N in B as follows:
Choose e1 ∈ B with a1 − e1a1 ∈ U1. Assuming that e1, . . . , en are specified, set
Yn = {a1, . . . , an+1, e1, . . . , en} and choose, on the basis of 3.8, en+1 ∈ B such that

b− en+1b ∈ Un ∀ b ∈ Yn. Put Y =
⋃

n∈N Yn = {an, en : n ∈ N} and D = C0[Y].
Since b = limn enb ∀ b ∈ Y, 3.9(3) implies that (en)n∈N is a left bai for D.

Corollary 3.11. If a metrizable, separable right hypotopological algebra has a left bai,
then it also has a sequential left bai.
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Proposition 3.12. Let I and J be closed right respectively left ideals in a right hypotopo-
logical algebra A. If I has left baus, then I + J is a closed subspace of A.

Proof. In view of [6, A.3.11], the claim will hold if the canonical map (I + J)/J→
I/(I ∩ J) is continuous. Let π1 : I + J → (I + J)/J, π2 : I → I/(I ∩ J) be the quo-
tient maps and assume that the left baus of I are contained in some B ∈ B(I). Let
U ∈ N0(I). As the topology of A is defined by all the continuous F-seminorms on
A [14, 2.7.3], there is a 0-neighborhood of the form U0 = {a ∈ I : q(a) < ε}, with q
F-seminorm and ε > 0, inside of U. Choose V, W ∈ N0(I) with V + V ⊂ U0 and
BW ⊂ V and a 0-neighborhood W0 := {a ∈ I : p(a) < δ} ⊂W with p F-seminorm
and δ > 0. Take a ∈ I with π1(a) ∈ π1(W0), i.e., ṗ(a + J) := inf{p(a + b) :
b ∈ J} < δ. Then, there exist b ∈ J with p(a − b) < δ and u ∈ B with a− ua ∈ V.
Thus, we have ub ∈ I ∩ J and a− ub = (a− ua) + u(a− b) ∈ V + BW ⊂ V +V ⊂
U0. Hence, q̇(a + I ∩ J) ≤ q(a− ub) < ε, that is, π2(a) ∈ π2(U0) ⊂ π2(U) and the
proof is finished.

Proposition 3.13. Let I be a closed two-sided ideal in a right hypotopological algebra A.
If I and A/I have both left bais, then A has a left bai too.

Proof. Suppose that the left baus of I and A/I are contained in B1 and B2, respec-
tively. Let a ∈ A and U ∈ N0(A). Choose V, W ∈ N0(A) such that V + V + V ⊂
U and W ⊂ V, B1W ⊂ V, and a 0-neighborhood W0 = {a ∈ A : q(a) < ε} ⊂ W,
with q F-seminorm and ε > 0. Then, if π : A→ A/I is the quotient map, there
exists π(u) ∈ B2 with π(a− ua) ∈ π(W0) and so there is b ∈ I with a− ua + b ∈
W0. On the other side, there exists v ∈ B1 with b − vb ∈ V. Hence, we have
a − (v ◦ u) a = (a − ua + b) − v(a − ua + b) + (vb − b) ∈ W + B1W + V ⊂
V + V + V ⊂ U and v ◦ u belongs to B1 + B2 − B1B2 ∈ B(A).

Proposition 3.14. If I and J are two-sided respectively left ideals in a right hypotopolog-
ical algebra that both have left bais, then I ∩ J has a left bai too.

Proof. Suppose that the left baus of I and J are contained in B1 and B2, respec-
tively. Take a ∈ I ∩ J and U ∈ N0(I ∩ J). Choose V ∈ N0(I ∩ J) with V + V ⊂ U
and V1 ∈ N0(I) with V1 ∩ (I ∩ J) = V. Since the product I × J → I is B(I)-
hypocontinuous, there is W2 ∈ N0(J) with B1W2 ⊂ V1. Set W = W2 ∩ (I ∩ J).
Then B1W ⊂ V. Pick u1 ∈ B1, u2 ∈ B2 with a− u1a ∈ V1 and a− u2a ∈ W2. Then,
we have a− u1u2 a = (a− u1a) + u1(a− u2a) ∈ V + B1W ⊂ V + V ⊂ U and u1u2

belongs to B1B2 ∈ B(I ∩ J).

4 Approximate identities and the bidual locally convex algebra

Let A be a left hypotopological lca. Then, as Gulick [11] showed, its bidual A′′b , de-
noted in future by A′′, is a lca (m-convex if A is such) w.r.t. the first, or left, Arens
product “�”. This product is defined via the bilinear maps
A′ × A→ A′ : ( f , a) 7→ f a : A→ C : b 7→ f (ab) and A′′ × A′ → A′ : (F, f ) 7→
F f : A→ C : a 7→ F( f a) by: A′′ × A′′ → A′′ : (F, G) 7→ F � G : A′ → C : f 7→
F(G f ) (see [1]). It is an extension of A’s multiplication such that, for every
G ∈ A′′, F 7→ F � G is continuous for σ(A′′, A′) and, for every a ∈ A, G 7→ â� G
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is continuous for σ(A′′, A′), where â ≡ J(a) and J : A →֒ A′′ is the canonical
embedding [11, 3.4, 3.6].

In the Banach algebra setting, the second, or right, Arens product “♦” is an-
other extension of the multiplication of the original algebra A to A′′. This is de-
fined via the bilinear maps A′ × A→ A′ : ( f , a) 7→ a f : A→ C : b 7→ f (ba) and
A′′ × A′ → A′ : (F, f ) 7→ f F : A→ C : a 7→ F(a f ) by: A′′ × A′′ → A′′ : (F, G) 7→
F ♦G : A′ → C : f 7→ G( f F) (see [2]).

Since (A′′,♦) = ((Aop)′′,�)op, Gulick’s result yields the well-definition of the
second Arens product in the general case where A is a right hypotopological lca,
hence (A′′,♦) is a lca too. It is readily seen that, in this case, ♦ has the following
continuity properties: for each F ∈ A′′, G 7→ F ♦G is continuous for σ(A′′, A′)
and, for each a ∈ A, F 7→ F ♦ â is continuous for σ(A′′, A′). It is also easily
verified that if φ : A→ B is a continuous morphism between left (resp. right)
hypotopological lcas, then φ′′ : (A′′,�)→ (B′′,�) (resp. (A′′,♦)→ (B′′,♦)) is a
continuous algebra morphism as well. If A is unital with identity eA, then êA is
the identity of both (A′′,�) and (A′′,♦).

In particular, the notion of Arens regularity introduced in [2] can be extended
from the context of Banach algebras to the context of hypotopological lcas.

Definition 4.1. A hypotopological lca A is called Arens regular if � and ♦ coincide
on A′′.

Since in a commutative hypotopological lca A, F � G = G♦ F holds for ev-
ery F, G ∈ A′′, A is Arens regular if and only if (A′′,�) is commutative. Gulick
[11] called an m-convex algebra bicommutative if its bidual with � is commuta-
tive. He proved that a complete m-convex algebra is bicommutative if it can
be represented as an inverse limit of bicommutative Banach algebras [11, 5.2].
This result combined with the fact that every C*-algebra is Arens regular [5, 7.1]
implies that every commutative locally C*-algebra is Arens regular. Since, more-
over, bicommutativity is inherited by subalgebras (cf. [11, 5.3]), every subalgebra
of a commutative locally C*-algebra is Arens regular. By the continuity proper-
ties of the two Arens products and the fact that J(A) is dense in A′′σ∗ , it is easily
verified that a hypotopological algebra A is Arens regular if and only if for each
F ∈ A′′, G 7→ F � G is continuous for σ(A′′, A′) or, equivalently, for each G ∈ A′′,
F 7→ F ♦G is continuous for σ(A′′, A′).

As regards bais, we have the next

Theorem 4.2. (1) A right hypotopological lca A has a left bai if and only if (A′′,♦) has
a left identity.
(2) A left hypotopological lca A has a right bai if and only if (A′′,�) has a right identity.
(3) A hypotopological lca A has a bai if and only if (A′′,�) has a right identity and
(A′′,♦) has a left identity.
(4) An Arens regular lca A has a bai if and only if (A′′,�) is unital.

Proof. (1) (⇒) Let (eλ)λ∈Λ be a left bai for A. Since {êλ : λ ∈ Λ} is equicon-
tinuous in A′′, by the Alaoglu-Bourbaki theorem it is relatively weak* compact.
Hence, there is L ∈ A′′ with êλ → L in A′′σ∗ . We thus have ( f L)(a) = L(a f ) =
limλ f (eλa) = f (a) ∀ a ∈ A, f ∈ A′ and so f L = f ∀ f ∈ A′. As a result,
(L♦ F)( f ) = F( f L) = F( f ) ∀ F ∈ A′′, f ∈ A′.
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(⇐) Let L be a left identity of (A′′,♦). Viewing {L} as an equicontinuous set

in A′′, there is B ∈ B(A) with L ∈ Boo = J(B)
σ∗

, where the equality holds due to
the bipolar theorem. Hence, there is (eλ)λ in B with êλ → L in A′′σ∗ . We thus have
limλ f (eλa) = limλ(a f )(eλ) = limλ êλ(a f ) = L(a f ) = ( f L)(a) = (L♦ â)( f ) =
f (a) ∀ a ∈ A, f ∈ A′ and so (eλ)λ is a weak left bai for A. The conclusion now
follows from 3.9(1).

(2) is proven similarly. (3) follows from (1), (2) and 3.2, while (4) follows from
(3).

Since any locally C*-algebra has a bai [13, 2.6], Theorem 4.2 immediately im-
plies the next result concerning the bidual of a locally C*-algebra; in this respect,
see also [24, 3.5].

Corollary 4.3. The bidual of a commutative locally C*-algebra equipped with either
Arens product is a unital commutative m-convex algebra.

The category of Fréchet (resp. Banach) left A-lcms and continuous morphisms
appearing in the next corollary is denoted by A-Frmod (resp. A-Banmod); the no-
tation is modified accordingly for the categories of right modules. Recall that a

sequence (C) 0→ X
f
→ Y

g
→ Z → 0 of morphisms between lcms is said to be split

(resp. admissible) if it is topologically isomorphic, as a sequence of lcms (resp. of

lcs), to 0→ X
i
→ X⊕ Z

p
→ Z → 0 (i, p are the canonical embedding respectively

projection). (C) splits if and only if (C) is exact, with f topologically injective
and g retraction (i.e. having a right inverse morphism) or, equivalently, with f
coretraction (i.e. having a left inverse morphism) and g open [12, III.1.8]. A mod-
ule J ∈ A-Banmod such that the contravariant functor Ah(·, J) : A-Banmod→ VS

sends short admissible sequences of Banach left A-modules to exact sequences of
vector spaces is called injective [12, III.1.14]. Recall also that a lcs E is called quasi-
normable [10] if for every equicontinuous set C ⊂ E′, there is a 0-neighborhood V
in E such that, on C, the topology induced by b(E′, E) coincides with the topology
of uniform convergence on V. The class of quasinormable Fréchet spaces contains
all Banach spaces, Fréchet-Schwartz (hence Fréchet nuclear) spaces, quojections
and prequojections (see [4]). The reader is referred to [10], [14], [16], [20] for more
information on quasinormable spaces and to [7], [17] for quojections and prequo-
jections.

Corollary 4.4. A quasinormable Fréchet m-convex algebra A has a left bai if and only if
it has an Arens-Michael representation A = lim←− An such that each An has a left bai.

Proof. (⇒) In general, if an m-convex algebra (A, (sµ)µ∈M) has a left bai (eλ)λ,
then we know that each one of the canonical maps of the Arens-Michael analysis
A ⊂

→
lim←− Aµ of A (where Aµ ≡ (A/Ker(sµ))̃ ), say πµ : A→ Aµ, takes (eλ)λ to a

left bai in Aµ (cf. [9, 11.4]).

(⇐) By 4.2, we need to prove that (A′′,♦) has a left identity. Consider the ad-

missible sequences (C) 0→ A
i
→ A+

p
→ C → 0, (Cn) 0→ An

in→ (An)+
pn
→ C→ 0

in Frmod-A, respectively Banmod-An (n ∈ N). Since, for each n ∈ N, An has a
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left bai, C
′ ∼= C is an injective Banach left An-module (with the trivial multiplica-

tion) [12, VII.1.20]. So, as the dual sequence (C ′n) is admissible in An-Banmod, the
sequence

(An
h(C ′n, C)) 0→ An

h(A′n, C)
fn
→ An

h((An)
′
+, C)

gn
→ C → 0

is exact, where fn ≡ An
h(i′n, idC) and gn ≡ An

h(p′n, idC) with gn(F) = F(pn)
(it is p′n(1) = pn). Note that Anh(A′n, C) coincides with the left annihilator A′′⊥n :=
{F ∈ A′′n : F ♦ A′′n = 0} of (A′′n ,♦). Since moreover πn has dense range, each
term of (C ′n) can be rendered an A-module. This allows viewing (An

h(C ′n, C)) as
(Ah(C ′n, C)). We let Hn denote Ah(A′n, C). Moreover, on the basis of 4.2, we let En

denote a left identity for (A′′n ,♦).
Let πmn : Am → An (n ≤ m) be the linking maps of the inverse spectrum

formed by An’s. Then, for any n ≤ m, π′′mn(Hm) ⊂ Hn. Indeed, for each F ∈ Hm,
we have π′′mn(F)♦π′′mn(A′′m) = π′′mn(F ♦ A′′m) = 0 and so, by the continuity of ♦

w.r.t. the second variable for σ(A′′n , A′n), π′′mn(F) ♦ A′′n = π′′mn(F) ♦ π′′mn(A′′m)
σ∗

=
0. Therefore, (Hn, π′′mn|Hm) is an inverse spectrum of Banach subspaces of (A′′n , π′′mn).
In fact, each Hn is topologically embedded into A′′n , since Pn : A′′n → A′′n : F 7→
F − F ♦ En is a continuous projection onto Hn and hence the canonical embed-
ding jn : Hn →֒ A′′n is a coretraction.

Since A is quasinormable, the first derived inverse limit functor lim←−
1(A′′n , π′′mn)

vanishes [19, 7.5, Pr. 6.2] (for a simpler proof of this, see [24, 3.6]). Equivalently,
this means that the map Ψ : ∏ A′′n → ∏ A′′n : (Fn) 7→ (Fn − π′′n+1,n(Fn+1)) is open

onto its image [27, 3.2.8, 3.3.1]. But then, Ψ̌ : ∏ Hn → ∏ Hn : (Fn) 7→ (Fn −
π′′n+1,n|Hn+1

(Fn+1)) is open too, since Ψ̌ = Ψ ◦∏ jn. Namely, lim←−
1(Hn, π′′mn|Hm) =

0. This implies that the “inverse limit sequence” (lim←− Ah(C ′n, C)) is exact; see [19,

(5.5)] and/or [27, 3.1.5]. A being quasinormable yields also that lim←− Ah(A′n, C) =

Ah(lim−→ A′n, C) = Ah(A′, C) hold up to isomorphisms of vector spaces [16, 25.13]

(in fact, up to topological isomorphisms of Fréchet spaces, when Ah(lim−→ A′n, C)

and Ah(A′, C) are considered with the strong topology [26, Ex. 6, p. 116]). Simi-
larly,
lim←− Ah((An)′+, C) = Ah(A′+ , C) and lim←−C = C. Consequently, the exact inverse
limit sequence takes the form

(lim←− Ah(C ′n, C)) 0→ Ah(A′ , C)
f
→ Ah(A′+, C)

g
→ C → 0,

where f = Ah(i′, idC) and g = Ah(p′ , idC) with g(F) = F(p).
By the surjectivity of g, there is F ∈ Ah(A′+, C) with g(F) = 1, i.e., F ◦ p′ = idC.

Hence, (C ′) and thus also (C ′′) splits. Let ρ : A′′+ → A′′ be a left inverse of i′′ and

set E = ρ(ê). Then, we have E♦ â = E · a = ρ(â) = ρ(î(a)) = ρ(i′′(â)) = â

∀ a ∈ A. But since J(A)
σ∗
= A′′ and ♦ is continuous w.r.t. the second variable for

σ(A′′, A′), we finally get E♦ A′′ = A′′.
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