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Abstract

A structure theorem for spherically symmetric associated homogeneous
distributions (SAHDs) based on R" is given. It is shown that any SAHD
is the pullback, along the function |x|*, A € C, of an associated homoge-
neous distribution (AHD) on R. The pullback operator is found not to be
injective and its kernel is derived (for A = 1). Special attention is given to
the basis SAHDs, D" |x|, which become singular when their degree of ho-
mogeneity z = —n —2p, Vp € N. It is shown that (D |x[z)zz_n_2p are
partial distributions which can be non-uniquely extended to distributions
(DI x]%),) r——n2p and explicit expressions for their evaluation are derived.

These results serve to rigorously justify distributional potential theory in R".

1 Introduction

We present a construction of spherical (i.e., O (n)-invariant) associated homoge-
neous distributions (SAHDs) based on R", as pullbacks of associated homoge-
neous distributions (AHDs) based on R. It is shown that any SAHD on R" can be
obtained as the pullback, along the function |x|*, A € C, of an AHD on R.
Homogeneous distributions (HDs) on R generalize the concept of homoge-
neous functions, such as |x|* : R\ {0} — C, which is homogeneous of complex
degree z. Associated to homogeneous functions are power-log functions, which
arise when taking the derivative with respect to the degree of homogeneity z.
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The set of associated homogeneous distributions with support in (or based on)
R, denoted by H' (R), generalizes these power-log functions, [7], [2], [11]. The
set H' (R) is a subset of the tempered distributions, [14], [15], and is of practical
importance because H' (R) contains the majority of the (1-dimensional) distri-
butions one encounters in physical applications, such as the delta distribution 6,
the step distributions 1+, several so called pseudo-functions generated by taking
Hadamard’s finite part of certain divergent integrals (among which is Cauchy’s
principal value x~1), Riesz kernels, Heisenberg distributions and many familiar
others, [12].

We denote the set of AHDs based on R" by H’(R"). An important subset
of H' (R") are the O (n)-invariant AHDs on R", called SAHDs and of which 7%,
z € C, is a well-known example, having degree of homogeneity z and order of
association 0, see e.g., [11, p. 71, p. 98, p. 192]. AHDs based on R" are im-
portant mathematical tools, used in physics and engineering for solving distri-
butional potential (i.e., static field) problems in n-dimensions. SAHDs based on
R" arise in spherically symmetric problems, such as the construction of a funda-
mental solution (i.e., a Green’s distribution) for Poisson’s equation and its com-
plex degree generalizations (i.e., involving complex powers of the Laplacian in
R™). We denote the set of SAHDs on R"” by SH' (R"). We have the inclusions
SH' (R") Cc H'(R") C 8’ (R") C D' (R").

Consider the scalar function T* : X = R™"\ {0} — Y = R, such that x
y = |x|* with A € C. The aim of this paper is to show that any SAHD on R”
can be obtained as the pullback (T*)" along T* of an AHD on R. This is an
interesting result, as it opens a route to extend the properties of the simple and
well-understood 1-dimensional AHDs to their O (n)-invariant generalizations on
R". In particular, recent work done by the author showed that the set of AHDs on
R can be given the structure of both a convolution algebra and a multiplication
algebra over C, see [3], [4], [5] ([8]), [6] ([9]). These algebraic properties of AHDs
on R can be extended, under the O (n)-invariant function T* above, to SAHDs
on R" and the key to this higher dimensional extension of the aforementioned
algebras is the here considered pullback relation.

The concept of the pullback of a distribution generalizes the classical concept
of a change of variables for a function. Any map f : ¥ — Z can be pulled
back to a space X by precomposition withamap T : X — Yas foT : X —
Z. Any smooth T represents a homomorphism T* between the set C* (Y) of
smooth functions defined on Y and the set C* (X) of smooth functions defined
on X, such that f — T*f = f o T (for functions this is usually written as T*f =
f (T (x))). The homomorphism T* is called the pullback along the function T.
The concept of pullback is more general than that of a change of variables. The
latter can not be applied to distributions since they are not functions of the base
space, but functionals on a space of (test) functions defined on the base space,
here D (Y). However, it is possible to define the pullback T*f € D’ (X) of any
distribution f € D’ (Y) (under certain restrictions on T) in terms of an operation
on D (Y). This results in an indirect definition, such as the one recalled in section
2, to perform a “change of variables” for distributions. One uses the fact that
C® (Y)isdensein D’ (Y) (since D (Y) C C* (Y) is) to show that the pullback T* f
exists if precomposition with T maps sequences of smooth functions converging
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in D’ (Y) to sequences of smooth functions converging in D’ (X). A necessary and
sufficient condition for the pullback T* f to be unique, is that T* is a sequentially
continuous operator, [10, Chapter 7]. Although the pullback of a distribution can
be defined along general submersions, see e.g., [10, Theorem 7.2.2], we will only
need here the pullback along scalar functions.

We show that the pullback T*, along the particular scalar function T = T?,
of any AHD on R generates a distribution on R" that is a linear combination of
distributions of the form D" |x|?, called basis SAHDs. We properly define the dis-
tributions D" |x|*, which are only briefly considered in [11, p. 99], and investigate
their properties. Careful attention is given to the cases when the degree of homo-
geneity z is such that z +n = —2p € Z, _ (even non-positive integers), since the
functionals D! |x|* possess (m + 1)-th order polesatz = —n — 2p, Vp € IN.

The here presented study of the distributions D! |x|* is placed in the more
modern context of pullbacks and extensions, compared to the more classical ap-
proach which defines singular distributions as regularizations of certain diver-
gent integrals, e.g., as in [11]. We especially draw attention to the fact that any
(D ]x|z)zz_n_2p is a (unique) partial distribution. A partial distribution is a
fruitful concept, introduced earlier by the author in [7, Section 3.3], to designate
generalized functions that are only defined on a proper subset D, C D. By def-
inition, a distribution is defined on the whole of D, [15, p. 6]. Our approach
to singular distributions is basically a functional extension process that extends
a partial distribution to a distribution. Since D is locally convex, [13, p. 152],
[1, pp. 427-431], the (continuous extension version of the) Hahn-Banach theorem
applies to D, [13, p. 56]. This theorem guarantees that an extension of a partial
distribution defined on any D, C D exists as a continuous linear functional on
D, hence as a distribution, and that both coincide on D;, [13, p. 61]. It is natural
to use such an extension, denoted ((DZ |x|*) e)z:—n—2p’ to define D!" |x|* at the

degree of homogeneity —n — 2p. We call ((D" |x|* )e)z:—n—z;a an extension of the
partial distribution (D" |x|Z)Z:_n_2p from D, to D.
The Hahn-Banach theorem does not tell how such an extension is to be con-

structed. We apply a straightforward method to produce a distribution
((DZ xI*),),__,_,,on D (R") thatis a SAHD and coincides with the partial dis-
p

tribution (D2 |x|* )Z:_n_zp on D, (R"). This method, first introduced in
[7, Section 3.3, eq. (33)] and here applied to SAHDs on R", leads to more gen-
eral results than those found in the classical literature, since the obtained exten-
sions are in general uncountably multi-valued. Any classical regularization is
recovered as the unique extension corresponding to a particular branch of this
multi-valued spectrum. For (complex) AHDs, the spectrum of multi-valuedness
is parametrized by C, hence each value of an extension ((DZ ]x|z)e)zz_n_2p cor-
responds to a constant ¢ € C.

We derive explicit expressions for the evaluation of the so constructed multi-
valued distributions ( (D' ]x|z)e)zz_n_2p. It is found that ((DZ |x|Z)e)Z:_n_2p
are homogeneous distributions of degree —n — 2p and order of association m + 1.
In [11, p. 99] it is incorrectly stated that the particular extension, corresponding
to Hadamard'’s finite part ((DZ' [x|*),) _,, (and corresponding to ¢ = 0), is

Z=—n
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associated of order m. That this can not be true is also seen from the result [11,
p-195] and by invoking the fact that the Fourier transformation preserves the or-
der of association, [7].

This work extends and generalizes the treatment of SAHDs on R" in [11]. New
results presented here are (i) the concepts of partial distribution and functional ex-
tension for defining the occurring singular distributions, (ii) the representation of
SAHDs on R" as pullbacks of AHDs on R, (iii) the kernel of the pullback operator
T*, ker T* C H' (R) and (iv) a structure theorem for SH' (R").

The outline of the paper is as follows. We recall the pullback T* of a distribu-
tion along a scalar function T : X — Y in section 2. We apply this in section 3
to AHDs based on R. In section 4 we investigate the pullback of any distribution
along the function T defined above. In section 5, the results from sections 3 and 4
are combined to generate SAHDs on R". There, the basis distributions D" |x|* are
discussed, the general form of an SAHDs on R" is given and the ker T* is derived.
In the last section 6, the structure theorem of SAHDs on R" is proved.

We use the notations introduced in [7]. For convenience, some practical but
non-standard notations are repeated here. Define 1, = 1 if p is true, else 1, = 0.
Further, e,, £ lmez,, hence e, = 1if m is even, else e;, = 0 and similarly o, £
lmez,, hence 0, = 1if m is odd, else 0,;, = 0.

2 Pullback of a distribution on R along a scalar function

Definition 1. Let n € N : 2 <n, X CR", Y = Rand 6, € D' (Y) with (6, ¢) £
Y(y),YpeD(Y). Let f € D' (Y)and T : X — Y such that x — y = T (x) bea C®
function with (dT) (x) # 0, Vx € £, £ {x € X: T (x) =y} and Vy € supp f. The
pullback T* f of f along T is defined Vo € D (X) as

(T*f,9) = (f. Z19), (1)

with
(Zre) (y) = (T, 9), )
= | guwr. 3)

In (3) is wr the Leray form of ¥, such that wx = dT A wr, with wx the volume form
on X.

The condition on dT is necessary and sufficient for the Leray form to exist
on X,. Moreover, although wx = dT A wr does not specify wr uniquely in a
neighborhood of ¥, wr is unique on %, [11, pp. 220-221].

The distribution Jy,, £ T*6, € D' (X) represents a delta distribution having
as support the level set surface X, of T with level parameter y. We can not speak
of the delta distribution with support ¥, since the pullback T*4,, as defined by
Definition 1, depends on the equation used to represent the surface %, through
the Leray form, [11, p. 222], [1, p. 439]. It is clear that the delta distribution 5zy, as
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defined by (2) and (3), is fundamental to define the pullback of any distribution
along T.

It is shown in e.g., [10, p. 82, Theorem 7.2.1] that, under the conditions given
in Definition 1, X7¢ € D (Y), T*f € D’ (X) and T* is a sequentially continuous
linear operator.

Theorem 2. Let f* € D' (Y), depending on a complex parameter z and being complex
analytic in a domain Q) C C. Let T* be the pullback from Y to X along a C* function
T:X CR" =Y = R. Then T* f* is complex analytic and moreover

™ (DZ'f*) = DZ(T" ), 4)
Vm € Z, and Vz € Q).
Proof. (i) Let m = 1. Since it is given that f* is complex analytic in (), this means
by definition that d, (f7, ¢) exists. This is a necessary and sufficient condition for
the existence of a distribution D, f* given by (D, f*, ) = d, (f*, ), YV € D (Y)

and Vz € ), [11, pp. 147-151]. On the other hand, applying (1) to the left-hand
side of (4) gives, V¢ € D (X),

(T*D:f*, ¢) = (D2f*Z19) .

Combining both results yields

(T*D:f*, ¢) = d= (f*, Z19) .

Applying (1) to the right-hand side of this equation gives

(T"D:f*, ¢) = d=(T"f*, 9) .

Hence d, (T* f*, ¢) exists, which implies by definition that T* f* is complex an-
alytic in (). This is a necessary and sufficient condition for the existence of a
distribution D, (T* f*) given by (D, (T*f*), ¢) = d, (T* f%, ¢), so that

(T*(Df?), ¢) = (D=(T"f) , ¢),

which implies (4) for m = 1.
(ii) Since f* is complex analytic in ), DI'f* is also complex analytic in €,
Vm € Z.. Combining this with (i) and using induction, (4) follows Vm € Z_.. =

This theorem enables to generate the Taylor series of a pullback distribution
T*f* € D (R") directly from the Taylor series of the distribution f* € D (R). In
particular, (4) simplifies the calculation of pullbacks of AHDs.

3 Pullback of an AHD on R along a scalar function

Let X - D denote the generalized Euler operator and X, = X - D — zId the gen-
eralized homogeneity operator of degree z € C defined on D’ (R") (with Id the
identity operator), and Y, the generalized homogeneity operator of degree z de-
fined on D’ (R).
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Theorem 3. Let T* be the pullback from Y to X along a C* function T : X C R" —
Y = R such that x — y = T (x), with (dT) (x) # 0, Vx € X. Let f§ be a homoge-
neous distribution based on Y with degree of homogeneity z. Then holds, Vm € Z and
VA e,

XL (T'f5) = Lot (o aT) (T (D'f5)) ®)

with x) = x - d — A1d the ordinary homogeneity operator of degree A and p;" bivariate
polynomials of degree m, satisfying the recursion relations

p% (Xo, h) = h (6)
Pt (o, ) = xopi! (xo, ) + hpily (xo0, 1) 7)
Proof. (i) Under the given conditions, the generalized chain rule is valid so we
have for the i-th generalized partial derivative, Vf € D' (Y), V¢ € D (X) and
Vie Zpy,
(Di(T°f), 9) = (T"(Df),(diT) ¢) -
Applying this to x'¢ € D (X), we obtain

(Di(T°f),¥'9) = (T (Df), (4T) x'g).

Using the definition of the multiplication of a distribution with a smooth function,
writing the result in terms of the multiplication operator X' £ x’. and summing
over all values of i gives

(X-D)(T*f), ¢) =(T"(Df),((x-d)T) ¢) -

This is equivalent to, VA € C,

(X-D)(T"f),9) = A(T" (Df), To) = (T" (Df), (xaT) @) - (®)

Applying the definition of the pullback T*, the fact that T is a scalar function
mapping x — y and also introducing the multiplication operator Y £ y., we have

(T*(Df),Te) = (Df,Zr(Tg)),
= (Df.yZre),
(YDf,Zr¢),
(T* (YDf), ¢). )

In (8) choose f = f5, use YDf; = zf§ in (9), substitute (9) in (8) and use
the operator X, in the left-hand side of (8). Since X, T is a smooth function, we
obtain (5) for m = 1.

(ii) The result for m > 1 follows by induction. ]

Corollary 4. Let fZ € H' (Y). If T is not homogeneous, then T* fz, ¢ H' (X).

Proof. Let ffbeaHD on Y. If T is not homogeneous, then x, T # 0, VA € C. From
Theorem 3 follows that then all p}’ # 0, so X} (T*f§) # 0, Vm € IN. This result,
together with Theorem 2 and the structure theorem for AHDs on R [2, Theorem 4]
(see also (98)), implies that T*f7, VfZ € H' (Y), is not an AHD on X. ]
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Corollary 4 will be needed in Theorem 14.

Theorem 5. Let T* be the pullback along the function T as defined in Theorem 3 and let
in addition T be homogeneous of degree A € C. Then,
(i) the homogeneity operators X, and Y, are related by

X\, T = AT*Y; (10)

(ii) the pullback T* f7, of an AHD f7,, of degree of homogeneity z and order of associ-
ation m based on Y, is again an AHD of the same order of association m and of degree of
homogeneity Az, based on X.

Proof. (i) Recalling (8) and using x,T = 0, we get
(X-D)(T"f), ¢) = A(T" (Df),Tg).

Using (9) and introducing the homogeneity operators X, and Y;, this is equiva-

lently to
(Xaz (T°f) ) = MT"(Y=f), )

Since f and ¢ are arbitrary, this implies (10).

(ii) Let m € N and f, be any AHD with degree of homogeneity z and order of
association m based on Y. By definition, f/, satisfies Y, f;, = f; _; for some AHD
fi_, with degree of homogeneity z and order of association m — 1 based on Y

and we define f*; = 0. Applying (10) to fZ gives

Xpz (T*f) = AT fi,_y. (11)
From this follows, by induction over m, that T*f;, is an AHD with degree of
homogeneity Az and order of association m based on X. n

Hence, the pullback T* of an AHD on R along a homogeneous scalar function
T is an order of association preserving homomorphism.

Corollary 6. If T in Theorem 5 has degree of homogeneity 1, its pullback T* from Y to
X is in addition a homogeneity preserving homomorphism,

X, T* = T*Y,. (12)

Corollary 7. If T in Theorem 5 has degree of homogeneity 0, T*fZ,Vfz € H' (Y), isa
homogeneous distribution based on X with degree of homogeneity 0.

4 Pullback of a distribution on R along the function |x|

Define the function T : X = R™"\ {0} — Y = Ry such that x — r = T (x) = |x]
1/2
with |x| £ ((xl)2 +..+ (x”)2> > 0. We have |[dT| (x) = 1, Vx € X, hence dT

is surjective and T is a (scalar) submersion. Fory € Ry, %, 2{xeX:|x=y}C
X, while fory € R_}, £, = &. By (3) holds, V¢ € D (X) and Vy € R4,

(Z19) ) = [ gur. (13)
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We want to extend X1 ¢ so that it is defined V¢ € D (R") and Vy € R. To this end,
we change from Cartesian coordinates to spherical coordinates in the integral in
(13) (see also Appendix 7.1). We get, Vo € D (R") and Vy € R,

(Zre) (y) = Au_1y" (So) (v), (14)

wherein we defined the spherical mean operator S, defined on D (R"), by

N
(S0) ) 2 51— [ o) wsio, (15)

with wgs—1 the volume form on the (7 — 1)-dimensional unit sphere S"~! and
Ay_1 its surface area, given by (120). Clearly, the integral in (15) also exists
Vy € R_j, and it is shown in [11, pp. 72-73] that, Vp € N, (i) (dZPSqo) (0) ex-
ists and (ii)

(#+159) (0) =0, (16)

so S¢ is an even function. Then, egs. (14)—(15) define S¢ and X7¢, Vy € R.

The function S¢ is of compact support, since ¢ is. Since ¢ (yw) in (15) is
obviously jointly continuous in (y,w) € IxS""1, is Sg uniformly continuous in
any compact interval I. By induction it follows that S¢ is smooth in I. Hence
the operator S maps from D (R") — D (R). Consequently, Xr¢ € D (R), Vo €
D (R").

We can now define T*f, in agreement with (1), Vf € D’ (R) and V¢ € D (R"),
by

(T*f.9) = <f,y”‘1 /5 . qv(yw)wsn_1>. (17)

We still have to verify that T f, as defined by (17), is a distribution based on R",
Vf € D' (R). Theorem 7.2.1 in [10] only guarantees that T*f € D’ (R"\ {0}) for
those distributions f € D’ (R) such that supp (f) has a pre-image in R"” under
T for which |dT| (x) # 0. For any other f, i.e., for which either the pre-image
of supp (f) under T contains the origin (where (dT) (0) does not exist) or either
supp (f) C R_j (since then the pre-image of T is not defined) we need to check
the linearity and sequential continuity of T*f, V¢ € D (R").

The linearity of T*f, as defined by (17), is obvious. Further, any sequence
¢y € D (R") converging to 0 generates a sequence (X7¢), € D (R) also converg-
ing to 0, due to the uniform continuity of S¢ in any compact interval. Then, the
sequential continuity of f implies the sequential continuity of T* f, showing that
T* is a sequentially continuous operator. Hence, T*f € D’ (R").

Remarks.

(i) The form (14) for X1¢ and the property (16) of S¢ imply that the pullback
T*f, as defined by (17), is a distribution, even if f itself is only a partial distri-
bution defined on that subset of test functions Dz, (R) having (i) a zero of order
n — 1 at the origin and (ii) which, for n odd, are even (thenZy = Z_,, 1) UZ,,-)
or, for n even, are odd (then Z; = Z[_n,_” U Z,,) (for the notation Dz, (R), see
[7, Section 2.1, 5]).
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(ii) The pullback T* along the above function T is not injective. Indeed,
eq. (17) and the property (16) of S¢ imply that

n—2 P
{ Y @60 + Y b6, Yay, b, € C,VP € IN} C ker T*. (18)
I=0 p=0

(iii) The distribution T*¢, in (2) represents a delta distribution having as sup-
port the sphere ¥, with radius y. From (14) follows that

5Zy = T*éy = 5y & 1(w)/ (19)

with 1, the one distribution based on S"~1. We can not speak of the delta distri-
bution having as support the sphere with radius y, since dy, = T*J, depends on
the equation used to represent the surface X, here ]x| = y. The equation |x|* = 1
defines the same sphere, but now the function T, : X R”\ {0} — Y =Ry such
2 *
that x — r = |x|” leads to the pullback 52y2 £ Ty0y = 36, ® L) # 05,
The pullback T* along the function T thus performs two actlons (i) possibly
an extension from Dz, (R) to D (R), and (ii) a “change of variables” from y ~ x.
This can be illustrated more explicitly with the following example.
First, let
A2 D?+D3+..+D? (20)
denote the generalized Laplacian defined on D’ (R"). Define distributions A*J,
Vp € N, based on R" by
(A75, ) = (479) (0), (1)
where in the right-hand side of (21) A denotes the ordinary Laplacian defined on
D (R"). Itis shown in [11, p. 73, eq. (6)] that (Pizetti’s formula), Vp € N,

(d%/S@) (0) _ Ani2p-1(AP) (0)
" (2p)! @ pl

Now, let DZH ” (R) stand for the subset of test functions having a zero of

order k — 1 at the origin, Vk € Z... For any distribution f € D’ (R) and functions
y—F: R\ {0} — R, the multiplication y~*.f can be defined, Vi € Dz, , (R), by

(y5fe) 2 (fu ), (23)

since y K € D(R). Hence, y¥f £ y~k.f is a partial distribution defined on
Dz, , , (R). For the particular partial distributions y~ (=DM ¥m € N, (see
also Appendix7.2) (23) gives, V¢ € Dz, , , (R),

(y= =06, ) = (=)™ (dy (y="Vy) ) (0). 4)

A.Letm = 2p, Vp € IN. On the one hand, using (14), (21), (24) and (22), eq.
(17) with f = y~("=15(2P) implies that, Vp € N,

(22)

T*y—(n— )5(2p) _ Apgop—1 APS 25)
(2p)! (4m)P  pt’
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Eq. (25) shows that the distributions A”J are proportional to the pullback T from
Y to X of the partial distributions y~(*~1§(2P), defined on Dz 41y, (R)-

On the other hand, taking the (n — 1 + 2p)-th derivative with respect to y of
(14), gives

(d"2r9) (0) _ ,  d*(Sg) (0)
(n—1+2p) "1 (2pt

Substituting in the right-hand side of (26) the expression (22), using the definition
of (") and applying definition (1), we get, Vp € IN,

(26)

- (—1)" 142 s(n=1+2p) _ Ansop-1APS @)
(n—1+2p)! (@) op

Eq. (27) shows that the distributions A¥§ are also proportional to the pullback T*
from Y to X of the distributions 6"~ 1+2),
Egs. (25) and (27) can be summarized as, Vp € IN,

5(2p) Antop—1 APS (—=1)" 1 ln=1+2p)
* —(n—-1) _ nt2p _
! (y (ZP)’> e ot T\ ity )0 B

B.Let m = 2p +1, Vp € IN. In a similar way as under A we find that

T* (y—(n—1)5(2p+1)> —0= T*5(n+2p) (29)

Egs. (28), (29) and (126) illustrate again that T™ is not injective.
Further, due to (14) holds that <T*5(l), g0> = 0, VI € Zjy,,_5- This result,
together with the right equations in (28) and (29), can be summarized as

760 = 0,V €Zy, 9, (30)
* =11k n—1 An+k—1 Ak/25

The distributions 6(7) in the left-hand sides of (30)-(31) are based on R and the
distributions A?J in the right-hand side of (31) are based on R". The distribu-

tions 5% ) 2 T%5() can be interpreted as spherical multiplet (or p-fold) layers,
[11, p. 237], concentrated at an (n — 1)-dimensional sphere of radius y = 0.
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5 Pullback of an AHD on R along the function |x|

5.1 The distributions D |x|*

Let m € IN.

5.1.1 Pullback of 3 In" |y|

Regular distributions The distributions y3 In" |y| are defined in [11, p. 84],
[7, Section 5.2.3]. For —1 < Re (z), 4 In" |y| = D'y is a regular distribution, so
we obtain from (1), V¢ € D (R"),

(T* (3" |y|), ) = (Yiln"|y|,Zro),
—+00
= /O (¥ In"y) 1o (y) dy. (32)

Substituting herein the expression (14) for ¢ yields

—+00
T @) ,g) = A [ () (Se) () dy,
= (" y], A, 1Sg). (33)

As was shown in the previous section, S¢ € D (R). Thus, the right-hand
side of (33) can be regarded as the functional value of the regular distribution
y= "1™ |y| for the test function A, _1S¢. Expression (43) below, for the Laurent
series of the function y¥ In" y about w = —k € Z_, shows that y¥ In" |y| has
poles of order m +1 at w = —k € Z_. However, due to property (16) of the
test function S qo and the expression for the principal part of the Laurent series of
the function y¥ In" y about w = —k, the poles of y¥ In" y atw = —k € Z,_ do
not occur in (33). Consequently, the distribution T* (y%. In™ |y|) has poles of order
m+1lonlyatz € Z, £ {—n—2p,Vp € N}.

Substituting (15) in (33) gives

(T* (3 In" |y]), (VIn"y) ¢ (yw) y" wgiady.  (34)
gn— 1

Changing back to Cartesian coordinates in the right-hand side double integral in
(34), we get

T @), g) = [ (%I (x) gwre
= (|x|*In" |x|, ¢). (35)

Combining (35) with (33) shows that |x|*In™ |x| are regular distributions for
—n < Re(z). Since y%. In" |y| = % for —1 < Re(z),is due to (4) |x|*In" |x| =
D |x|* for —n < Re (z).

In particular for z = 0, follows from (35) that, Vin € N,

In" |x| = T* (11" |y]). (36)
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Analytic continuations The complex analyticity of the distribution 33 In" |y|
for —1 < Re(z) together with the principle of analytic continuation makes that
(35) continues to hold, Vz € C\Z,,

X" In"™ x| = T (y§ In" |y|) . (37)
Similarly we get, Vz € C\Z, and V¢ € D (R"), from (33),
(T (v " [y]), @) = (v ' In" |y|, AuaSo), (38)
and from (32),
(T" (y2 ™ [yl), @) = (3 In" [y|, Zre) . (39)
Invoking (4) and using (37) with m = 0, it follows that also Vz € C\Z,,
Ix|*In™ |x| = D |x|*. (40)

Using (37) in (38) further yields, Vz € C\Z, ),

<|x|z_n In"™ |x|,g0> = < “n™ |y, / ¢ (Yyw) wgn- 1> (41)

We will now derive a more explicit expression in order to evaluate the right-
hand side of (41) after analytic continuation. To this end, we first need the fol-
lowing n-dimensional projection operator Ty, : D (R") — D (R") such that
¢ — Ty ,¢, defined by

(T,’J,qu) () = jf] (ZI: an_;OlL l (((qu)() ) (0)> <:1 (JZ')Z>>

(11<p+ 1<l (1—|x] )), (42)

wherein L is a shorthand for 7, I;, (9x)" a shorthand for (axl)l1 ... (3x")" and
the step function 1, (x) = 1iff x > 0.

In order to evaluate the right-hand side of (41) after analytic continuation,
e.g. for0 < |[z—1+4k| < 1and for any k € Z, we recall the Laurent series of
¥ In™ |x| aboutz — 1 = —k, [7, eq. (117)],

(v ||, y)

(s s (5000
— (=)™ ' lgepepy (=1)" '
( ) (Z—1+k)m+1 0<p<k 2( ) lgg (Z_1+l)m+1

T (9 1) 0 ) (Tog) )y, @3)

whereinp, e N:p+gq=k—1,¢9 = A, 1Spand T, = Trl,’q. For the particular
choice p =k — 1,9 =0, (43) reduces to

1
ot ‘P>

(Z -1 + k)m+1

<y1—11nm|x|,¢>=<—1>m< + (g xl,y), @
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wherein

(g a9 = [ (W ) y)) (Teaoy) () dy. @49)

Take k = 2p + 2, Vp € IN, in (44)—(45). Then, for 0 < |z+ (2p+1)| < 1, and due
to (16), (41) becomes

S — e z—11,.m
<!x| In !x|,§0> = /0 (y In ]y|) (Taps10 (An_159)) (v) dy,
e Z—1 1M n n_1
B /0 /Snl (V™" In"y) <T2p+1,0§0) (yw)y" ™" wen-1dy,

= [ () (T340 e (46)

In particular at z = — (2p + 1), (46) allows to calculate the functional value of
Ix|*"" In" |x| at the ordinary points z = — (2p + 1). The right-hand side of (46)
shows that the analytic continuation of the regular distribution |x|*In™ |x| is no
longer a regular distribution.

Example 8. In particular for p = 0, (46) gives, Vim € N and V¢ € D (R"),
(%" '™ x|, )

_ A +°°1< (S¢) (y
o 2\ (-

y
—n— ( m
= o 1(—1[+<1—|x|q20> (2 ((28) ) «) )1“ | e (48)
Remarks.

(i) For —1 < Re(z), |x|*In™ |x| can be regarded as the multiplication product
Ix|*.In™ |x| of the regular distributions |x|* and In™ |x|. By analytic continuation
this product is uniquely extended to all z € C\Z,. This justifies our use of the
notation |x|* In" |x| in the right-hand side of (35).

(ii) Tt follows from (39) that, Vz € C\Z, _j, the distribution |x|*In™ [x| is the
pullback of the partial distribution y% In™ |y|, defined on that set of test functions
Dz, (R) having (i) a zero of order n — 1 at the origin and (ii) which, for n odd,
are even (i.e., Z1 = Z[—n,—l] UZ,,) or, for n even, are odd (i.e., Z; = Z[_n,_l] U
Ze, ).

(iii) The analytically continued distributions |x|*In™ |x| are homogeneous of
degree z and have order of association m. This follows from the properties of the
analytically continued distributions y3 In™ |x|, [7, Section 5.2.2], and Theorem 5.

0)y ) In" |y| dy, (47)

Extensions Wenow consider the casesz+n = —2p € Z, _;in (38). The Laurent
series of y3 about z = —k € Z_ and holding in 0 < |z +k| < 1 are given by,
[11, p. 87], [7, Section 4.2.3],

FED L sk-1) Lo

: _ =D k) ETR)”
Vi= T % +7§0(yi,oln vl) o (49)
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wherein the distributions y;{‘o In" |y|, given by (45), are particular extensions of
y%4 In™ |y| at the pole z = —k, in the sense of [7, Section 3.3, eq. (33)]. Using the
sequential continuity of T*, (37) with m = 0, (27) and letting k = n + 2p, we
obtain the Laurent series of |x|* aboutz+n = —2p € Z, _ as

An+2p—1 Apé +oo

Un)pt o (=120 1 om (z+n+2p)"
Z—l—n—|—2p+mZO(T (y+,o In !y!)) B 60

X" =

Due to the uniform continuity of this series, the Laurent series of D" |x|* about
z+n=—2p e Z, )isobtained as

An+2p71Ap5 +
Pyl X o [ —v2p) 1y (2 Hn A 2p)
DI x|F = (—1)" — 42 + Y T (y 0 ) .
: (z+n+2p)"* 1; ( 0 ) (I —m)! -
5
We can now give a meaning to DY |x|*atz+n = —2p € Z, ). Expression (51)

shows that (D!" |x|Z)Z:_n_2p

fined for test functions ¥ € D, (R") £ {p € D (R") : (AP¢) (0) = 0}. The Hahn-
Banach theorem ensures the existence of a distribution ((DZ'[x|),) de-

z=—n—-2p’
fined V¢ € D (R") and which coincides with (D |x|Z)Z:_n_2p on D, (R") C

D (R"), called an extension of the partial distribution (D} |x|Z)Z:_n_2p from
D, (R") to D (R"). This extension is generally not unique and not necessarily
an AHD. Here we are only interested in constructing AHDs based on R", so we

restrict our attention to extensions ( (DY [x|*),), , which are again an AHD

is a partial AHD, i.e., a generalized function only de-

=—n-2
(we indicate extensions which are an AHD by the subscript e and use the sub-
script € for a general extension). The subset of distributions which maps D, (U)
to zero is called the annihilator of D,(U) and denoted by D/ (U). Any two ex-
tensions differ by a generalized function ¢ € D)~ (U). Applied to our case here,
we find that associated homogeneous extensions are of the form

((Dizﬂ |X|Z)e)z:—n—2p = ((DZI ’X|Z)O)z:—n—2p + C/Apé’ (52)

with arbitrary ¢/ € C. This way, we have extended the partial distributions
(DI [x]7), ,» defined on D, (R™), to the non-unique singular distributions

=—n-2
(D |x|Z)e)Z:_n_2p, defined on the whole of D (R").
The finite part
((DZ |X|Z)O)z:—n—2p =T (F/J_r,(ng) In™ |1/|> , (53)

is given by (41), (15) and [7, eq. (118)] as
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(D2 X))y e )

- <3/;,10_2p In™ |y|, An—1590> ’

+00
= /0 (y—l—zp In™ y) (TZP,O (An_lsqp)) (y) dy,
- /om /SM (?/_”_ZP In™ y) (Tfp,ofp) (yw) y" wgn 1 dy,

o ) () o

Example 9. In particular for p = 0, (54) gives, Ym € IN and V¢ € D (R"),
(D2 1xF)o)._y0)

= Apq /Omi ((qu) (y) =11 = y*) (So) (0)) In™y dy, (55)

=[x (900 = 10 (1 =[x (0)) In" x| wre. (56)

Remarks.
(i) The extension ((D!" |X|Z)e)zz_n_2p

order m + 1, for the same reasons as explained in [7, eq. (121)], but now applied

(n+2p
€

(ii) Due to [6, eq. (20)] ([9, eq. (20)]) is y ;U P ™ y| = v ™" ™ |y| +
c 621 o e C arbitrary. Then, using (52), (53) and (31) we obtain

is of degree —n — 2p and associated of

to the distribution v ) In” ly|.

s« [ —(n+2
T* (v " y]) = (DX xF)g).—, , + 4875, (57)
with the branches of both extensions related by

An+2p—1
(470)" p!”

. =cy (1) (n+2p—1)! (58)

(iii) We use the notation ((DJ'[x|%),)

cause it is not yet clear if ((DY' [x|%),)

_ instead of |x|; "% In™ |x|, be-
z=—n—2p e

——n—2p is equal to the multiplication of

x|, "% by In"™ |x|. This matter can be resolved after the multiplication algebra
constructed for AHDs on R in [6] ([9]) is extended to a multiplication algebra for
SAHDs on R".

Spherical form From (37), (51), (30) and (52) it thus follows that, Vz € C,
T* (v In" |y|) = DY |x|7, (59)

with y% In" |y| replaced by y% ,In" |y| for z € Z_ and D' |x|* replaced by
(DI |x|), forz +n € Z,_.
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From (34) and for —1 < Re(z), we can read off the pullback TZ_, -~ along the
diffeomorphism from spherical to Cartesian coordinates Ts_,c, defined in Ap-
pendix 7.1, of T* (y3 In" |y|) as

+o0
(T" (3 In"™ |yl), ¢) = /0 /nl (VZ In"r® 1(w)> @ (rw) r" T wga1dr.  (60)

After analytic continuation we get the distributions T* (y3 In" |y|), Vz +n €
C\Ze’_}, in spherical coordinates as

T (yi ™ |y]) =r"In"r@1,), (61)

or equivalently
x[*In"™ |x| = *In" r @ 14 (62)

Atthe polesz+n = —2p € Z,_j, we meanby (r~"~*In" r)  the distribution
defined by

() @10 2 (X))
e
with the right-hand side of (63) given by (52).

Example 10. For instance in R3, the familiar functional = (more precisely, r 1 @1,
is thus a reqular distribution, whose functional value is read off from (41) for z = 2 and

m = 0as
<r_1 ® 1(w),§0> = <y+,/52 4 (I/W)Wsz> ’

—+00
= 4n /O y (S¢) (v) dy. (64)

Further, =2 (more precisely, r 2 @ L(w)) is also a regular distribution determined by

<r—2 ® l(w),(/)> = <1+,/quo(yw) w52>,
= 4r /0 - (S¢) (v) dy. (65)

By contrast, =3 ® 1) is a partial distribution only defined on D,(R*) = {¢ € D(R?):
@ (0) = 0}, but which can be non-uniquely extended to a first order AHD r; 3 ® L) =
x|, %, now defined on all of D (R%), for which <r;3 ® 1(w),¢> = <1,—3 @ 1wy, ),
Yy € D, (R®), and whose functional value is given by, Vo € D (R3),

<r;3®1(w>,¢> = <IXIE3,¢>,

_ <|x153,¢> e, 9). (66)

z=—n—2p’ (63)

More explicitly,

(1xI.%, 9)

_ ' (So) (y) — (So) (0) o (Se) ()
— 4n </0 ; dy—l—/l Tdy) +¢(S¢) (0), (67)
pX)=(0) /R (x)

—= wpgs +cp(0), 68
B3 |X’3 3\ B3 ’X|3 R3 90() (68)
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with B" & {x €R" : |x| < 1} the closed unit n-dimensional ball and ¢ € C arbitrary.

Example 11. The delta distribution on R" in spherical coordinates. It is not possible
to define the delta distribution & on R" in spherical coordinates by a straightforward
application of the formula for the pullback along the diffeomorphism Ts_,c of Appendix
7.1. The reason being that in order to make Ts_,c a diffeomorphism, we must (at least)
exclude 0 € R", but then Ts_,c is no longer a diffeomorphism of a neighborhood of the
suppd = {0} and [10, Theorem 7.1.1] does not apply. However, from (27) follows for
p=0and V¢ € D (R") that

<T* (iy‘(”‘”é) ,<P> = ¢(0), (69)

which by (1) and (14) is equivalent to

1
—(n-1) n—1 _
< LA /snl ¢ (yw) y wsn1> =¢(0). (70)

In spherical coordinates (70) becomes

L (-
<An_1r (m )(5®1(w),90> = ¢ (0). (71)

From (71) we can read off 6 on R" in spherical coordinates. Notice that its radial part
r~(=16/ A, _q isadistribution defined on D (R.), while y_(”_l)é/An_l, in the equiv-
alent functional (70), is a partial distribution only defined on Dz, 4 (R).

5.1.2 Pullback of y* In" |y|

For —1 < Re(z), T* (y* In™ |y|) is a regular distribution, so we have using (1),
Vo € D(R),

(T* (=" |yl), ¢) = (y=In"|y|, Zro),
—+o0
— [ W) Zre () dy,

—+00
= [ @AW"y Zre (~y) dy.

Since Sg is an even function, it follows from (14) that (£7¢) (—y) = (—=1)""!
(21¢) (y). Hence,

(TG )9 = (1" A ) Zre () dy,
= (1" (i " |y|, Zre),
= (T ) ),

or

T (> In" [y|) = (-1)" " T* (3 In" |y|). (72)
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After analytic continuation we find that (72) continues to hold so that,
Vz € C\Z,,

T* (y2 In" |y|) = (—=1)""" DY [x[*. (73)
Atz+n = —-2p € Z,_j, we find that
n+2p) 1 _m - M |y |2
T (v In ryr) ()" (D2 X))y gy (74)
so that, with yy_ (e T2 I |y| = n+2p In™ |y| + c_sn+2r-1),

(y (420 1y yyy) - (—1)”_1((DZ’ X))oy, + AV, (75)

with the branches of both extensions related by
- Aptop-1
L= ()" m2p - 1) 76

In the process of analytic continuation and the extension process we used the
fact that the operator T/, given by (42), preserves the parity of test functions.

P q’
Example 12. The pullback along T of the distributions (y £1i0)* € D’ (R), defined in
[11, p. 59],[7] as

(y£i0)* £y + ey, (77)
are obtained as, Vz € C\Z,,

T (y £0)" = (1- (-1)"e"™) (F@l,)). (78)

Recall the generalized Sokhotskii-Plemelj equations, [12, p. 28 and p. 841, [7, eq. (217)],
Vke Z,

k-1
(x +i0) 7k = :an(( D ol (5<’<—1> + i;7<’<—1>) , (79)
with the distributions 1) & Dly and y 2 Lx=1, (see also [7, eq. (176)]). The
distributions in (79) are higher degree generalizations of the Heisenberg distributions
Fo(x£i0) "L Atz = —k € Z_(y—1),-1), we get, using (79) and (30),
2
* (k—1) __ —k
Ty = (=1)" Z (k= 1)l0, ¢ (rreiw). (80)

Atz =—-n— (2p+1),Vp € IN, we have, now by using (79) and (31),
2
Ty = (<1 Z(n+2p) (r @ 91, ). 1)

Atz = —n —2p, Vp € IN, we obtain, using (57), (75), (53), (63) and (31),
§ (_1)n—1;7(n+2p—1) 1

Aoy
<c’++(—1)”c’_ii7r nt2p 1)M5, (82)

m+2p—1)! & (47)P p!
with the primed constants given by (58) and (76). Eq. (82) can be restated as
Ty 201 = ¢ AP§, (83)

with ¢ € C arbitrary.
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5.2 The normalized distribution ¥*

It is convenient to define the normalized distribution, [12, p. 93], [11, p. 74],

2 ’X|—n—|—z

pE £ -,
An—l r (2/2)

(84)

which is entire in z by construction From (59) follows that ¥* is related to the
normalized distribution ®3 £ x7!1%/T(z) as

2 T(z—n+1)

Y= AT

T2 "+l (85)

The normalized distribution ¥* reduces to the following special values at in-

teger values of z.
(1) Atz=-2p,Vp e N,

1 (_1)p An+2p—1

Y2 — A an) APS. (86)
(i2) Atz=—(2p+1),¥p €N,

¥l = Aj_l (_13:/1;55 DY |yt (87)

(iL.1) Atz =2p+1,Vp € N,
w2ptl _ L 221! 2L (88)

Ay T/2(2p)!

(ii2) Atz =2p+2,Vp € N,

W22 _ 12 x| 122 (89)

Ana P'

The functional ¥ =27, given by (86), is trivially evaluated using (21). The func-
tionals, given by egs. (88) and (89), can be directly evaluated using (35) and (33).
To evaluate the functionals ¥~ (??*1), we use the analytic continuation given by
(46).

5.3 Kernel of the pullback

Combining (59) with (73) we find that, Vp,m € N and Vz € C,

T ([ylF "I [y]) = Tz 2?6, n € Zes, (90)

T* (|y[z_"sgnlnm |y]> — 1, 9, cANPS,n € Zy i (91)
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with ¢ € C arbitrary and

T (lyfF "™ Jyl) = 2DY X" 0 € Zog, 92)
T* (Jy*"sgnIn™|y|) = 2D2 x| n € Zos, (93)

wherein for z € Z, _ itis understood that the distributions are extensions.
Define

L
& (R) 2 {Zal 61, Va, e C} C &) (R) (94)
1=0

and

H, (R)

(1>
—N—
™=

pre(@) (IyF "I’ [y]), ¥m € N, ¥z € C\Z, _, } (95)

N
Il
o

M, (R)

||>
—N
NgE

PLo(2) (|yyz—" sgn In’ yyy) Vm € N,Vz € C\Ze’_}} . (96)

N
Il
o

From (30) and (90)-(93) follows that the pullback T* along the function
T:X = R"\{0} - Y = R such that x — y = |x|, restricted to H' (R), has
as kernel
H)(R) iff ne€Z,+

H(R) iff n e Ze, ©7)

kerT* =&, - (R)U {

6 SAHDs on R”"

6.1 General form

Letm € Nand k € Z . Let () C C be a neighborhood of z = —k and p; ., p;, €
A(Q,C), VI € Zy,,, complex analytic coefficient functions, independent of y.
Denote by f;, a general AHD based on R, complex analytic in its degree z in ()
and of order m. From [2, Theorem 4] follows that any f, can be represented in ()

as
m

fi =Y (pre@) (P10 [y]) + pro(2) (IylFsgnin’ yl) ), ©8)

1=0

with the coefficient functions satisfying, Vj € Zg ),

Y (1) () (@ Tpge) (1) = 0,V1 € (Z,-N0Y), (99)
9=]
i(—l)”’ (7) (d"‘qu,o> () = 0Vl€ (Z,-NQ). (100)
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Atz = —k € Z_, the distribution f,,* takes the form

(f (l 131 (o (@ pie) (—k) —ex (d+1py,) (_k)>> z(i(k__i))!

1=0

+
# 3 (a0 (1951 191) + pro( ( (19" san) ') ). 200

For T* : X = R"\ {0} — Y = Rsuch that x — y = |x|*, A € C, we obtain
from Theorem 5, linearity, (98), (101), (62), (63), (52) and (90)—(93) that:
() Vz+neC\Z,_,,

T f :22 0upLe(AZ) + eupro(Az)) (rA21nlr®1(w)), (102)

(i)itAz+n=-2p ¢ Lo,

. 1
TS =21 Cnpielon = 29) eap(on = 2) (7 21nlr) @14).

(103)
This shows that the radial part of the pullback along T of any AHD fZ of

degree z, Vz +n € C\Ze,_], and order of association m based on R, is the mul-

tiplication of the distribution r?

distribution Inr.

with a polynomial of degree m in the regular

6.2 Structure theorem

Let R : R* — R" such that x — Ox with O € O (n), the orthogonal group of
degree n over R. Then, any f € D’ (R") has a pullback R*f along the diffeomor-

phism R given by, [10, Chapter 7],
det (R‘1>/ (R ' (p> , (104)
with det (R1)" = +1.

A distribution f is called spherically symmetric iff R*f = f. Hence, for any
spherically symmetric distribution f holds that

(Fo)=(£.(R1) 9). (105)

Theorem 13. For a distribution f to be a spherically symmetric distribution it is neces-
sary and sufficient that f is of the form

®f9) 2 (,

with f, € D' (Ry.) and 1) the one distribution based on S"~1, satisfying R*1,) =
1)
(@)
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Proof. (i) Sufficiency. Assume (106) and calculate, VO € O (n) and V¢ € D (R"),

(& (re )0y = (ot o (x| (=)s).
- <fr,<1(w), det (R‘l)/ (R‘1>*<P>>I
for (R 1wy 9) )

<
= (o {Lwr9))
<

fr® Lwy §0> ,

hence, R*f = f.
(ii) Necessity. Assume (105). Then, VO € O (n) and V¢ € D (R"),

(Foop o)) = (fuor (R7) @(10)),
= <f(r,9)/¢(719/)>~

This shows that < foro) @ (1,0 )> must be independent of the angular dependence
of ¢, which requires that (106) holds. n

Theorem 14. Structure theorem. Let T : X = R™\ {0} — Y = R such that x >

Yy = |x])‘, A € C. A distribution based on R" is a spherical associated homogeneous
distribution iff it is the pullback along the function T" of an associated homogeneous
distribution based on R.

Proof. (i) SAHD on R" = (T*)"AHD on R. Let f be a SAHD on R". Being spher-
ically symmetric, f must be of the form (106), due to Theorem 13. Being an AHD
on R", its radial part f, in (106) must be an AHD based on R, due to the ex-
pression (119) of the Euler operator in R". This distribution f, must be of the
form given by the right-hand side of (102), due to the structure theorem for one-
dimensional AHDs [2, Theorem 4]. Eq. (102) together with Corollary 4, which
requires T to be homogeneous, then shows that this form is the pullback along
the function T* of an AHD based on R.

(ii) (T)‘)*AHD on R = SAHD on R". Let f be an AHD on R. The pullback
(T*)" f of f along the function T has a form as given by the right-hand side of
eq. (102). By Theorem 13 such a distribution is spherically symmetric. Due to
expression (119) for the Euler operator in R", (T*) " fisan AHD based on R”. =
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7 Appendix

7.1 Spherical coordinates

We define a diffeomorphism Ts_,c, mapping spherical coordinates to Cartesian
coordinates, for a domain (2 C R" with 2 < n, such that the range Ts_,c = Q).

Letd 2 (07,Yp € Zp,) ), x 2 (¥1,Vi € Zpy, ) and
Tsc: 22 Ry x1]0,7[" 2% [0,2n] C R" — X =R, (107)

such that ¢ = (éi,Vi S Z[Ln]> =(r,0) = x=Ts_c(C) = (Vwi (0),vie Z[Lﬂ}) 2

rw,withr € Ry, w € §"71, 00 € |0, 7], Vp € Zp,_q}, and 0" € [0,27[. Herein
are, Vi € Zjy ,yand Vp € Zpp ),

W' () 2 (1_1 1y ﬁ sin (9P)> (1i:n 1., cos (ei“)) (108)

p=2

and

n N 2
w-w = Z (wl> =1. (109)
i=1
The induced metric on the (n — 1)-dimensional unit sphere S" ! is given by (im-
plicit summation over i and j), Va,b € Z ),

dx’ 9x/ -1
s = Oz ogh

a
= ]_a:b <1a—2 + 13§a H Sil’lz (9}7)> . (110)
p

r=1 —2
Then, with g (0) £ det (Qab),
n—1
§(0) =1y— 4 1ocy [ sin™ 7 (67) > 0. (111)
p=2
Hence,
| detdTs_c(8)| =r"""1/g(6) >0, 112)

V¢ € B, so Ts_c is a diffeomorphism from & — R".
Define for 3 < n the set of open half lines

L2 {x =rw(6) € R": 6" € {0, 71}, Vp € Zp, 1, Vr € R+} (113)

and the set A = {0} U 13<,, L. In order for Ts_.c to be a diffeomorphism we had
to exclude from R" the set A so that O = R™\ A.

Any integral over R", stated in Cartesian coordinates and to be converted into
spherical coordinates, first has to be restricted to (). Under the pullback T¢_, -
this restricted integral transforms into an integral over E. It is usually tacitly
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understood that A is a set of Lebesgue measure zero (which is true by Sard’s
theorem), so that the final integral is equivalent to the original integral over R".
The volume form wg» on R” becomes in spherical coordinates

wrn = " (dr Awgi1), (114)
2 (8) (d92 AP A A d@”) , (115)

lI>

Wgn-1

with wg.—1 the nowhere vanishing volume form on (O N S"=1 Notice that, since
wgn-1 vanishes on AN sn-1 wgn-1 is not a proper volume form on gn-1,

With respect to a coordinate basis {dxi,Vi € Z[l,n]} for R", the operator
d2 (ai,Vi € Z[Lﬂ]) : C® (R") — C® (R") becomes in spherical coordinates

1
d = wd, + -9y, (116)
with
n o ow
do = Y 3y, (117)
p=2 |9
aw 2 p—l 5
307 Tp=2 + 13<p B sin” (07) . (118)
The Euler operator x-d = x'9; (implicit summation over i) then becomes in
spherical coordinates
x-d =ro,. (119)

The operator w - d, is identically zero due to (117) and (109), while (9, - w) =
n — 1. The operator 9, - 9., is the Laplace-Beltrami operator (acting on scalar
functions) on $" 1.

The surface area of the unit sphere S" ! is given by, Vn € Z,,

A n_n/Z
A, 1= nol =2—— 12
n-1 /5,1_1 “s T T(n/2) (120)
and the volume of the unit n-dimensional ball it bounds is

A,q _ /2

Vi = T S T2 1)

(121)

7.2 The partial distributions y—*5(!)

Let! € N and k € Z . Define functions y~* : R\ {0} — R such thaty — y~Fand
products y %) £ 4=k 5() by, vy € Dz, (R),

<y—k.5<l>,¢> 2 <5<l>,y—k¢>. (122)
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This definition is legitimate since y % € D (R). However, (122) only defines
y*6() on Dz, 4 (R) C D(R),so0 y*5() is a partial distribution.

Define a new quantity (y‘k5(1)> v V¢ € D (R), by

((v*e") o) 2 <5(”,y‘k (sv(y) - k_Zl gV (0)£> > : (123)

Since (123) defines (y_k5(1)>0 on the whole of D (R), and because it is a linear

and sequential continuous functional, it is a distribution. Using the definition for
the generalized derivative and the sifting property of ¢, (123) can be converted to

I
((ra0),0) = <(_1)k (k+l)!5(k+l)’(’)>’ (124)
SO T
e T (125)

- - e —ks(I _ /s() ,—k
It is easily verified that <(y ) ))0 , Lp> = <5( ),y 1/)>, Vi € Dz, , (R),s0
the distribution (y‘ké (! )> . is an extension of the partial distribution y=¥§() from

DZH,A
by a distribution which maps Dz,
is

| (R) to D (R). Such an extension is not unique. Any two extensions differ

] (R) to zero. Hence, the general extension

k—1
ks — (kL st 50)
(y 5 ) " e —I—];)c]d , (126)

with arbitrary constants ¢; € C, Vj € Zg ;1. However, if we are only interested

in extensions (y‘ké(l)) which are homogeneous, we get the unique homoge-
e
neous extension

I
(7)), = () = (1) (k+'l)!(5 . (127)
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