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Abstract

Chebyshev subspaces of K(c0, c0) are studied. A k-dimensional non-
interpolating Chebyshev subspace is constructed. The unicity of best appro-
ximation in non-Chebyshev subspaces is considered.

1 Introduction

Let K be the field of real or complex numbers and let (X, ‖ · ‖) be
a normed space over K. Let extSX⋆ denote the set of all extreme points of SX⋆ ,
where SX⋆ is the unit sphere in X⋆.
For every x ∈ X we put

E(x) = { f ∈ extSX⋆ : f (x) = ‖x‖}. (1)

By the Hahn - Banach and the Krein - Milman Theorems, E(x) 6= ∅.
Let for Y ⊂ X,

PY(x) = {y ∈ Y : ‖x − y‖ = dist(x, Y)}.

A linear subspace Y ⊂ X is called a Chebyshev subspace if for every x ∈ X
the set PY(x) contains one and only one element.
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Theorem 1 (see [3]) Assume X is a normed space, Y ⊂ X is a linear subspace,
and let x ∈ X \ Y. Then y0 ∈ PY(x) if and only if for every y ∈ Y there exists
f ∈ E(x − y0) with ℜ f (y) ≤ 0.

Definition (see e. g. [8]) An element y0 ∈ Y is called a strongly unique best
approximation for x ∈ X if there exists r > 0 such that for every y ∈ Y,

‖x − y‖ ≥ ‖x − y0‖+ r‖y − y0‖.

The biggest constant r satisfying the above inequality is called a strong unic-
ity constant. There exist two main applications of a strong unicity constant: the
error estimate of the Remez algorithm (see e. g. [13]), the Lipschitz continuity
of the best approximation mapping at x0 (assuming that there exists a strongly
unique best approximation to x0) (see e. g. [5, 9, 11]).

Theorem 2 (see [17]) Let x ∈ X \Y and let Y be a linear subspace of X. Then
y0 ∈ Y is a strongly unique best approximation for x with a constant r > 0 if and only
if for every y ∈ Y there exists f ∈ E(x − y0) with ℜ f (y) ≤ −r‖y‖.

Recall that a k - dimensional subspace V of a normed space X is called an
interpolating subspace if for any linearly independent f1, f2, ..., fk ∈ extSX⋆ and
for every v ∈ V the following holds:

if fi(v) = 0, i = 1, 2, ..., k then v = 0.

Every interpolating subspace is a finite dimensional Chebyshev subspace. If
V ⊂ X is an interpolating subspace then every x ∈ X has a strongly unique
best approximation in V (see [2]).

In this paper we consider X = K(c0, c0) (the space of all compact operators
from c0 to c0 equipped with the operator norm). Here c0 denotes the space of all
real sequences convergent to zero. For any x = (xk) ∈ c0 we put

‖x‖∞ = sup
k

| xk | .

In [8, Theorem 3.1] it has been proved that if V ⊂ K(c0, c0) is a finite-
dimensional Chebyshev subspace then every A ∈ K(c0, c0) has a strongly unique
best approximation in V .
However, in [8] no example of a non-interpolating Chebyshev subspace has been
proposed. If it were true that any finite-dimensional Chebyshev subspace of
K(c0, c0) is an interpolating subspace we would have obtained the proof of The-
orem 3.1, [8] immediately (see [2] for more details).

The aim of this paper is to show that for every k < ∞ there exists a k-dimensional
non-interpolating Chebyshev subspace of K(c0, c0).
This result is quite different from the result obtained in [7]. In the space L(ln

1 , c0)
any finite-dimensional Chebyshev subspace is an interpolating subspace.

Additionally, we discuss the strong unicity of best approximation in some (not
necessarily Chebyshev) subspaces of K(c0, c0).
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2 k-dimensional Chebyshev subspaces of K(c0, c0)

Let A ∈ K(c0, c0) be represented by a matrix [aij]i,j∈N. Note that

(aij)
∞
i=1 ∈ c0 for every j ∈ N.

Since each row of a matrix [aij]i,j∈N corresponds to a linear functional on c0,

(aij)
∞
j=1 ∈ l1 for every i ∈ N.

Moreover, by the Schur Theorem (see [6])

lim
i→∞

(
∞

∑
j=1

| aij |) = 0.

Recall (see[4]) that extSK∗(c0,c0) consists of functionals of the form ei ⊗ x, where
x ∈ extSl∞ and

(ei ⊗ x)(A) =
∞

∑
j=1

xjaij. (2)

It is easy to see that

‖A‖ = sup
i≥1

∞

∑
j=1

| aij | .

Remark 1 Let X be a Banach space and let V be a finite-dimensional subspace
with V1, V2, ..., Vk as a basis.
V is an interpolating subspace if and only if for any linearly independent f1, f2, ..., fk ∈
extSX⋆ the determinant of [ fi(Vj)]i,j=1,2,...,k is not equal to zero.

Proof. We apply the definition of a k - dimensional interpolating subspace
and the theory of linear equations. This completes the proof.

In the sequel, we denote by lin{V1, V2, ..., Vk} the k-dimensional subspace of
K(c0, c0) with V1, V2, ..., Vk as a basis.

Example 1 Let V = [vij]i,j∈N, where vi1 = 1
2i , vij = 0, i, j ∈ N, j ≥ 2.

It is obvious that V = lin{V} is a one-dimensional interpolating subspace of
K(c0, c0).

Theorem 3 Let V = lin{V1, V2, ..., Vn}. Let Vm = [(vm)ij]i,j∈N, m = 1, 2, ..., n.
If V is a Chebyshev subspace then

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1(V1) . . . f1(Vn)
. . . . .
. . . . .
. . . . .

fn(V1) . . . fn(Vn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0 (3)
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for any f1, ..., fn ∈ extSK∗(c0,c0) such that fm = eim
⊗ xim , m = 1, 2, ..., n, where

im 6= ik for m 6= k.

Proof. Assume (3) does not hold. Therefore there exist f1, ..., fn ∈ extSK∗(c0,c0),

fm = eim
⊗ xim , m = 1, 2, ..., n, where im 6= ik for m 6= k such that detD = 0,

where

D =













f1(V1) . . . f1(Vn)
. . . . .
. . . . .
. . . . .

fn(V1) . . . fn(Vn)













.

Since detD = detDT, there exists y = (y1, y2, ..., yn) 6= 0 such that DTy = 0.
Consequently,

n

∑
m=1

ym fm| V = 0. (4)

Since y 6= 0, replacing fm by − fm if necessary, we may assume ym ≥ 0 for
m = 1, 2, ..., n and

n

∑
m=1

ym = 1.

Set C = { l ∈ {1, 2, ..., n} : yl > 0 }.
Fix (dj)j∈N with the following properties:

dj > 0, j ∈ N and
∞

∑
j=1

dj = 1.

Define A = [aip j]ip,j∈N ∈ K(c0, c0) by

aip j = 0 for p /∈ C, j ∈ N,

aip j = dj · sgn xip(j) for p ∈ C, j ∈ N.

Note that ‖A‖ = 1 and
E(A) = { fp : p ∈ C}.

By (4) and Theorem 1, 0 ∈ PV (A).
Since detD = 0, there exists x = (x1, x2, ..., xn) 6= 0 such that Dx = 0.
Put

V =
n

∑
m=1

xmVm.

Note that V 6= 0 and fm(V) = 0, m = 1, 2, ..., n.
By Theorem 2, 0 is not a strongly unique best approximation for A in V . By
[8,Theorem 3.1], V is not a Chebyshev subspace and the proof is complete.
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Theorem 4 Let V = lin{V}, V ∈ K(c0, c0), V 6= 0.
V is a Chebyshev subspace if and only if V is an interpolating subspace.

Proof. The classical work here is [12]. In l1, the one-dimensional subspace
lin{v} is Chebyshev iff for every x ∈ extSl∞ the following holds

∞

∑
j=1

x(j)v(j) 6= 0.

Note that for any x ∈ c0 we obtain V(x) = [ f1(x), f2(x), ...], where the function-
als fi correspond to elements of l1.
It is obvious that if for any j, lin{ f j} is not a Chebyshev subspace of l1, then
lin{V} is not a Chebyshev subspace of K(c0, c0).
This proves the theorem.

Note that by a result of Malbrock (see [10] , Theorem 3.3) each one-dimensional
subspace V = lin{V} ⊂ L(c0, c0) is a Chebyshev subspace iff there exists δ > 0
such that

|
∞

∑
j=1

x(j)vij | ≥ δ,

where | x(j) | = 1, j ∈ N.

Corollary Let V ⊂ K(c0, c0) be a one-dimensional Chebyshev subspace. Every
operator A ∈ K(c0, c0) has a strongly unique best approximation in V .

Proof. Obvious. For more details we refer the reader to [2].

It is clear that (3) is satisfied for any n-dimensional interpolating subspace.
However, (3) is not sufficient for an n-dimensional (n ≥ 2) subspace to be Cheby-
shev.

Example 2 Let V = lin{V1, V2}, where

V1 =













1 0 . . .
1
2 0 . . .
1
4 0 . . .
. . . . .
. . . . .













, V2 =













1 0 . . .
1
3 0 . . .
1
9 0 . . .
. . . . .
. . . . .













.

Note that V satisfies (3). We claim that V is a non-Chebyshev subspace.
Indeed, define A = [aij]i,j∈N by

a12 = 100, aij = 0 for each (i, j) 6= (1, 2), i, j ∈ N.

It follows that

A − (α1V1 + α2V2) =













−α1 − α2 100 0 . .

− 1
2α1 −

1
3α2 0 . . .

− 1
4α1 −

1
9α2 0 . . .

. . . . .

. . . . .













, α1, α2 ∈ R.
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Hence

‖A‖ = ‖A − (600V1 − 600V2)‖ = 100 = inf
α1,α2∈R

‖A − (α1V1 + α2V2)‖.

Theorem 5 Let V1, V2, ..., Vn be given by

Vj =





















0 0 . . v1j 0 . .
0 0 . . v2j 0 . .
0 0 . . v3j 0 . .
. . . . .
. . . . .
. . . . .
. . . . .





















,

where vij 6= 0 for each i ∈ N, j ∈ {1, 2, ..., n} and

lim
i→∞

vij = 0 for each j ∈ {1, 2, ..., n}.

The following statements are equivalent:
(i) For every choice of distinct j1, ..., jk from {1, 2, ..., n}, V(j1, ..., jk) :=

lin{Vj1 , ..., Vjk} is a Chebyshev subspace of K(c0, c0),

(ii) ∀ 1 ≤ k ≤ n, ∀ 1 ≤ j1 < j2 < ... < jk ≤ n,

∀ 1 ≤ i1 < i2 < ... < ik,

∀ xml ∈ R : | xml |= 1, m, l = 1, 2, ..., k

det[xmlvim jl ]m=1,2,...,k, l=1,2,...,k 6= 0.

Proof. First, we assume that (ii) holds.
If k = 1 then V(j1) is an interpolating subspace for every j1 ∈ {1, 2, ..., n}.
Let 1 < k < n and assume that for any j1, ..., jk ∈ {1, 2, ..., n}, jp 6= jq, p 6= q,
Vk := V(j1, ..., jk) is a Chebyshev subspace.
Suppose that there exist 1 ≤ j1 < j2 < ... < jk < jk+1 ≤ n such that

Vk+1 := V(j1, ..., jk, jk+1)

is a non-Chebyshev subspace. Without loss of generality we can assume that for
any k + 1 ∈ {1, 2, ..., n}, jm = m, m = 1, 2, ..., k + 1. This means precisely that
Vjm = [(Vjm)ij]i,j∈N, where

(Vjm)ij =

{

vijm , j = m
0, j 6= m

for i ∈ N, m ∈ {1, 2, ..., k, k + 1}.
Since Vk+1 is a non-Chebyshev subspace, there exists A = [aij]i,j∈N ∈ K(c0, c0)
such that ♯ PVk+1

(A) > 1. We can assume that 0, W ∈ PVk+1
(A), where W 6= 0.
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Let U = {i : ‖ei ◦ A‖ = ‖A‖}. Since A ∈ K(c0, c0), ♯ U < ∞.
For every i ∈ U we put

Ei = {x ∈ extSl∞ : (ei ⊗ x)(A) = ‖A‖}.

Since 0, W ∈ PVk+1
(A), we conclude that for all i ∈ U and x ∈ Ei

(ei ⊗ x)(W) ≥ 0. (5)

Let

U1 = {i ∈ U : ∃ x ∈ Ei : (ei ⊗ x)(W) = 0}.

Since 0 ∈ PVk+1
(A), U1 6= ∅.

We will prove that for any i ∈ U1 and x, y ∈ Ei such that

(ei ⊗ x)(W) = (ei ⊗ y)(W) = 0,

x(l) = y(l), l = 1, 2, ..., k + 1. (6)

On the contrary, suppose that (6) does not hold. Let x, y ∈ Ei be such that

(ei ⊗ x)(W) = 0, (ei ⊗ y)(W) = 0,

and

x(l) 6= y(l) for some l ∈ {1, 2, ..., k + 1}.

Without loss of generality we can assume

x(j) = y(j) for j = 1, 2, ..., p, p < k + 1

and

x(j) = −y(j) for j = p + 1, p + 2, ..., k + 1.

Hence

p

∑
j=1

x(j)wij = 0,
k+1

∑
j=p+1

x(j)wij = 0. (7)

As

x(j) = −y(j) for j = p + 1, p + 2, ..., k + 1

we obtain

aij = 0 for j = p + 1, p + 2, ..., k + 1.

By (5),

k

∑
j=p+1

x(j)wij − x(k + 1)wi,k+1 ≥ 0

k

∑
j=p+1

−x(j)wij + x(k + 1)wi,k+1 ≥ 0.
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Therefore
k

∑
j=p+1

x(j)wij = x(k + 1)wi,k+1.

By (7), x(k + 1)wi,k+1 = 0. Consequently, wi,k+1 = 0. Hence W ∈ Vk.
Since 0 ∈ Vk and Vk is a Chebyshev subspace, (6) is proved.
We will show that there exists α0 > 0 such that for every α ∈ (0, α0],

E(A − αW) = {ei ⊗ x : i ∈ U1, (ei ⊗ x)(W) = 0, (ei ⊗ x)(A) = ‖A‖}. (8)

We first prove that

sup{ f (A) : f = ei ⊗ x, i ∈ U : f (W) < 0} ≤

‖A‖ − 2 min{| aij | : i ∈ U , j ∈ {1, 2, ..., n}, aij 6= 0}, (9)

where A = [aij]i,j∈N.
Let i ∈ U , f = ei ⊗ x, f (W) < 0. Hence there exists j0 ∈ {1, 2, ..., n} satisfy-
ing

x(j0) 6= sgn(aij0) for aij0 6= 0.

Now, we will show

f (A) =
∞

∑
j=1

x(j)aij ≤ ‖A‖ − 2 | aij0 | ≤

‖A‖ − 2 min{| aij | : i ∈ U , j = 1, 2, ..., n, | aij |6= 0},

and (9) is proved.
We conclude from (9) that there exist α0 > 0, b > 0 such that for every
α ∈ (0, α0],

f (A − αW) < b < ‖A‖,

where f ∈ extSK∗(c0,c0), f (W) < 0.
Assume α0 is so small that

sup
i∈N\U

‖ei ◦ (A − α0W)‖ < ‖A‖.

Consequently, if f ∈ E(A − α0W) then f = ei ⊗ x, where i ∈ U1 and f (W) = 0.
Since

‖A − α0W‖ = ‖A‖ = dist(A,Vk+1),

(8) is proved.
Since α0W ∈ PVk+1

(A), we conclude (see [16]) that

∃ 1 ≤ q ≤ k + 2, ∃ λ1, ..., λq > 0,
q

∑
m=1

λm = 1

such that
q

∑
m=1

λm(eim
⊗ xim)|Vk+1

= 0, (10)
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where (eim
⊗ xim)(A − α0W) = ‖A − α0W‖.

Let q be the smallest number having property (10). By (6), ij 6= il for j 6= l, j, l ∈
{1, 2, ..., q}. If q = k + 2 then (see [18]) α0W is the strongly unique best approxi-
mation for A in Vk+1, a contradiction.
Suppose that 1 ≤ q ≤ k + 1. This contradicts (ii).

Let us assume that Vk is a Chebyshev subspace of K(c0, c0) for every 1 ≤
k ≤ n. Suppose that (ii) is false.
Consequently, there exist

1 ≤ k ≤ n, 1 ≤ j1 < j2 < ... < jk ≤ n,

1 ≤ i1 < i2 < ... < ik,

xml ∈ R : | xml |= 1, m, l = 1, 2, ..., k

satisfying
det[xmlvim jl ]m=1,2,...,k, l=1,2,...,k = 0.

It follows that there exist

λ1, ..., λk ∈ R,
k

∑
m=1

| λm |> 0

such that
k

∑
m=1

λm(eim
⊗ xim)|Vk

= 0, (11)

where xim = (xim(1), xim(2), ....), xim(l) = xml.
Without loss of generality we can assume

λm > 0, m = 1, 2, ..., k,
k

∑
m=1

λm = 1.

We define an operator B = [bij]i,j∈N by

bij =
sgnxi(j)

2j
, i ∈ {i1, i2, ..., ik},

bij = 0, i /∈ {i1, i2, ..., ik}, j ∈ N.

Hence (eim ⊗ xim)(B) = ‖B‖, m = 1, 2, ..., k. By (11), 0 ∈ PVk
(B) and

dim span{eim
⊗ xim |Vk} < k,

where dimVk = k. Therefore there exists V ∈ Vk \ {0} such that

(eim
⊗ xim)(V) = 0, m = 1, 2, ..., k.

Note that (see the proof of the formula (9))

sup{ f (B) : f = eim
⊗ x, m = 1, 2, ..., k, f (V) < 0} <

‖B‖ − min{| bij | : i = i1, i2, ..., ik, j = 1, 2, ..., n}.
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Hence there exist α0 > 0, b > 0 such that

f (B − α0V) ≤ b < ‖B‖, f ∈ extSK∗(c0,c0), f (V) ≤ 0.

Consequently, ‖B − α0V‖ = ‖B‖, a contradiction.
The proof is complete.

Example 3 We will construct an n - dimensional Chebyshev subspace
V ⊂ K(c0, c0). Let 0 < t1 < t2 < ... < tn−1 be such that

lim
i→∞

1

2i
ti
m = 0, m = 1, 2, ..., n − 1.

Define Vm = [(vm)ij]i,j∈N by

(vm)im =
1

2i
ti
m, (vm)ij = 0, i ∈ N, j 6= m.

Hence Vm ∈ K(c0, c0) for every m = 1, 2, ..., n − 1.
Let Vn−1 := lin{V1, V2, ..., Vn−1} satisfy the formula (ii) for every 1 ≤ k ≤ n − 1.
We will construct an operator Vn ∈ K(c0, c0) such that
Vn := lin{V1, V2, ..., Vn−1, Vn} satisfies the formula (ii) for every 1 ≤ k ≤ n.
Our goal is to find x ∈ R such that

lim
i→∞

1

2i
xi = 0 (12)

and

W(x, y1, ..., yk, i1, ..., ik, m1, ...mk−1) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1
1

1
2i1

ti1
m1

. . . yk−1
1

1
2i1

ti1
mk−1

yk
1

1
2i1

xi1

. . . .

. . . .

. . . .

y1
k

1
2ik

t
ik
m1

. . . yk−1
k

1
2ik

t
ik
mk−1

yk
k

1
2ik

xik

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0, (13)

where k ∈ {1, 2, ..., n}, i1, i2, ..., ik ∈ N, y1, ..., yk ∈ {−1, 1}k, m1, m2, ..., mk−1 ∈
{1, 2, ..., n − 1}. Since W(x, y1, ..., yk, i1, ..., ik, m1, ...mk−1) is not totally equal to
zero, we conclude that the set of roots of W(x, y1, ..., yk, i1, ..., ik, m1, ...mk−1) is
finite for arbitrary but fixed y1, ..., yk, i1, ..., ik, m1, ...mk−1.
Therefore for all y1, ..., yk, i1, ..., ik, m1, ...mk−1 as above, the set of roots of
W(x, y1, ..., yk, i1, ..., ik, m1, ...mk−1) is countable. Since R is not countable we see
that there exists x ∈ R satisfying (12) and (13).

Remark 2 An n-dimensional Chebyshev subspace proposed in Example 3 is a non-
interpolating subspace of K(c0, c0).

Proof. Let us assume that Vn = lin{V1, V2, ..., Vn} is an n-dimensional Cheby-
shev subspace, where Vm, m = 1, 2, ..., n are defined in Example 3.
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Put V = 1
t1

V1 −
1
t2

V2. Note that V 6= 0 and vij = 0, j ≥ 3, i ∈ N, where

V = [vij]i,j∈N.

It is obvious that there exist x1, x2, ..., xn ∈ extSl∞ such that xm(1) = xm(2) =
1, m = 1, 2, ..., n and fm := e1 ⊗ xm, m = 1, 2, ..., n are linearly independent.
Note that

fm(V) = 0, m = 1, 2, ..., n.

This completes the proof.

Lemma Let X be a normed space and let V be a finite-dimensional subspace of
X. Let T ∈ X. If 0 ∈ PV (T) and 0 is not a strongly unique best approximation for T
in V then

∃ V ∈ V , V 6= 0 : ∀ f ∈ E(T) f (V) ≥ 0.

Proof. Let us assume that

∀ V ∈ V , V 6= 0, ∃ f ∈ E(T) : f (V) < 0.

Set for any V ∈ V , ‖V‖ = 1,

−rV = inf{ f (V) : f ∈ E(T)},

−r = sup{−rV : V ∈ V , ‖V‖ = 1}.

We show that r > 0.
If not, there exists (Vn) ⊂ SV such that −rVn ≥ − 1

n . Since V is
a finite-dimensional subspace, we may assume that Vn → V ∈ SV . Take f ∈
E(T), f (V) < 0. Hence for n ≥ n0 there exists d > 0 such that

−
1

n
≤ −rVn ≤ f (Vn) < f (V) + d < 0,

a contradiction. Therefore

∀ V ∈ V , V 6= 0, ∃ f ∈ E(T) : f

(

V

‖V‖

)

< −r.

By the above,

∀ V ∈ V , V 6= 0, ∃ f ∈ E(T) : f (V) ≤ −r‖V‖.

Hence 0 is a strongly unique best approximation for T, a contradiction. This
proves the lemma.

Theorem 6 Let V ⊂ K(c0, c0) be an n - dimensional subspace such that

∀ V ∈ V , ∀ i ∈ N ♯{j ∈ N : vij 6= 0} < ∞,

where V = [vij]i,j∈N and let T ∈ K(c0, c0).
T has a unique best approximation in V if and only if T has a strongly unique best ap-
proximation in V .
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Proof. Let us assume that 0 is the unique best approximation for T in V .
Suppose that 0 is not a strongly unique best approximation.
Hence (see Lemma)

∃ V ∈ V , V 6= 0 : ∀ f ∈ E(T) f (V) ≥ 0,

where f = ei ⊗ xi for some xi ∈ extSl∞ .
Put

N = {i ∈ N : ∃ xi ∈ extSl∞ : ei ⊗ xi ∈ E(T)}.

Since T is compact, we conclude that ♯ N < ∞.
For every i ∈ N we set

Ei = {xi ∈ extSl∞ : (ei ⊗ xi)(T) = ‖T‖}.

Let i ∈ N \ N . Hence there exists b > 0 such that

(ei ⊗ x)(T) < b < ‖T‖, x ∈ extSl∞ .

Consequently, there exists α0 > 0 such that for every α ∈ (0, α0],

| (ei ⊗ x)(T − αV) |< b.

Therefore
sup

i∈N\N

| (ei ⊗ x)(T − αV) |≤ b < ‖T‖.

Let i ∈ N and let xi /∈ Ei. From this we conclude that there exists j0 ∈ N such
that

sgnxi(j0) 6= sgn(tij0), tij0 6= 0,

where T = [tij]i,j∈N.
Set J = {j ∈ N : vij 6= 0}.

If sgnxi(j) = sgn(tij) for any j ∈ J, then there exists yi ∈ Ei such that

(ei ⊗ yi)(T) = ‖T‖, (ei ⊗ yi)(V) = (ei ⊗ xi)(V).

By the above,

(ei ⊗ xi)(T − αV) ≤ ‖T‖ − (ei ⊗ yi)(αV) ≤ ‖T‖.

Let sgnxi(j0) 6= sgn(tij0) for some j0 ∈ J, where tij0 6= 0. Since J is finite, there
exists α0 > 0 such that

‖α0V‖ < min{| tij | : j ∈ J, tij 6= 0}.

Let α ∈ (0, α0]. Hence

(ei ⊗ xi)(T − αV) = ∑
j∈J

xi(j)(tij − αvij) + ∑
j/∈J

xi(j)(tij − αvij) ≤

∑
j∈J

| tij | − 2 | tij0 | +∑
j/∈J

| tij | + α‖V‖ =

‖T‖+ α‖V‖ − 2 | tij0 | < ‖T‖.
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Finally,

‖T − αV‖ = f (T − αV),

where f = ei ⊗ xi, i ∈ N , xi ∈ Ei.
Hence

‖T − αV‖ = f (T − αV) ≤ ‖T‖.

The proof is complete.
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[18] A. WÓJCIK, J. SUDOLSKI, Some remarks on strong uniqueness of best ap-
proximation, J. Approx. Theory and its Appl. 6, No. 2, (1990), 44-78

Department of Mathematics, AGH University of Science and Technology,
Al. Mickiewicza 30, 30 - 059 Cracow, Poland
e-mail: kowynia@wms.mat.agh.edu.pl


