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Abstract

It is shown that the commutative binary Knuth semifield planes of or-
der 2n, for n = 5k or 7k and k odd, their transposes and transpose-duals
admit subplanes of order 22. In addition, many of the Kantor commutative
semifield planes of order 25k or 27k also admit subplanes of order 4.

Furthermore, a large number of maximal partial spreads of order pk and
deficiency at least pk − pk−1 or translation planes of order pk are constructed
using direct sums of matrix spreads sets of different dimensions. Given any
translation plane π0 of order pd, there is either a proper maximal partial
spread of order pc+d whose associated translation net contains a subplane
of order pd isomorphic to π0 or there is a translation plane of order pc+d ad-
mitting a subplane of order pd. Other than the semifield planes mentioned
above and a few sporadic planes of even order, there are no other known
translation planes of order pc+d admitting a subplane of order pd, where d
does not divide c.

1 Introduction.

In this article, we are interested in the so-called ”subplane dimension question,”
which concerns finite translation planes π of order pt. If π0 is an affine subplane,
it follows that it is a translation plane of order pk. The question that is considered
here is whether k divides t. For example, if π is a Desarguesian plane coordina-
tized by a finite field isomorphic to GF(pt) then any affine subplane π0 is also
Desarguesian and may be coordinatized by a subfield isomorphic to GF(pk), so k
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does divide t in this case. More generally, if a finite translation plane π of order
pt admits a collineation of order p that fixes an affine subplane π0 of order pk

pointwise, then Foulser [2] has shown that k must, in fact, divide t.

Consider now the subplane dimension question in finite semifield planes of
order pt. In this setting, G.P. Wene [8] pointed out to the authors that there is
a semifield plane of order 25 that admits subplanes of order 4. Furthermore, in
very recent work, Wene has found several sporadic semifields of various orders
2j, for j = 5, 7, 9, 11, that admit subplanes of order 4. On the other hand, in
spite of the fact that there are a wide variety of semifield planes and, of course, a
much wider variety of translation planes, these few examples are the only known
translation planes where the subplane dimension question cannot be answered
in the affirmative. Therefore, in this article, we concentrate on the question for
semifield planes and ask if there is an infinite class of semifield planes or whether
there are just these few examples that violate the subplane dimension principle.

The background required to read this article takes two forms. First of all,
we will be dealing with coordinate systems ‘quasifields’ of translation planes. A
semifield plane has a coordinate quasifield that is a non-associated division ring
called a ‘semifield’. The first part of the paper deals with semifields. In particular,
we shall be working in semifields of even order of order 2t, t odd, when showing
that there are interesting and unusual subsemifields of order 22 that occur in two
well known infinite classes. The second part of this paper deals with the more
geometric aspects of semifield planes. Translation planes coordinatized by semi-
fields admit (necessarily elementary Abelian) an elation group E which fixes one
parallel class and acts transitively on the remaining parallel classes. What this
means is that the associated ‘spread’ is additive. We exploit ideas of ‘additive
partial’ spreads to show how exotic subplanes might be constructed. So, before
we discuss our results, we offer a little background detailing the ideas of spreads
and quasifields.

Definition 1. Let V2t denote a 2t-dimensional vector space over a field K isomorphic to
GF(q), where q = pr, for p a prime and r a positive integer. Then a ‘partial t-spread’
of V2t is a set of mutually disjoint (as subspaces) t-dimensional vector subspaces. A

‘t-spread’ of V2t is a partial spread consisting of
q2t−1
qt−1

= qt + 1 t-dimensional vector

subspaces, which then forms an exact cover of the non-zero vectors of V2t. The terms
‘partial spread’ and ‘spread’ are used when the context is clear.

Definition 2. Given a partial spread P in V2t, the point-line geometry of ‘points’ as vec-
tors and ‘lines’ as vector translates of the subspaces of P is said to be a ‘vector translation
net’ or a ‘translation net’, if the context is clear. If the partial spread is a spread, the
translation net becomes an affine plane of order qt; a ‘translation plane’ of order qt.

The elements of a partial spread or spread are called ‘components’.

Remark 1. In this article, a ‘subplane’ of a translation net or translation plane is always
considered to be an affine subplane and a translation net or translation plane is always
considered to be an affine structure (plane).

However, there is a major exception to the convention in the previous remark.
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Definition 3. If an affine translation plane π is extended to a projective plane π+ by the
natural adjunction of line ℓ∞ (line at infinity), the projective plane π+ is now said to be
a ‘translation plane with respect to ℓ∞.

Considering the dual projective plane of π+, D(π+), we use the terminology ‘dual
translation plane with respect to (∞)’, where (∞) is ℓ∞ considered as a point.

Now we consider the special situation where π is a semifield plane.

Remark 2. If π is a semifield plane then the projective extension π+ admits ‘elation
groups’ with center any infinite point of π and axis ℓ∞ and if π is not Desarguesian,
there is a unique infinite point (∞) on ℓ∞, such that the projective plane admits elation
groups with axis any line incidence with (∞) and with center (∞). Therefore, in the
dualization process if we allow that (∞) is interchanged with ℓ∞, it is then clear that the
dual projective plane of a projective semifield plane is also a projective semifield plane.

Furthermore, is also possible to consider the ‘dual semifield plane’ in the fol-
lowing way.

Remark 3. If a coordinate structure (Q,+, ·) for a semifield plane π is given, then
it turns out that a coordinate structure for the affine semifield plane obtained from the
natural affine restriction of the dual projective semifield plane π+ is (Q,+, ◦), where the
two multiplications are related as a · b = b ◦ a.

Therefore, when we consider the ‘dual’ of a semifield plane, we may consider
this as an ‘affine’ semifield plane.

We shall also consider the ‘transpose’ of a semifield plane, which is also a
semifield plane. This concept originates implicitly with Knuth [5] and further-
more explicated by Johnson in [3]. Also, see Maduram [6].

Definition 4. Let π be a translation plane of order qt obtained from a spread S of V2t

over K isomorphic to GF(q). Given three components S, T, U, a basis may be chosen for
the V2t so that representing vectors in the form (x1, x2, ..., xt, y1, y2, ..., yt), for xi, yi ∈ K
and such that

S is the space of vectors where x1 = x2... = xt = 0,

T is the subspace of vectors where y1 = y2... = yt = 0, and

U is the subspace of vectors where xi = yi, for i = 1, 2, ..., t.

When a basis is so chosen, the remaining components of S may be represented in the
form {(x, xM); x is any t-vector}, where M is a non-singular t × t-matrix with entries
from K. Furthermore, given any two distinct t × t-matrices corresponding to compo-
nents, the difference is also non-singular. Hence, we may represent the spread for π in
the form

(∗) : {(0, y); y is any t-vector}, {(x, 0); x is any t-vector} and

{(x, y); y = xM, for all t-vectors}, where M ∈ Smat,

where Smat is a set of qt − 1 non-singular matrices that contains It (the identity matrix)
and such that the difference of any distinct pair of matrices is also non-singular.
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Remark 4. If we represent the spread using (∗) of Definition 4, we shall say that the
spread has a ‘standard -matrix representation’. In this case, we also shall use a shorthand
version of the spread as

x = 0, y = 0, y = xM, for M ∈ Smat.

In the above setting, for a spread S of a translation plane π, an associated set
Smat of t× t-matrices is said to be a ‘matrix spread set’ of π. When π is a semifield
plane, and {(0, y); y is any t-vector} is the axis for an elation group (unique if π
is not Desarguesian), it is customary to include the zero matrix 0t in the set Smat

since Smat ∪ {0t} is an elementary Abelian p-group of order qt, for q = pr, in this
case.

Remark 5. Using the representation in (∗) of Definition 4, the transposed semifield plane
is obtained by replacing the matrices in Smat by their transposed matrices. Therefore, we
refer to this semifield plane as the ‘transposed semifield plane’ of the original semifield
plane.

Considering the projective space corresponding to the lattice of subspaces of the asso-
ciated vector space, it is also known that the transposed plane corresponds to a polarity of
the corresponding projective space (see e.g. Johnson [3]).

Remark 6. It is straightforward to show that given any semifield plane of order 2r ad-
mitting a subplane of order 2k, then the transposed semifield plane and the transposed
dual semifield plane also admit affine subplanes of order 2k.

In this article, we show that there are at least two infinite classes of semifield
planes of order 2n, for n odd that admit Desarguesian subplanes of order 22, thus
resolving the question in the even order case. All of the examples are for semi-
field planes of even order that may be coordinatized by commutative semifields.
In particular, we show that there are isotopes of the commutative binary Knuth
presemifields of orders 2tk, for k odd and t = 5 or 7 that admit subfields of or-
der 22. The Kantor commutative semifields [4] are generalizations of the binary
Knuth commutative semifields and many of the isotopes of the Kantor commu-
tative semifields of orders 25k or 27k, for k odd, also admit fields of order 4.

For a finite translation plane, the set of lines through the origin is called the
‘spread’ for the plane and if pt is the order of the plane we may use the term
‘t-spread’ for clarity and all elements of the spread are t-dimensional GF(p)-
vector subspaces. It is, of course, possible if s divides t, that the spread can be
an s-spread, as well. A ‘maximal partial t-spread’ is then simply a set of mutually
disjoint t-dimensional subspaces that cannot be extended to a partial t-spread.

For this article, apart from the semifield planes mentioned above, if we take
as an assumption that the subplane dimension question can always be answered
affirmatively, we then are able to show how this assumption leads to a large va-
riety of maximal partial spreads. An ‘additive partial spread’ is a partial spread
with coordinatization into a set of matrices SMat, which is an elementary Abelian
p-group. If the group has order pk then the number of partial spread elements is
pk + 1. In this article, we give a simple construction of additive partial spreads
of 1+ pd elements, of order pd+c, where d does not divide c, such that the partial
spread contains a semifield subplane of order pd. We show that any such additive
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partial spread can be extended to an additive maximal partial spread or can be
extended to a semifield. Note in the latter case, this would construct a semifield
plane of order pd+c that contains a semifield subplane of order pd, where d does
not divide c.

2 Subfields of order 4 in the Commutative Binary Knuth Semi-

fields.

Let x, y ∈ GF(2n), for n odd, then the following defines the multiplication for a
commutative pre-semifield due to Knuth, called the ”commutative binary Knuth
pre-semifield of order 2n.” We wish to consider if there could be a subplane of
the corresponding Knuth semifield plane of order 2n of order 22. This becomes
something of a problem since we need to determine a semifield corresponding
to a defined pre-semifield, which requires the determination of a unit element.
Furthermore, our calculations do not work in commutative pre-semifields, so we
consider instead a corresponding isotopic pre-semifield.

Our main result that sets up our examples given in the next section is as fol-
lows. In the statement of the theorem, the pre-semifield multiplication when
b = c = 1 produces the commutative binary Knuth pre-semifield:

x ◦ y = xy + (xT(y) + yT(x))2, ∀x, y ∈ GF(2n).

Theorem 1. Consider the pre-semifield multiplication

x ◦ y = xbyc + (xbT(yc) + ycT(xb))2 ,

where b and c are constants in GF(2n), for n odd, and T is the trace function from
GF(2n) to GF(2). Choose any nonzero element e and form the semifield

(x ◦ e) ∗ (e ◦ y) = x ◦ y.

If

T(ec) = T(b) = T(eb) = 0,

T(c) = 1,
e2

e + 1
=

b

c
+ 1,

then there exists a subfield isomorphic to GF(4) in (S,+, ∗).
The corresponding semifield plane is the commutative binary Knuth semifield plane

of order 2n and would then admit a subsemifield plane of order 22.

Proof. In the semifield with multiplication (x ◦ e) ∗ (e ◦ y) = x ◦ y, we assume the
following conditions: T(ec) = T(b) = T(eb) = 0, T(yc) = 1. Let x = 1 then we

have y = 1+ e b
c . This forces T(yc) = T(c + eb) = T(c) = 1. The elements e, b and

c will satisfy

(∗) : 1 ◦ y = 1 ◦ (1 + e
b

c
) = (1 ◦ e) ∗ (1 ◦ e) = 1 ◦ e + e ◦ e = (1 + e) ◦ e.
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This would say that considering juxtaposition to be ∗-multiplication and realizing
that e ◦ e becomes the ”1” in the associated semifield, letting d = 1 ◦ e, we would
have then d2 = d + 1. Then {0, 1, d, d2} becomes a subfield isomorphic to GF(4)
in the semifield (S,+, ∗). Since it straightforward to verify that (∗) is satisfied,
this completes the proof.

When n is divisible by 5 or 7, then the results of the previous theorem show
that there are subplanes of order 4 in the commutative binary Knuth semifield
planes of order 2n, n odd.

Corollary 1. Every commutative binary Knuth semifield plane of order 25k or 27k, for k
odd, admits a Desarguesian subplane of order 4.

Proof. (1) Let n = 5k, for k odd, and in GF(25), let x5 + x2 + 1 = 0, be the irre-
ducible polynomial. If e = 1 + x + x3, b = x2, c = x3 then the semifield (S,+, ∗)
of order 25k admits a subfield isomorphic to GF(4).

(2) Let n = 7k, for k odd, and in GF(27), let x7 + x4 + x3 + x2 + 1 be the
irreducible polynomial. If e = 1 + x7, b = x7 and c = x3 then the semifield
(S,+, ∗) of order 27k admits a subfield isomorphic to GF(4).

We shall give most of the details of part (1). For part (2), we leave some of the
straightforward calculations to the reader.

First consider situation (1). We claim that if z is in GF(25) then T(z) = kT5(z),
where T5 is the trace function of GF(25) over GF(2). Recall that we are working in

GF(25k), so k is 1 modulo 2. T(z) = ∑
5k−1
i=0 z2i

. But, if z ∈ GF(25) then ∑
5−1
i=0 z2i

=
T5(z) is in GF(2). And,

5k−1

∑
i=0

z2i
= T5(z) + (z25

+ z26
+ z27

+ z28
+ z29

)+

... + (z25(k−1)
+ z25k−4

+ z25k−3
+ z25k−2

+ z25k−1
)

= kT5(z) = T(z), for k ≡ 1 mod 2.

If, for elements e, b, c in GF(25)∗, we have:

T5(ec) = T5(b) = T5(eb) = 0,

T5(c) = 1,
e2

e + 1
=

b

c
+ 1

Then

T(ec) = T(b) = T(eb) = 0,

T(c) = 1.

So, if we have a subfield isomorphic to GF(4) of the sub-semifield of order 25, we
then have a subfield isomorphic to GF(4) of the semifield of order 25k, for k odd.

We first note that if e = 1 + x + x3, b = x2, c = x3 then e2

e+1 = b
c + 1. This follows

by an easy calculation. We now verify

T5(ec) = T5(b) = T5(eb) = 0,

T5(c) = 1.
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First,

T5(ec) = T5((1 + x + x3)x3) = T5(x
3 + x4 + x6) =

T5(x
3 + x4 + x(x2 + 1)) = T5(x

3 + x4 + x3 + x) = T5(x
4) + T5(x)

and since T5(x
2a
) = T5(x), we see that T5(ec) = 0. Then, we see that

T5(x
3) = x3 + x6 + (x6)2 + (x6)4 + (x6)8

= x3 + (x + x3) + (x + x2 + x3) + (x + x2 + x3 + x4)+

(x2 + x4 + x + x3 + 1 + x2 + x3) = 1.

Also,

T5(eb) = T5((1 + x + x3)x2) = T5(x
2 + x3 + x5))

= T5(x
2 + x3 + x2 + 1)

= 0, since T5(x
3) = T5(1) = 1.

T5(b) = T5(x
2) = x2 + x4 + x8 + x16 + x32.

We are working in GF(25), so x32 = x. Then we obtain:

x2 + x4 + (1 + x2 + x3) + (1 + x + x3 + x4) + x = 0.

This completes the proof of (1).
Now consider part (2). Assume that we have a binary Knuth commutative

semifield of order 27, and let x7 + x4 + x3 + x2 + 1 be the irreducible polynomial
defining GF(27). We claim that

T(x) = 0, T(x3) = T(x5) = 1.

(∗) : T(x) = x + x2 + x4 + x8 + x16 + x32 + x64.

The reader can easily establish the following:

x8 = x5 + x4 + x3 + x

x16 = x3 + x + 1,

x32 = x6 + x2 + 1,

x64 = x6 + x5 + x.

Hence, (∗) has exactly two non-zero 1-terms, when each element in T(x) is writ-
ten over span{1, x, x2, x3, x4, x5, x6}. This means that T(x) = 0 and so then

T(x2j
) = 0 = T(x3 + x + 1) = T(x3 + 1). Hence, T(x3) = 1. Also, x8 =

x5 + x4 + x3 + x then T(x5) = T(x3) = 1. Let e = 1 + x7, b = x7 and c = x3.
Then T(c = x3) = 1 and T(b = x7 = x4 + x3 + x2 + 1) = 0. We claim that

(∗) :
e2

e + 1
=

b

c
+ 1
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so we need to prove that

(1 + x7)2 = (x4 + 1)x7,

and this is also easily established and left to the reader to verify. Therefore, this
proves (∗). We now show that

T(eb) = T(ec) = 0.

Since eb = (1 + x7)x7 = x7 + x14, clearly T(eb) = 0. Then ec = (1 + x7)x3 =
x3 + x10 = x3 + (x5)2 and T(x3) = T(x5) = T(x10) = 1. Hence, T(ec) = 0. This
completes the proof of part (2).

Considering the transposed and dualized spreads, we also obtain the follow-
ing corollary

Corollary 2. (1) The transposed commutative binary Knuth semifield planes of order
2n, for n = 5k, or 7k, for k odd, admit Desarguesian subplanes of orders 22.

(2) The transposed then dualized commutative binary Knuth semifield planes of order
2n for n = 5k, or 7k, for k odd, are symplectic and admit Desarguesian subplanes of orders
22.

3 The Commutative Kantor Semifields.

There are generalizations of the binary Knuth commutative semifields due to
Kantor [4]. These have the following construction. Let F be a finite field of charac-
teristic 2, fix a subfield Fn isomorphic to GF(q) and let F = F0 ⊃ F1 ⊃ F2 ⊃ ... ⊃ Fn

such that [F : Fn] = k is odd. Choose a set of elements ζi ∈ F∗, for i = 1, 2, ...., n.
Let Ti denote the trace map from F to Fi. Then

x ◦ y = xy + (x
n

∑
i=1

Ti(ζiy) + y
n

∑
i=1

Ti(ζi x))
2

defines a commutative pre-semifield of order qk = qn1n2...nn , where [Fi : Fi+1] = ni,
so all ni are odd.

Theorem 2. In some Kantor commutative semifield planes of orders 25k k odd, there are
binary Knuth commutative semifields of order 25, respectively. In the associated Kantor
commutative semifield planes, there are subfields of order 4.

Proof. Let F ≃ GF(25k), for 5k = n1n2...nn, k odd with sequence (ζ1, ζ2, ...ζn−1, 1)
such that Fn = GF(2) and Fn−1 ≃ GF(25). Let e, b, c be elements of GF(25)∗ such
that for x5 + x2 + 1 is an irreducible polynomial for GF(25). Let

e = 1 + x + x3,

b = x2

c = x3
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be elements of GF(25). Choose the sequence (ζ1, ζ2, ...ζn−1, 1) so that

n−1

∑
i=1

Ti(ζi) = 0.

Note that for 1 ≤ i ≤ n − 1, Ti(ζir) = rTi(ζi), for r ∈ Fn−1 ≃ GF(25). If

n−1

∑
i=1

Ti(ζi) = 0

then
n

∑
i=1

Ti(ζir) = Tn(ζnr) = Tn(r).

This says that there is a binary Knuth commutative semifield which is a sub-
semifield of the Kantor commutative semifield. Hence, there is an isotope of the
Kantor commutative semifield that contains a field isomorphic to GF(4).These
Kantor commutative semifield planes of order 25k, for k odd, admit subplanes of
order 4.

Example 1. (1) Assume that we have a Kantor commutative semifield of order 252·7. Take

n = 3, F3 ≃ GF(2), F2 ≃ GF(25), F1 ≃ GF(252
), F0 = F ≃ GF(25·7). Assume that

ζi’s are all in F2. Then
3

∑
i=1

Ti(ζied) = Tn(ed), for e and d in F2. Similarly,
n

∑
i=1

Ti(ζic) =

Tn(c). To see this note that, since T1(ζ1ed) = ∑
6
j=0(ζ1ed)(2

52
)j
= 7(ζ1ed) = (ζ1ed),

T2(ζ1ed) = ∑
34
j=0(ζ1ed)(2

5)j
= 35(ζ1ed) = (ζ1ed).

(2) More generally, if n is odd then there are an even number of proper subfields
containing Fn−1 ≃ GF(25). So take Fn−1 ≃ GF(25), and assume that all elements ζi

are in F∗
n−1 and ζn = 1. In this setting,

n−1

∑
i=1

Ti(ζi) = 0,

since Ti(ζi) = niζi = ζi, where ni is odd.
Hence, in either of these two situations, we obtain an isotope that contains a field

isomorphic to GF(4).

We also obtain similar results for order 27k.

Theorem 3. In some Kantor commutative semifield planes of orders 27k k odd, there are
binary Knuth commutative semifields of order 27, respectively. In the associated Kantor
commutative semifield planes, there are subfields of order 4.

Proof. Let F ≃ GF(27k), for 7k = n1n2...nn, odd, with sequence (ζ1, ζ2, ...ζn−1, 1)
such that Fn = GF(2) and Fn−1 ≃ GF(27). Let e, b, c be elements of GF(27)∗ such
that x7 + x4 + x3 + x2 + 1 is an irreducible polynomial for GF(27). Let

e = 1 + x7

b = x7

c = x3
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be elements of GF(27). Choose the sequence (ζ1, ζ2, ...ζn−1, 1) so that

n−1

∑
i=1

Ti(ζi) = 0.

Then there is a binary Knuth commutative semifield of order 27 contained as a
sub-semifield in the corresponding Kantor commutative semifield. Hence, there
is an isotope of the Kantor commutative semifield that contains a field isomorphic
to GF(4). The associated Kantor semifield plane of order 27k admits subplanes of
order 4.

Corollary 3. The transposed and transposed-dual (symplectic) semifields of the Kantor
commutative semifields corresponding to the semifields of Theorem 2 or Theorem 3 of
orders 2jk, for k odd, and j = 5 or 7 have isotopes that contain a field isomorphic to
GF(4). The corresponding semifield planes of order 2jk admit subplanes of order 4.

4 Maximal Additive Partial Spreads.

Definition 5. We define an additive partial spread S to be ‘additively maximal’ if and
only if there is not an additive partial spread properly containing S. Note that we may
always consider the subspace x = 0 adjoined to any additive partial spread.

We regard all partial spreads over the prime field GF(p).

Theorem 4. An additively maximal additive partial spread is a maximal partial spread.
Any additive partial spread that is not maximal may be extended to an additively maximal
additive partial spread.

Proof. Let S be any additively maximal additive partial spread and assume that
it is not maximal. Then again noting our remark that x = 0 may be adjoined
to any additive partial spread, we then obtain a subspace y = xM, where M is
non-singular, that is not in

x = 0, y = x
k

∑
i=1

αi Ai,

(see standard matrix representation of (∗), Definition 4) where

S =

{

k

∑
i=1

αi Ai; for all αi ∈ GF(p)

}

.

Therefore, we have that

M −
k

∑
i=1

αi Ai

is non-singular for αi ∈ GF(p). Thus,

βM −
k

∑
i=1

αi Ai
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is non-singular for all β, αi ∈ GF(p), where at least one of β or αi, i = 1, 2, ..., k is
non-zero. Hence, this means that letting M = Ak+1, then we have

S ∪ {M} =

{

k+1

∑
i=1

αi Ai; for all αi ∈ GF(p)

}

,

is an additive partial spread of degree pk+1. This proves the theorem.

Corollary 4. Any additive partial spread (with x = 0 adjoined), may be extended either
to a proper maximal partial spread that is additively maximal or extended to a semifield
spread.

Note we have then an algorithm for the construction of semifield spreads
and maximal additive partial spreads. Choose any three mutually disjoint t-
dimensional subspaces in a 2t-dimensional vector space over GF(p), for p a prime.
Choose a basis for the vector space so that the three subspaces are x = 0, y =
0, y = x, writing vectors as (x1, ..., xt, y1, ..., yt), x = (x1, ..., xt) and y = (y1, ..., yt).
Use y = x to generate an additive partial spread y = x iIt, for all i ∈ GF(p),
where It is the t × t identity matrix. This partial spread with x = 0 adjoined is
a p-regulus. Choose any t-subspace that is disjoint from this p-regulus, so must
be of the form y = xA2, where A2 is non-singular. Generate an additive partial
spread of degree p2. Either, together with x = 0, this is a maximal partial spread
or the algorithm may be continued. This process constructs all semifields and
all additive maximal partial spreads, which is equivalent to all maximal partial
spreads which are additive.

Corollary 5. Suppose that S is an additive partial t-spread over GF(p) that cannot
be extended to a semifield spread. Then there is a maximal partial t-spread of degree
≤ pt−1 + 1.

5 Direct Sums.

In this section, we show that either we obtain abundant numbers of additive max-
imal partial spreads or there are semifield planes with prescribed and extremely
exotic affine subplanes. Our results are actually more general than this and ap-
ply to any matrix spread for a translation plane. The ideas of direct sums allows
a large degree of flexibility in the type of maximal partial spreads or translation
planes that ultimately occur. We begin with a fundamental lemma.

Lemma 1. Let π be a finite translation plane of order pt. Then there is a set of t × t
non-singular matrices St×t

Mat of cardinality pt − 1 whose distinct differences are also non-
singular and such that given any non-zero t-vector w there is a unique matrix Mt×t

w such
that the first row of Mt×t

w is w.

Proof. Most of the above lemma is well known. Note that since there are exactly
pt − 1 non-singular matrices whose distinct differences are also non-singular, it
follows that the set St×t

Mat is necessarily sharply transitive on the set of non-zero
vectors. A basis change, if necessary, completes the proof of the lemma.
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Definition 6. Any matrix spread set for a translation plane π of order pt chosen as in
Lemma 1 shall be called a ‘standard matrix spread set’. We shall use the term ‘matrix
t-spread set’ when it is necessary to specify the dimension of the matrices. Our compo-
nents for the associated translation plane are

x = 0, y = 0, y = xMt×t
w ; Mt×t

w ∈ St×t
Mat,

using the shorthand version of the standard matrix representation.

Theorem 5. Choose any standard matrix c-spread set Sc×c
Mat of c × c matrices and any

standard matrix d-spread set Sd×d
Mat of d× d matrices for c > d. Select any c − d entries to

be 0 in a c-vector, then there is a subspread set Sc−d
Mat of Sc×c

Mat of cardinality pd − 1, whose
matrices have their first rows with this same set of c − d entries all zero. Let the d-vector

w represent rows in both Sc−d
Mat and Sd×d

Mat .

Form the bijective correspondence between the subspread Sc−d
Mat of Sc×c

Mat and Sd×d
Mat , by

mapping Mc×c
w onto Md×d

w in the notation of Lemma 1. Form the set

P=

{

x = 0, y = 0, y = x

[

Mc×c
w 0

0 Md×d
w

]

; w a d-vector

}

,

f or all Mc×c
w ∈ Sc−d

Mat and Md×d
w ∈ Sd×d

Mat .

Then P is a partial spread of order pd+c and degree 1+ pd that contains a translation

subplane of order pd isomorphic to the translation plane given by the d-spread set Sd×d
Mat .

Proof. Clearly, Mc×c
w is the zero matrix if and only if Md×d

w is the zero matrix.

Hence, we have a set of non-singular matrices

[

Mc×c
w 0

0 Md×d
w

]

. Now take the

difference of two of these matrices

[

Mc×c
w 0

0 Md
w

]

−

[

Mc×c
w∗ 0

0 Md
w∗

]

=

[

Mc×c
w − Mc×c

w∗ 0

0 Md
w − Md

w∗

]

.

Since Mc×c
w − Mc×c

w∗ and Md
w − Md

w∗ are both non-singular for w 6= w∗ and w and
w∗ non-zero vectors (adjoin the zero-entries, when appropriate), we have that

x = 0, y = x

[

Mc×c
w 0

0 Md×d
w

]

; w a d-vector

is a partial spread of degree 1 + pd. The associated vector space is 2(d + c)-
dimensional over GF(p), and let the 2(d + c)-vectors be denoted by

(x1, x2, ..., xd+c, y1, y2, .., yd+c).

Now let

π0 =

{

(0, 0, ..., 0, xc+1, xc+2, ..., xc+d, 0, 0, ..., 0, yc+1, yc+2, ..., yc+d);
xi, yi ∈ GF(p), i = c + 1, ...c + d

}

.
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Note that π0 is a vector space of dimension 2d over GF(p) and intersects x = 0
and y = 0 in d-dimensional subspaces. Furthermore, the intersection with

y = x

[

Mc×c
w 0

0 Md
w

]

is

(0, 0, ..., 0, yc+1, yc+2, ..., yc+d) = (0, 0, ..., 0, xc+1, xc+2, ..., xc+d)

[

Mc×c
w 0

0 Md
w

]

= (0, 0, ..., 0, (xc+1, xc+2, ..., xc+d)Md
w),

which is also a d-dimensional GF(p)-subspace for each non-zero d-vector w.
Hence, we have a spread of 1 + pd d-dimensional subspaces of π0, so that π0 be-
comes an affine subplane of order pd, which is isomorphic to the original
d-spread. This completes the proof.

Corollary 6. Assume the conditions of Theorem 5. If the subplane dimension question is
answered affirmatively then P cannot be extended to a matrix (c + d)-spread.

Proof. Now assume that the subplane dimension question is answered affirma-
tively then if a partial spread of this form can be extended to a spread, we would
have a translation plane of order pd+c with d not dividing c, containing a sub-
plane of order pd, a contradiction. Hence, the partial spreads of the given form
cannot be extended to a translation plane, thus completing the proof.

Theorem 6. Assume the conditions of Theorem 5. If Sc×c
Mat and Sd×d

Mat are semifield spreads

(additive) then the subspread Sc−d
Mat is additive and the partial spread P is an additive

partial spread. Furthermore, there is a semifield subplane of order pd isomorphic to the

semifield plane with matrix spread set given by Sd×d
Mat .

(a) If the subplane dimension question is answered affirmatively for order pd+c

semifield planes, the partial spread of Theorem 5 can be embedded in an additively maxi-
mal additive partial spread of degree 1+ pd+e ≤ 1+ pd+c−1, which is a maximal partial
spread.

(b) One of the following situations must occur:
(i) there is a maximal partial spread of order pd+c and deficiency at least

pd+c − pd+c−1, or
(ii) every such partial spread may be extended to a semifield plane of order

pd+c that contains a subplane of order pd, where d does not divide d + c.
(c) In this setting, the affirmation of the subplane dimension question also says

that given any semifield plane π0 of order pd then there is a semifield plane of order pd+c,
for c > d, such that d does not divide c, that contains a subplane of order pd isomorphic
to the semifield plane given by the original d-spread.

Proof. Assume that Sc×c
Mat and Sd×d

Mat correspond to semifield spreads, which means
that adjoining the appropriate zero matrix to each, both become elementary Abe-
lian p-groups. Then we obtain, in particular an elation subgroup of order pd with
elements





Id+c

[

Mc×c
w 0

0 Md×d
w

]

0 Id+c



 .
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We note that this is true since then the matrices are additive and two matrices
with c − d 0’s in fixed locations of row 1 will add to a matrix with c − d 0’s in
the same fixed locations. Hence, if the matrix spreads sets are additive, we obtain
a semifield subplane of order pd. If the partial spread is additive (in the sense
that the original spreads used in the construction are semifield d-spreads and
c-spreads, respectively) then we have a semifield subplane π0 and if this partial
spread is not maximal then there is an additive partial spread of degree 1 + pd+1

containing it. If this additive partial spread is not maximal, then we may continue
to form additive partial spreads using Theorem 4. So, we may continue forming
additive partial spreads until we obtain either a semifield spread or an additive
partial spread of order 1 + pd+e ≤ 1 + pd+c−1. This completes the proof.

6 Final Remarks and Open Problems.

Based on what we know of the internal structures of the known classes of transla-
tion planes and particularly what we know of semifield planes, our results show
that either there are many classes of semifield planes left to be discovered that are
quite different from the known families or there are great numbers of maximal
additive partial spreads of very large deficiency. Since there are no non-semifield
planes that are known to satisfy the subplane dimension problem in the negative,
the same statement can be made for arbitrary translation planes.

To illustrate the complexity of the situation, recall again that there are semi-
field planes of order 25 that contain semifield subplanes of order 22, necessarily
Desarguesian and there are semifields planes of orders 25k or 27k, for k odd, that
admit Desarguesian subplanes of order 22. So take any semifield plane of order
25 and let c be any integer larger than 5 such that 5 does not divide c. Then either
there is an additive partial spread which is a maximal partial spread of degree
≤ 1 + 25+c−1 or there is a semifield plane of order 25+c that contains a semifield
subplane of order 22 and of order 25. For example, if c = 6, either there is a
semifield plane of order 211 that contains subplanes of orders 22, 25 or there is an
additive partial spread which is maximal of degree ≤ 1+ 210 and order 211. Now
assume that we never obtain additive maximal partial spreads. Then choose
any sequence of integers 2, 5, 11, i4, i5 .., in such that ij+1 = ij + tj, such that ij does

not divide tj. Then there is a semifield plane of order 2in admitting subplanes of

orders 22, 25, 211, ..., 2in−1. For example, take the sequence 2, 5, 11, 23, 47, then there
is an assumed semifield plane of order 247 that contains semifield subplanes of
orders 22, 25, 211, 223. Similar sequences are possible for semifields of order 27k,
for k odd.

In general, we have shown that given any translation plane πo of order pd, we
may find a partial spread of order pd+c and degree 1 + pd that contains a transla-
tion subplane of order pd isomorphic to π0. If this partial spread is not contained
in a proper maximal partial spread then there is a translation plane of order pc+d

that contains a translation subplane of order pd. This seems improbable, assum-
ing that d does not divide c. Thus, we would expect there to be a very large
number of maximal partial spreads of large orders that may be generated in this
manner.
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Finally, we list three open problems.

• Find examples of translation planes of order pt that admit affine subplanes
of order pk, where t does not divide t. Show, if possible, that commutative
semifields satisfy the subsemifield dimension property (i.e. the dimension
of a commutative subsemifield must divide the dimension of the commuta-
tive semifield).

• Show there exist semifield planes of order 2r, for any odd integer r that
admit Desarguesian subplanes of order 22. (Wene [7], there are sporadic
semifield planes of orders 2j, for j = 5, 7, 9, 11 that do have subplanes of
order 22.)

• Show that there exist semifield planes of order 2t, for any integer t relatively
prime to 3 that admit semifield subplanes of order 23.
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