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Abstract

We describe an approach for computing arbitrarily accurate estimates for
multi-point Seshadri constants for n generic points of P2. We apply the ap-
proach to obtain improved estimates. We work over an algebraically closed
field of characteristic 0.

1 Introduction

Seshadri constants have attracted a lot of attention since their introduction by
Demailly [De]. Their study on algebraic surfaces [EL] has been and remains of
interest, including for the case of P2. Indeed, by focusing on P2 we hope to clarify
for the reader concepts that apply to surfaces generally, and to show how in the
case of P2 previous results can be substantially sharpened. The foundation of this
paper is Theorem 1.2.1 of [HR2], which we restate here in the particular case of P2

as Theorem 2.2. For the purposes of exposition, we also state and prove Theorem
1.1, which is a simplified version of Theorem 2.2. Our main new contribution
here is Theorem 2.1, in which we show both how to apply Theorems 2.2 and 1.1
to P2 to obtain improvements on currently known values of multipoint Seshadri
constants on P2, and how more delicate considerations can be used to obtain
improvements better than can be obtained directly from Theorems 2.2 and 1.1.
Because these more delicate considerations are rather technical we have moved
them to an appendix, out of the way for a casual reader, but available to the reader
interested in seeing complete details.
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We now recall the general definition of the central concept of this paper. Given
a positive integer n, the codimension 1 multipoint Seshadri constant for points
p1, . . . , pn of PN is the real number

ε(N, p1, . . . , pn) = N−1

√

inf

{

deg(Z)

Σn
i=1multpi

Z

}

,

where the infimum is taken with respect to all hypersurfaces Z, through at least
one of the points ([De], [S]). It is well known and not difficult to prove that
ε(N, p1, . . . , pn) ≤ 1/ N

√
n, but lower bounds are much more challenging (see

[N], [Ku] and [X2]). We also take ε(N, n) to be defined as sup{ε(N, p1, . . . , pn)},
where the supremum is taken with respect to all choices of n distinct points pi

of PN . It is not hard to see that ε(N, n) = ε(N, p1, . . . , pn) for very general points
p1, . . . , pn (i.e., in the intersection of countably many Zariski-open and dense sub-
sets of (PN)n); some results suggest that the equality might hold in fact for general
points, i.e., in a Zariski-open subset of (PN)n (see [O], [S]). In this work we shall
describe a an approach for obtaining arbitrarily accurate lower bounds for the
Seshadri constant ε(2, p1, . . . , pn) that hold for general points pi and thus bound
also ε(2, n). We will hereafter denote ε(2, n) simply by ε(n).

The method we will use depends on ruling out the occurrence of so-called
abnormal curves. Given generic points p1, . . . , pn ∈ P2, let π : X → P2 denote
the birational morphism given by blowing up the points. The divisor class group
Cl(X) of X has Z-basis given by the classes L, E1, . . . , En, where L is the pullback
of the class of a line and Ei is the class of π−1(pi). The intersection form on
Cl(X) is a bilinear form with respect to which L, E1, . . . , En is orthogonal with
−L2 = E2

1 = · · · = E2
n = −1. We say that a divisor, or a divisor class, F is nef

if F · C ≥ 0 for every effective divisor C. This terminology provides an alternate
description of Seshadri constants: ε(n) is the supremum of all real numbers t such
that F = (1/t)L − (E1 + · · · + En) is nef.

Now let C be an effective divisor on X whose class [C] = dL − m1E1 − · · · −
mnEn satisfies d

√
n < m1 + · · · + mn. Nagata [N] calls such a curve C an abnor-

mal curve (with respect to the given value of n). Nagata also found all curves
abnormal for each n < 10, showed no curve is abnormal for n when n is a square
and conjectured there are no abnormal curves for n ≥ 10. If F is the R-divisor
class

√
nL − E1 − · · · − En, then an effective divisor C is abnormal if and only if

F · C < 0. More generally, given δ ≥ 0, let F(δ) = d′L − E1 − · · · − En where

d′ =
√

(n + δ); note that F(δ)2 = δ. If C is a the class of a reduced irreducible
curve such that F(δ) · C < 0, we say that C is F(δ)-abnormal. In particular, an
F(0)-abnormal class is abnormal.

Our interest in the case of reduced irreducible curves is because it can be
shown (see Remark 2.3) that if ε(n) < 1/

√
n, then ε(n) = d/(m1 + · · · + mn)

where [C] = dL − m1E1 − · · · − mnEn is the class of any reduced irreducible ab-
normal curve C on X.

Suppose one can somehow produce a set Sn of classes such that if there is an
abnormal curve C for n, then Sn contains its class [C] = dL − m1E1 − · · · − mnEn.
We will show in Section 3 how to do this in such a way that the set of ratios
d/(m1 + · · · + mn) is well-ordered and small in a suitable sense. By taking the
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minimum of d/(m1 + · · · + mn) over all [C] ∈ Sn, one obtains a lower bound for
ε(n). The more elements [C] ∈ S one can rule out (by showing that [C] is in fact
not the class of a reduced irreducible curve), the better this bound becomes. This
approach was used by [X1], [S], [ST] and [T], with the latter obtaining the bound

ε(n) ≥ (1/
√

n)
√

1 − 1/(12 n + 1).
In order to apply this method to obtain arbitrarily accurate estimates of ε(n),

one must have a way of producing such a set Sn, and listing its elements [C] =
dL − m1E1 − · · · − mnEn in ascending order of d/(m1 + · · · + mn). This is possi-
ble, as we show below, using the results of [HR2], where Seshadri constants of
arbitrary surfaces are considered. In particular, as mentioned above, our main
tool is Theorem 2.2 below, which is a restatement for X = P2 of Theorem 1.2.1
[HR2]. The following result is a simplified version of Theorem 2.2. Here, m[n]

denotes the vector (m, . . . , m) with n entries, and α(m[n]) denotes the least t such
that t is the degree of a form vanishing at n general points with order at least m

at each point. We also note that we use α0(m[n]) to denote the least t such that t
is the degree of an irreducible form vanishing at n general points with order m at
each point.

Theorem 1.1. Let n ≥ 10 and µ ≥ 1 be integers, and assume that α(m[n]) ≥ m
√

n for
all 1 ≤ m < µ. Then

ε(n) >
1√
n

√

1 − 1

(n − 2)µ
,

with ε(n) = α(µ[n])/(µn) if α(µ[n]) < µ
√

n.

See Section 2 for the proof.

Remark 1.2. As also noted in [HR2], applying this result using results of [CCMO]
and [HR1] already gives lower bounds on ε(n) which for most n are better than

what was known previously. For example, since α(m[n]) ≥ m
√

n for n ≥ 10 and
m < 21 by [CCMO], Theorem 1.1 implies that

ε(n) > (1/
√

n)
√

1 − 1/(21 n − 42).

Using [Du], which increases the result of [CCMO] from m ≤ 21 to m ≤ 42 gives

ε(n) > (1/
√

n)
√

1 − 1/(42 n − 84).

Moreover, we also have α(m[n]) ≥ m
√

n for n ≥ 10 and m ≤ ⌊√n⌋(⌊√n⌋ − 3)/2
(see the proof of Corollary 1.2(a) of [HR1]), so taking µ = ⌈(n − 5

√
n + 4)/2⌉ +

1 = ⌈(√n − 1)(
√

n − 4)/2⌉ + 1 ≤ 1 + ⌊√n⌋(⌊√n⌋ − 3)/2, Theorem 1.1 implies

ε(n) >
1√
n

√

1 − 2

n2 − 5n
√

n
.

In Section 3 we describe our algorithm for obtaining arbitrarily accurate esti-
mates for ε(n), and we demonstrate its use by obtaining estimates for ε(n) for all
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n in the range 10 ≤ n ≤ 99. In most cases the estimates we obtain are the best
currently known.

One can also get formulas that apply for a range of values of n by analyzing
the algorithm in order to approximate the outcome of each stage of the algorithm.
The disadvantage of doing this is that the formulas obtained this way give esti-
mates for ε(n) which are not as good as one can get by applying the algorithm for
specific values of n. A compensating advantage is the convenience of having a
lower bound for ε(n) given by a formula in terms of n. Thus in Section 2 we give
some such formulas, by applying Theorem 2.2 and results of [HR1].

2 General Results

We begin by stating formulas giving lower bounds for ε(n).

Theorem 2.1. Let n ≥ 10 be a nonsquare integer, let d = ⌊√n⌋ and consider ∆ =
n − d2

> 0 (note that ∆ ≤ 2d).

(a) If ∆ = 1, then ε(n) ≥ 1√
n

√

1 − 1
(2n−1)2 .

(b) If ∆ = 2, then ε(n) ≥ 1√
n

√

1 − 1
n(n−1)

.

(c) If ∆ > 2 is odd, then ε(n) ≥ 1√
n

√

1 − 1
n(d(d−3)+1)

≥ 1√
n

√

1 − 1
n(n−5

√
n+1)

.

(d) If ∆ > 3 is even, then ε(n) ≥ 1√
n

√

1 − 2
n(d(d−3)+2)

≥ 1√
n

√

1 − 2
n(n−5

√
n+2)

.

(e) If ∆ is odd and 2d − 1 > ∆ ≥ 4 4
√

n + 1, then ε(n) ≥ 1√
n

√

1 − 1
n2 .

(f) If ∆ = 2d − 1, then ε(n) ≥ 1√
n

√

1 − 2
n(n

√
n−5n+5

√
n−1)

.

We remark that the bound ε(n) ≥ (1/
√

n)(
√

1 − 1/ f (n)) is equivalent to the
inequality Rn(L) ≤ 1/ f (n), where Rn(L) is the n-th remainder of the divisor class
L, introduced by P. Biran in [Bi]. Note that the larger f (n) is, the better is the
bound. For n ≥ 10, our results show that f (n) can be taken to be the maximum
of 42(n − 2) and a function which is at least quadratic in n. Thus we produce
an f (n) which is always larger than the best previous general bound, for which
f (n) = 12n + 1 [T].

For special values of n, [Bi] also gives bounds better than those of [T], and
these bounds are quadratic in n. (For example, if n = (ai)2 ± 2i for positive
integers a and i, then f (n) = (a2i ± 1)2, and, if n = (ai)2 + i for positive integers
a and i with ai ≥ 3, then f (n) = (2a2i + 1)2).) However, except when n − 1 is
a square, the bounds of Theorem 2.1 are better for n large enough. (To see this
when n ± 2 is a square, make a direct comparison; otherwise, look at coefficients
of the n2 term in f (n).)

Additional bounds are given in [H]; they apply to all values of n and are al-
most always better than any bound for which f (n) is linear in n (more precisely,
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given any constant a, let νa(n) be the number of integers i from 1 to n for which
f (i) from [H] is bigger than ai; then limn→∞νa(n)/n = 1). Nonetheless, although
the bounds in [H] are not hard to compute for any given value of n, they are not
explicit or simple enough to make them easy to work with. Moreover, computa-
tions for specific values of n (see, for example, Table 2) seem to show in almost all
cases that the bounds we obtain here are better than those of [H].

To prove Theorems 1.1 and 2.1 we apply the following result, which is just
Theorem 1.2.1 of [HR2], restated in the case of P2:

Theorem 2.2. Let n ≥ 10 be an integer, and µ ≥ 1 a real number.

(a) If α(m[n]) ≥ m
√

n − 1
µ for every integer 1 ≤ m < µ, then

ε(n) > (1/
√

n)
√

1 − 1/((n − 2)µ).

(b) If α0(m[n]) ≥ m
√

n − 1
µ for every integer 1 ≤ m < µ, and if α0((m[n−1], m +

k)) ≥ mn+k√
n

√

1 − 1
nµ for every integer 1 ≤ m < µ/(n − 1) and every integer k

with k2
< (n/(n − 1))min (m, m + k), then

ε(n) ≥ 1√
n

√

1 − 1

nµ
.

Note that Theorem 2.2 is an improved but more technical version of Theorem
1.1. This is clear for Theorem 2.2(a). For Theorem 2.2(b), we can see this, for
example, by applying the argument in Remark 1.2 to Theorem 2.2 and using the
easy fact that for no k and d with n ≥ 10 is dL − (E1 + · · ·+ En)− kE1 the class of
an abnormal curve, to obtain

ε(n) ≥ 1√
n

√

1 − 1

21n
(◦◦◦)

for n ≥ 12. As Table 2 shows, this lower bound holds also for 10 ≤ n ≤ 11, and
hence for all n ≥ 10, and thus improves one of the bounds we had obtained in
Remark 1.2 from Theorem 1.1.

In preparation for proving Theorem 1.1, we also need the following remark.

Remark 2.3. If ε(n) < 1/
√

n, we justify the well known fact that there is an
irreducible curve C whose class [C] = dL − m1E1 − · · · − mnEn satisfies d

√
n <

m1 + · · · + mn, and for any such C we have ε(n) = d/(m1 + · · · + mn). But if
ε(n) < 1/

√
n, then by definition there is a curve D, perhaps not irreducible,

whose class [D] = aL − b1E1 − · · · − bnEn satisfies a
√

n < b1 + · · · + bn, and
clearly the class [C] = dL − m1E1 − · · · − mnEn of some irreducible component C
of D satisfies d/(m1 + · · ·+ mn) ≤ a/(b1 + · · ·+ bn) < 1/

√
n. Because the points

pi blown up to give Ei are general, if there exists an irreducible component C with
multiplicities mi, then irreducible components occur for every permutation of the
multiplicities. Thus we may as well assume that m1 ≥ m2 ≥ · · · ≥ mn ≥ 0.
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Now suppose C′ is also an irreducible curve whose class [C′] = d′L − m′
1E1 −

· · · − m′
nEn satisfies d′

√
n < m′

1 + · · · + m′
n and m′

1 ≥ m′
2 ≥ · · · ≥ m′

n ≥ 0. Then
clearly dd′ < d′(m1 + · · · + mn)/

√
n < (m′

1 + · · · + m′
n)(m1 + · · · + mn)/n. But

using m′
1 ≥ m2 ≥ · · · ≥ m′

n ≥ 0 and m1 ≥ m2 ≥ · · · ≥ mn ≥ 0, it is not
hard to check that (m′

1 + · · · + m′
n)(m1 + · · · + mn)/n = m′m1 + · · · + m′mn ≤

m′
1m1 + · · · + m′

nmn, where m′ = (m′
1 + · · · + m′

n)/n, and hence that C′ · C < 0.
Thus C = C′, so the minimum ratio a/(b1 + · · · + bn) occurs for an irreducible
curve, and any irreducible curves for which the ratio is less than 1/

√
n give the

same ratio.

We can now prove Theorem 1.1:

Proof of Theorem 1.1. The bound ε(n) > (1/
√

n)
√

1 − 1/((n − 2)µ) follows im-
mediately from Theorem 2.2. So all that is required is to justify that ε(n) =

α(µ[n])/(µn), if α(m[n]) < m
√

n for some m, and µ is the least m such that α(m[n]) <

m
√

n. Now let D be a curve such that [D] = α(µ[n])L − µ(E1 + · · ·+ En). Then as
in Remark 2.3, D has an irreducible component C which is abnormal for n, hence
D · C < 0 and [C] is almost uniform by [S]; i.e., [C] = dL − b(E1 + · · ·+ En)− kE1

for some d, b and k. But then the curve Ci whose class is [Ci] = dL − b(E1 +
· · · + En) − kEi is also an irreducible component of D for each 1 ≤ i ≤ n. But
[C1 + · · · + Cn] = ndL − (nb + k)(E1 + · · · + En) has nd < (nb + k)

√
n and

nb + k ≤ µ, and so by hypothesis µ = nb + k and nd = α(µ[n]). As in Remark
2.3, ε(n) = d/(bn + k) since C is irreducible and abnormal, but d/(bn + k) =
nd/(n(nb + k)) = α(µ[n])/(mn), as claimed.

We close this section by proving Theorem 2.1.

Proof of Theorem 2.1. In applying Theorem 2.2(b), note that it is always true that

α0(m[n]) ≥ α(m[n]).
(a) This is the result of [Bi], obtained for n = (ai)2 + i, using a = d, i = 1 and

using f (n) = a2i + 1.

(b) By Corollary 4.1(b) [HR1], we have α(m[n]) ≥ m
√

n for 10 ≤ n when ∆ = 2
and m ≤ d2 = n − 2. Using µ = n− 1, the result is now immediate from Theorem
2.2(b), since there is no integer m in the range 1 ≤ m < µ/(n − 1).

(c) By Corollary 4.1(a) [HR1], we have α(m[n]) ≥ m
√

n for 10 ≤ n when ∆

is odd and m ≤ d(d − 3). Using µ = d(d − 3) + 1, the first inequality is now
immediate from Theorem 2.2(b), since µ < n − 1, so again there is no integer m in
the range 1 ≤ m < µ/(n − 1). For the second inequality it is enough to see that
d(d − 3) + 1 ≥ n − 5

√
n + 1. But ∆ ≤ 2d ≤ 2

√
n, so d2 = n − ∆ ≥ n − 2

√
n and

hence d(d − 3) = d2 − 3d ≥ n − 5
√

n.
(d) This argument is similar to (c), using Corollary 4.1(b) [HR1] (which says

that α(m[n]) ≥ m
√

n for 10 ≤ n when ∆ is even and m ≤ d(d − 3)/2) using
µ = d(d − 3)/2 + 1.

(e) and (f): These require a more delicate analysis than what was given in
[HR1]. One instead uses the approach of [HR1] to study α for sequences of mul-
tiplicities m1, . . . , mn for which the mi are not equal. Since the analysis is some-
what arduous and may not be of interest to all readers, we have moved the de-
tails to the appendix. This approach can also be used to obtain minor improve-
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ments for the results of parts (c) and (d) above; see version 2 of this paper at
arXiv:math/0309064v2.

3 The Algorithm

It is worth emphasizing that the bounds presented in Theorem 2.1 are obtained
by making simplifying estimates. For specific values of n, we can obtain even
better results by applying our algorithm directly using the results of [HR1], [Du]
and [DJ], as we will demonstrate in this section. In particular, we give bounds for
specific values of n in Table 2. Except for n = 19, 22, 26, 37, 50, 65 and 82 [Bi] for
which Table 2 shows previously known bounds that are as good or better than
what we can obtain, the other results shown in Table 2 are new and better than
what was known previously.

We now describe in more detail the conceptual basis for our approach. First
produce a set Sn of classes that contains every possible F(0)-abnormal class. This
we can do using Lemma 3.1 and Proposition 3.2. Clearly, Sn is the union for all
δ > 0 of the sets Sn(δ), where Sn(δ) is the set of all H ∈ Sn such that F(δ) · H < 0.
The sets Sn(δ) form a nested sequence of sets that become larger as δ decreases,
with the property that if C ∈ Sn but C 6∈ Sn(δ), then C · F(δ) ≥ 0.

By Lemma 3.1, each set Sn(δ) is finite. (Since nefness of classes of positive
self-intersection is Zariski open, it is enough in Lemma 3.1 and Proposition 3.2
to require the points pi to be general.) If for some δ > 0 we can somehow show
that Sn(δ) does not contain an F(δ)-abnormal class, either directly or by showing
that F(δ) is nef, then it follows that ε(n) > 1/

√
n + δ. Even better, it follows

that ε(n) ≥ t, where t is the minimum ratio d/(m1 + · · · + mn) among all classes
dL − m1E1 − · · · − mnEn ∈ Sn with F(δ) · (dL − m1E1 − · · · − mnEn) ≥ 0.

The approach we take here for attempting to show that Sn(δ) does not con-
tain an F(δ)-abnormal class is to show that the classes in Sn(δ) are not the classes
of effective divisors. For this we use an intersection theoretic algorithm devel-
oped in [HR1] for obtaining lower bounds for the least degree α of curves passing
through given points with given multiplicities. If dL−m1E1 −· · ·−mnEn ∈ Sn(δ)
but d is less than the lower bound obtained for α(m1, · · · , mn) from [HR1], then
dL−m1E1 − · · ·−mnEn is not an F(δ)-abnormal class. If in this way we show that
no element of Sn(δ) is F(δ)-abnormal, then as above we obtain a lower bound for
ε(n), and at the same time we conclude that F(δ) is nef. Thus our approach is in
fact also a method for verifying nefness.

The following result is a restatement for P2 of Lemma 2.1.4 [HR2].

Lemma 3.1. Let X be the blow up of general points p1, . . . , pn ∈ P2. Let δ > 0. If H
is an F(δ)-abnormal class, then H = tL − h1E1 − · · · − hnEn for some non-negative
integers h1, . . . , hn and d such that:

(a) h2
1 + · · · + h2

n < (1 + n/δ)2/γ, where γ is the number of nonzero coefficients
h1, . . . , hn, and

(b) h2
1 + · · · + h2

n − a ≤ t2
< (l1h1 + · · · + lnhn)2/(n + δ), where a is the minimum

positive element of {h1, . . . , hn}.
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The sets Sn(δ) which would be obtained by applying Lemma 3.1 are much
larger than necessary. The following result (which is just a special case of Corol-
lary 2.2.2 [HR2]) subsumes Lemma 3.1 but is much more restrictive, hence it gives
much smaller sets Sn(δ) of prospective abnormal classes. (Note that Corollary
2.2.2(b) [HR2] allows the possibility that m = −k = 1. But this can happen only
if a class abnormal for n is also abnormal for n − 1. This is indeed possible in
general: L − E1 − E2 is abnormal for both n = 2 and n = 3. However, it follows
from [ST] that this does not happen when n ≥ 10.)

Proposition 3.2. Let X be obtained by blowing up n ≥ 10 general points p1, . . . , pn ∈
P2. If H is the class of an F(0)-abnormal curve, then there are integers t > 0, m > 0, k
and 1 ≤ i ≤ n such that:

(a) H = tL − m(E1 + · · · + En)− kEi;

(b) −m < k, k2
< (n/(n − 1)) min (m, m + k);

(c) m2n + 2mk + max(k2 − m, k2 − (m + k), 0) ≤ t2
< m2n + 2mk + k2/n when

k2
> 0, but m2n − m ≤ t2

< m2n when k = 0; and

(d) t2 − (m + k)2 − (n − 1)m2 − 3t + mn + k ≥ −2.

Our algorithm also uses the following result, which is just a special case of
Corollary 2.2.5 [HR2]. Note that δ = (µ − 1/n)−1 is equivalent to 1/

√
n + δ =

(1/
√

n)
√

1 − 1/(µn). Thus ε(n) ≥ (1/
√

n)
√

1 − 1/(µn) is equivalent to the
statement that F(δ) is nef for δ = (µ − 1/n)−1.

Proposition 3.3. Let X be obtained by blowing up n ≥ 10 general points of P2. Let
µ ≥ 1 be real and consider the R-divisor class F(δ) =

√
n + δL − (E1 + · · · + En),

where δ = (µ − 1/n)−1. Then any F(δ)-abnormal class is of the form C(t, m, k), where
t, m and k are as in 3.2 and where 0 < m < µ and either k = 0 or m(n − 1) < µ.

We now demonstrate our approach. To verify ε(n) ≥ (1/
√

n)
√

1 − 1/(µn)
for some choice of µ > 1, make a list of all (t, m, k) satisfying the criteria of
Proposition 3.3. If for each class C(t, m, k) either F(δ) · C(t, m, k) ≥ 0 or, by the
results of [HR1], C(t, m, k) is not the class of an effective divisor, then ε(n) ≥
(1/

√
n)
√

1 − 1/(µn).
In practice, of course, one does not know ahead of time what µ to pick, so

one finds all triples (t, m, k) satisfying Proposition 3.3, starting with m = 1, and
successively increasing m. Call such a triple a candidate triple.
For each candidate triple, compute e(t, m, k), where we define e(t, m, k) by

(1/
√

n)
√

1 − 1/(e(t, m, k)n) = t/(mn + k) (equivalently, such that
F(δ′) · C(t, m, k) = 0, where δ′ = (e(t, m, k) − 1/n)−1). If for some candidate
triple (t, m, k), e(t, m, k) is such that for each candidate triple (t′, m′, k′) with m′

<

e(t, m, k) (if k = 0) or m′
< e(t, m, k)/(n− 1) (if k 6= 0) we have either e(t′, m′, k′) ≥

e(t, m, k) or we can show that C(t′ , m′, k′) is not the class of an effective, reduced,
irreducible divisor (and hence not an abnormal class), then we obtain the bound
ε(n) ≥ (1/

√
n)
√

1 − 1/(e(t, m, k)n).
We now carry this out for n = 10. Here is a list of all triples (t, m, k) satisfying

Proposition 3.2 for n = 10, with m ≤ 185:
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t m k e t m k e t m k e t m k e

3 1 0 1 154 49 -3 2635.21 308 98 -6 2635.21 449 142 0 517.02

22 7 0 8.16 177 56 0 101.16 313 99 0 239.04 456 144 2 51984.1

41 13 0 18.77 191 60 4 6080.26 332 105 0 424.03 456 145 -8 51984.1

60 19 0 36.1 191 61 -6 6080.26 351 111 0 1369 468 148 0 1369

79 25 0 69.44 196 62 0 160.16 382 120 8 6080.26 547 173 0 369.49

80 25 3 711.21 215 68 0 308.26 419 132 5 11704.16 566 179 0 593.35

98 31 0 160.16 228 72 1 51984.1 419 133 -5 11704.16 573 182 -8 6080.26

117 37 0 1369 234 74 0 1369 430 136 0 308.26 585 185 0 1369

Table 1: All Proposition 3.2 test classes C(t, m, k) with m ≤ 185 and corresponding
values e(t, m, k).

Table 1 demonstrates how our approach gives results which improve as time
goes by. For example, it is easy to see that C(3, 1, 0) cannot be the class of an
effective divisor (use the fact that there is a unique plane curve of degree 3m
with 9 general points of multiplicity m). Other cases are less easy to rule out.
However, by [CCMO], no abnormal curve occurs with n ≥ 10, m ≤ 20 and
k = 0, which rules out C(22, 7, 0), C(41, 13, 0) and C(60, 19, 0). A calculation by
Miranda (which he shared with us in a personal communication) showed that
C(79, 25, 0) is not the class of an effective divisor, using the method of [CM2]
(which is a refinement of [CM1]). More recent work, [Du], shows in fact that
no abnormal curve occurs with n ≥ 10, m ≤ 42 and k = 0. This also elimi-
nates C(79, 25, 0), in addition to two other items in the list. These others are cur-
rently irrelevant since we first need to deal with C(177, 56, 0). For C(177, 56, 0)
we have e(177, 56, 0) = 101.16, and there is no triple (t′, m′, k′) such that both
m′

< e(177, 56, 0) and C(t′, m′, k′) is effective. Thus F = (560/177)L− (E1 + · · ·+
E10) is nef, F · C(177, 56, 0) = 0, and we have ε(10) ≥ 177/560 =
(1/

√
10)
√

1 − 1/(10e(177, 56, 0)). To improve on this bound, we would need
to show that C(177, 56, 0) is not the class of a reduced, irreducible curve (it suf-
fices, of course, to show it is the class of no effective divisor). Were we able to
do this, we next would need to deal with C(98, 31, 0) and C(196, 62, 0), and so on
and by [Du] we know in fact that C(98, 31, 0) does not occur (but we cannot rule
out C(196, 62, 0), and it gives the same bound as does C(98, 31, 0)).

Determining that C(t, m, k) is not the class of an effective, reduced, irreducible
divisor is a task that in principle can be done computationally, with the only re-
strictions imposed by the computational resources available. Thus the method
just explained can be used to get bounds on ε(n) arbitrarily close to 1/

√
n if Na-

gata’s conjecture is true, and would eventually lead to a counterexample and an
exact value of ε(n) if it were false.

We close with a list of the best currently known values of f (n) when n is not
square, for 10 ≤ n ≤ 99.

n f C(t,m,0) n f C(t,m,0) n f C(t,m,0)
10 1011.61 C(177,56) 41 3879.11 C(557,87) 71 6819.08 C(792,94)
11 572.22 C(169,51) 42 2058.89 C(311,48) 72 4681.14 C(543,64)
12 676 C(180,52) 43 4446.01 C(636,97) 73 8129.89 C(786,92)
13 857.49 C(209,58) 44 3699.2 C(451,68) 74 9085.64 C(929,108)
14 740.6 C(172,46) 45 3782.25 C(550,82) 75 9409 C(840,97)
15 961 C(240,62) 46 3140.26 C(434,64) 76 5337.1 C(462,53)
17 1389.43 C(305,74) 47 7109.17 C(994,145) 77 13862.75 C(1246,142)
18 1116.76 C(229,54) 48 3723.07 C(381,55) 78 5698.52 C(627,71)
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19 28900 C(741,170) 50 9801 C(700,99) 79 19525.1 C(2142,241)
20 1445 C(228,51) 51 3313.98 C(407,57) 80 5107.27 C(474,53)
21 1941.45 C(197,43) 52 6257.33 C(411,57) 82 26569 C(1476,163)
22 38809 C(924,197) 53 3499.89 C(313,43) 83 8381.98 C(829,91)
23 1829.35 C(350,73) 54 5713.2 C(338,46) 84 7709.47 C(724,79)
24 2401 C(240,49) 55 3358.58 C(393,53) 85 5802.66 C(590,64)
26 2601 C(260,51) 56 3193.01 C(419,56) 86 14198.76 C(1493,161)
27 2521.5 C(426,82) 57 4633.03 C(385,51) 87 5497.02 C(457,49)
28 2242.33 C(328,62) 58 9802 C(396,52) 88 8530.92 C(666,71)
29 4901 C(280,52) 59 3352.27 C(384,50) 89 7281.81 C(566,60)
30 2646 C(345,63) 60 7562.5 C(852,110) 90 13690 C(702,74)
31 2536.36 C(334,60) 61 5380.2 C(492,63) 91 5126.33 C(496,52)
32 2533.44 C(345,61) 62 12164.13 C(1496,190) 92 13370.32 C(1103,115)
33 2952.52 C(448,78) 63 3662.28 C(373,47) 93 6076 C(540,56)
34 2503.53 C(274,47) 65 16641 C(1040,129) 94 14950.51 C(1367,141)
35 2494.03 C(278,47) 66 5410.98 C(593,73) 95 6390.76 C(614,63)
37 5329 C(444,73) 67 5550.49 C(532,65) 96 18070.33 C(1695,173)
38 1898.97 C(265,43) 68 4442.13 C(437,53) 97 4773.3 C(453,46)
39 3845.92 C(537,86) 69 8283.45 C(407,49) 98 29804.08 C(2950,298)

40 3082.66 C(430,68) 70 7910.63 C(937,112) 99 6892.38 C(587,59)

Table 2: Best currently known values of f (n) for nonsquares 10 ≤ n ≤ 99.

For each n, Table 2 gives the best value we know for f (n) (truncated to two
decimals), along with a possible abnormal curve C(t, m, k) which we are unable
to rule out but which would have to be ruled out in order to verify a larger value
for f (n). [M. Dumnicki has recently told us that his methods can be used to
eliminate some of the curves on our list.] Thus the bound on ε(n) we obtain
for each n is ε(n) ≥ (1/

√
n)(
√

1 − 1/ f (n)), and if there actually is an abnormal
class C(t, m, k), then we would have equality. It turns out that k = 0 for each of
the cases listed, so we write C(t, m) in place of C(t, m, 0). That k should be 0 in
these examples is not too surprising, since by Proposition 3.3 it follows that the
constraints for the occurrence of an abnormal curve with k 6= 0 are much more
severe. Thus, as Table 1 suggests, cases with k 6= 0 do not come into play until

one is trying to verify ε(n) ≥ (1/
√

n)(
√

1 − 1/(µn)) for values of µ that are quite
large. However, one should not think that merely by ruling out the listed curve
one can improve the bound. There are sometimes several classes which give the
same bound, some indeed with k 6= 0, all of which would have to be ruled out
in order to improve the bound. In case the reader wishes to find all such classes
which need to be dealt with in order to improve our bounds, we have made
available (as nonprinting text at the end of the file in the version of this paper
posted as arXiv:math/0309064v4) the perl script that we used to generate Table
2.

For n = 19, n = 22 and n > 10 such that n − 1 is a square, the bounds
given here are due to [Bi]. Except in these cases, the listed values come from
applying the method discussed above, using either the results of [Du] or [DJ], or
the intersection theoretic algorithm of [HR1] when necessary to show C(t, m, k)
cannot be the class of an effective divisor. (The [HR1] algorithm depends on two
parameters r and d which can be chosen somewhat arbitrarily. For Table 2, we
used d = ⌊√n⌋ and r = ⌊d

√
n⌋. The listed classes C(t, m, k) are just ones with

F(δ) · C(t, m, k) = 0 but which the [HR1] bound on effectivity is not good enough
to rule out, thereby preventing us from obtaining a larger value for f (n). It is
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possible that by employing other choices for r and d we could improve some of
the bounds even further.)
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A Appendix

Whereas Theorem 2.2 depends only on the intersection theoretic considerations
of [HR2], further improvements, which we will need in order to prove Theorem
2.1 (e, f), are possible based on more delicate geometric considerations involving
curves. As an example, we have:

Theorem A.1. Let n ≥ 10 and µ > 0 be integers. Define d = ⌊√n⌋, g = (d − 1)
(d − 2)/2, r = ⌊d

√
n⌋ and ν = (µ − 1)/(n − 1). Assume either that µ ≤ 6(n − 1),

or that µ ≤ n(n − 1) and

νr + g − 1

d
− 1 ≥

(

ν − d

n

)

√

n − 1

µ
.

If α0(m[n]) ≥ m

√

n − 1

µ
for every integer 1 ≤ m < µ, then ε(n) ≥ 1√

n

√

1 − 1

nµ
.

In this appendix, we apply Theorem A.1 to prove the following result, from
which we will obtain the explicit bounds given in Theorem 2.1(e, f):

Lemma A.2. Let 1 ≤ µ ≤ n(n − 1) be integers with n ≥ 10, and define d = ⌊√n⌋,
g = (d − 1)(d − 2)/2 and r = ⌊d

√
n⌋. Assume that

(µ − 1)r + g − 1

d
≥ (µ − 1)

√

n − 1

µ
.

Then ε(n) ≥ (1/
√

n)
√

1 − 1/(µn).

In order to apply Theorem 2.2, we need to verify certain lower bounds on
minimum degrees α of curves with points of given multiplicities. A means of
deriving such bounds is given in [HR1]. Indeed, as pointed out in Remark 1.2,
bounds given in [HR1] in the case of uniform multiplicities already imply ε(n) ≥
(1/

√
n)
√

1 − 1/(n(n − 5
√

n)/2) for n ≥ 10. The main point of this appendix is
to analyze the method of [HR1] to obtain explicit bounds (given in Theorem A.6)
when the multiplicities are only almost uniform, which we then use to obtain the
improved bounds on ε(n) given in Theorem A.1, Lemma A.2 and Theorem 2.1.

The approach developed in [HR1] for obtaining lower bounds for the least
degree α(m) of a curve with multiplicities m = (m1, . . . , mn) at a set of n general
points depends on choosing arbitrary positive integers r ≤ n and d, and then in-
volves specializing the n points and using semicontinuity. The specialization con-
sists in choosing first an irreducible plane curve C of degree d, and then choosing
points p1, . . . , pn in the following way. We will denote by Xi the surface obtained
from X0 = P2 by blowing up, in order, the points p1, . . . , pi, where p1 is a general
smooth point of C ⊂ X0; pi is infinitely near pi−1 for 2 ≤ i ≤ n; and pi is a point of
the proper transform of C on Xi−1 for i ≤ r (more precisely, so that Ei − Ei+1 is the
class of an effective, reduced and irreducible divisor for 0 < i < n and so that the
class of the proper transform of C to X is dL − E1 − · · · − Er). Denoting by α′(m)
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the least degree t such that |tL − m1E1 − · · · − mnEn| is non-empty (for this spe-
cial position of the points) we have α(m) ≥ α′(m) by semicontinuity. Now [HR1]
gives a numerical algorithmic criterion for h0(X,OX(t0L − m1E1 − · · · − mnEn))
to vanish. If t satisfies the criterion (and hence h0 = 0), then α′(m) > t. The
largest t which satisfies the criterion is our lower bound.

To describe the criterion, we recall some notation from [HR1]. Given a class
D0 = t0L − m1E1 − · · · − mnEn such that m1 ≥ · · · ≥ mn ≥ 0 and given [C] =
dL − E1 − · · · − Er as above, we define classes D′

i and Di for i ≥ 0. First, D′
i =

Di − [C]. Then Di+1 is obtained from D′
i by unloading; i.e., let F = D′

i , let Nj =
Ej − Ej+1 for 1 ≤ j < n and let Nn = En. Whenever F · Nj < 0, replace F by
F − Nj. Eventually it happens that F · Nj ≥ 0 for all j, in which case we set
Di+1 equal to the resulting F. (Since under the specialization each Nj is the class
of a reduced irreducible divisor, in the event that D′

i is the class of an effective
divisor, unloading just amounts to subtracting off certain fixed components of
|D′

i |. Although it is convenient to define Di for all i, we are only interested in Di

when i is reasonably small. Indeed, for i sufficiently large, Di always takes the
form of a negative multiple of L; the multiplicities all eventually unload to 0. In
fact, when D0 is understood, we will denote by ω′ the least i such that Di · Ej = 0
for all j > 0.)

Denote Di · L by ti. Let j be the least index i such that ti < d and let gC =
(d − 1)(d − 2)/2 be the genus of C. The criterion of [HR1] (see the discussion
after the proof of Lemma 2.3 of [HR1]) is that

if Di · C ≤ gC − 1 for 0 ≤ i < j and (tj + 1)(tj + 2) ≤ 2(dtj − Dj · C)

then α′(m) > t0. (∗∗)

The results of [HR1] are obtained by analyzing this criterion with respect to
particular choices of the parameters d and r describing C.

The results we obtain here mostly involve choosing d = ⌊√n⌋ and r =
⌊d
√

n⌋, however other choices can also be useful; for instance, the case ∆ = 2
in Theorem 2.1 follows from a computation where r = ⌈d

√
n⌉ is used.

We will find it useful to have a refinement of Proposition 3.2 in the case that
m < n:

Lemma A.3. Let X be obtained by blowing up n ≥ 10 general points p1, . . . , pn ∈ P2.
Assume [C] = tL − (m + k)E1 − mE2 − · · · − mEn is the class of an almost uniform
abnormal curve C with n > m > 0. Then m + k > 0 and −√

m ≤ k ≤ √
m. Moreover,

if k 6= 0, then also 2mk = t2 − m2n (or equivalently C2 = −k2) and m
√

n − 1 < t <

m
√

n + 1.

Proof. To see −√
m ≤ k ≤ √

m, observe that m < n implies mn/(n − 1) ≤ m + 1;
now apply k2

< mn/(n − 1) from Proposition 3.2(b). Note that Proposition 3.2(b)
also gives m + k > 0.

Now, assume that k 6= 0. By Proposition 3.2(c) we have t2 − nm2 − 2mk <

k2/n, but now k2/n < 1; Proposition 3.2(c) also tells us that t2 − nm2 − 2mk ≥ 0.
Therefore, putting both inequalities together we must have t2 − nm2 − 2mk = 0,
proving 2mk = t2 − m2n and thus C2 = −k2.
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Finally, as C is abnormal, we have t < m
√

n + k/
√

n < m
√

n + 1. On the other
hand, since −k2 = C2 ≥ −(m + k) by [X1], we have (k− 1/2)2 ≤ m + 1/4 < n, so

k > 1/2−√
n and t =

√
m2n + 2mk >

√

m2n − 2m(
√

n − 1/2) ≥
√

(m
√

n − 1)2,
and we conclude t > m

√
n − 1.

Remark A.4. We note that when Lemma A.3 applies, there is for each m at most
one k 6= 0 and one t for which an abnormal curve [C] = tL − (m + k)E1 − mE2 −
· · · −mEn could exist. Indeed, 2mk = t2 − m2n implies that t2 has the same parity
as m2n, and only one integer t in the range m

√
n − 1 < t < m

√
n + 1 has this

property.

From now on we restrict our attention to almost uniform sequences m = (m +
k, m, . . . , m) of n multiplicities satisfying the inequalities imposed by Proposition
3.2 or Lemma A.3. To apply the criterion of [HR1], the multiplicities in m should

be nonincreasing. Thus we will assume m = (m + k, m[n−1]) when k ≥ 0 and

m = (m[n−1], m + k) when k ≤ 0. In the special case that m < n and k ≥ 0, we

have k2 ≤ m by Lemma A.3, in which case we let m′ denote ((m + 1)[k], m[n−k]).
(In the terminology of [HR1], m′ is then n-semiuniform.) If m < n but k < 0,
we take m′ = m. Since after the specialization of [HR1], Ei − Ei+1 is the class of
an effective divisor for each i > 0, clearly α′(m) ≥ α′(m′), so a lower bound for
α′(m′) is also a lower bound for α′(m) and hence for α(m).

Lemma A.5. Let n be a positive integer. Let d = ⌊√n⌋, r = ⌊d
√

n⌋, and assume [C]
as above is dL − E1 − · · · − Er and 0 ≤ k2 ≤ n. Let D0 = tL − (m + 1)E1 − · · · −
(m + 1)Ek − mEk+1 − · · · − mEn if k ≥ 0, or D0 = tL − mE1 − · · · − mEn−1 −
(m + k)En if k < 0, and let ω′ be the least i ≥ 0 such that Di · Ej = 0 for all j > 0.

Then dt − (mr + k) ≥ Di · C for all 0 ≤ i < ω′. Moreover, if k < 0 and ∆ = n − d2 is
even and positive, then dt − mr ≥ Di · C for all 0 ≤ i < ω′.

Proof. The proof is similar to that of Lemma 2.3 of [HR1]. Also, it is obviously true
if n is a square, since then C2 = 0, so we may assume that n is not a square. Thus
∆ = n − d2 is positive. We begin with some useful observations. If ∆ is even, then
for some 1 ≤ δ ≤ d we can write n = d2 + 2δ, in which case it is not hard to check
that r = d2 + δ − 1. If δ = d, then n− r − 1 ≤ d and d(n − r)/n = d(d + 1)/n < 1,
while if δ < d, then n ≤ d2 + δ − 1 + d = r + d, so again d(n − r)/n ≤ d2/n < 1.
If ∆ is odd, we have n = d2 + 2δ + 1 with δ < d, and r = d2 + δ, so again n ≤ r + d
and d(n − r)/n < 1. Thus we always have d(n − r)/n < 1 and n − r − 1 ≤ d.

Now assume that k ≥ 0. The choice r = ⌊d
√

n⌋ ensures that r2/n − d2 ≤ 0,
while k2 ≤ n implies that min(k, r) = k and min(k, r) − kr/n = k(n − r)/n ≤
d(n − r)/n < 1. On the other hand, D0 · C = dt − (mr + k); thus it is enough to
show that (Di − D0) · C ≤ i(r2/n − d2) + min(k, r) − kr/n. Let A0 = 0, and for
0 < j ≤ n let Aj = −E1 − · · · − Ej. For 0 ≤ i < ω′, one can check that Di =
(t − id)L − (m − i + q)E1 − · · · − (m − i + q)En + Aρ, where k + i(n − r) = qn + ρ
and 0 ≤ ρ < n. (To see this, note by construction that Di always must have the
form (t− id)L− b(E1 + · · ·+ En) + Ac for some b and c. To determine b and c, use
the fact that ω′ is such that for i < ω′, the sum of the coefficients of the Ej in Di is
just the sum of the coefficients of the Ej in D0 − iC, hence bn + c = mn + k − ir.)
It now follows that

Di · C − D0 · C = i(r − d2)− rq + Aρ · C + min(r, k).
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The claim now follows using Aρ · C = −min(ρ, r) and (k + i(n − r))(r/n) =
(r/n)(qn + ρ) ≤ rq + min(ρ, r).

Assume now that k < 0. Note that n− r − 1 ≤ d ≤ √
n. Also, |k| ≤ ⌊√n⌋ = d,

so |k|(n − r − 1) < d
√

n, hence |k|(n − r − 1) ≤ r ≤ n − 1. For 1 ≤ i ≤ |k|,
one can argue in a way similar to that used before (noting for i ≤ |k| that the
coefficient of En is unaffected), to see that Di = (t − id)L − (m + 1 − i)E1 − · · · −
(m + 1 − i)Ei(n−1−r) − (m − i)Ei(n−1−r)+1 − · · · − (m − i)En−1 − (m + k)En. Thus

Di ·C = (t− id)d− rm− i(n− 1) + 2ri, hence (Di−1 − Di) ·C = d2 + n− 2r − 1 >

(
√

n − d)2 − 1 > −1. Thus D0 · C ≥ D1 · C ≥ D2 · C ≥ · · · ≥ D|k| · C.

Note that D|k| = (t − |k|d)L − (m − |k|)E1 − · · · − (m − |k|)En + Aρ, where

|k|(n − r − 1) = ρ. So for |k| ≤ i < ω′, we are in a situation similar to that
above: we have Di = (t − id)L − (m − i + q)E1 − · · · − (m − i + q)En + Aρ, where
k + i(n − r) = qn + ρ and 0 ≤ ρ < n, and an analogous argument shows (Di −
D0) · C = i(r − d2) − rq + Aρ · C ≤ i(r2/n − d2) − kr/n. Thus Di · C ≤ D0 · C −
kr/n ≤ D0 · C + |k| = dt − (mr + k), as we wished to show.

Finally, suppose ∆ = n− d2 is even. As noted above, we can write n = d2 + 2δ
and r = d2 + δ − 1, hence n = 2r − d2 + 2. Using this expression for n we have
(i(r2 − d2n) − kr)/n = (i((r − d2)2 − 2d2) − kr)/n, and using −k < i, we have
(i((r − d2)2 − 2d2)− kr)/n ≤ (i((r − d2)2 − d2) + k(d2 − r))/n = (i/n)(δ2 − δ −
d2) + (δ − 1)(|k| − i)/n < 0. Thus dt − mr = D0 · C ≥ Di · C for 0 ≤ i < ω′.

The following theorem extends Theorem 1.3 of [HR1] to almost uniform classes
for our particular choice of r and d. Given a multiplicity sequence m = (m1, . . . ,
mn), define u and ρ by: u ≥ 0, 0 < ρ ≤ r and m1 + · · · + mn = ur + ρ.

Theorem A.6. Given an integer n, let d = ⌊√n⌋, r = ⌊d
√

n⌋ and m = (m, . . . , m, m +
k), with k2 ≤ m < n. Define u and ρ as above, denote the genus (d − 1)(d − 2)/2 of
a plane curve of degree d by g and let s be the largest integer such that we have both
(s + 1)(s + 2) ≤ 2ρ and 0 ≤ s < d. Then

α(m) ≥ 1 + min(⌊(mr + k + g − 1)/d⌋, s + ud).

Moreover, if k < 0 and ∆ = n − d2 is even and positive, then α(m) ≥ 1 + min(⌊(mr +
g − 1)/d⌋, s + ud).

Proof. As discussed above, we may replace m by m′, hence we may assume m =
(m, m, . . . , m, m + k) if k ≤ 0, and m = (m + 1, . . . , m + 1, m, . . . , m) if k > 0. In
either case, we define mi by (m1, . . . , mn) = m, and let D0 = tL − (m1E1 + · · · +
mnEn). Our aim is to show that if t ≤ min(⌊(mr + k + g − 1)/d⌋, s + ud) (or
t ≤ min(⌊(mr + g − 1)/d⌋, s + ud) in case k < 0 and ∆ is even and positive),
then, as in (∗∗), Di · C ≤ g − 1 for 0 ≤ i < j and (tj + 1)(tj + 2) ≤ 2(dtj − Dj · C),
where j is the least index i such that ti < d.

It is easy to check that ω′, defined above, is ⌈(mn + k)/r⌉ = u + 1, so if
t ≤ s + ud, it follows that tω′ ≤ s − d < 0, and thus ω′ ≥ ω, where ω is the
least i such that ti < 0, and hence ω = j + 1. Lemma A.5 now gives Di · C ≤
dt − (mr + k) (resp., Di · C ≤ dt − mr, if 0 < ∆ is even and k < 0) for all 0 ≤
i ≤ ω − 2, so t ≤ ⌊(mr + k + g − 1)/d⌋ (resp., t ≤ ⌊(mr + g − 1)/d⌋) implies
Di · C ≤ g − 1. To conclude that α′(m) ≥ t + 1, it is now enough to check that
(t − jd + 1)(t − jd + 2) ≤ 2vj, where for any i we define vi = dti − Di · C.
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If j = u (i.e., ω′ = ω), we have ρ = vj. But t − jd = t − ud ≤ s, hence
(t − jd + 1)(t − jd + 2) ≤ (s + 1)(s + 2) ≤ 2ρ = 2vj. If j < u (so ω′

> ω),
by definition of j we at least have t − jd ≤ d − 1, so (t − jd + 1)(t − jd + 2) ≤
d(d + 1). But ω′

> ω implies vj > r, and r ≥ d2 implies d(d + 1) ≤ 2r, so again
2vj ≥ 2r ≥ d(d + 1) ≥ (t − jd + 1)(t − jd + 2).

We can now prove Theorem A.1 and Lemma A.2.

Proof of Theorem A.1. By Theorem 2.2, it is enough to prove that if 1 ≤ m <

µ/(n − 1), 0 < k2
< (n/(n − 1)) min(m, m + k) and µ satisfies the hypothe-

ses then α0(m, . . . , m, m + k) ≥ ((mn + k)/
√

n)
√

1 − 1/(nµ). In the case that
µ ≤ 6(n − 1), the only multiplicities involved are m ≤ 5, and then the claim
follows by [LU]. So assume µ ≤ n(n − 1) and

νr + g − 1

d
− 1 ≥

(

ν − d

n

)

√

n − 1

µ
(∗∗∗).

The conclusion is true when n is a square, so we may assume n is a nonsquare.
Cases 10 ≤ n < 25 (i.e., 3 ≤ d ≤ 4) we treat ad hoc, briefly. When d = 3, it turns
out that the only values of µ satisfying the hypotheses have µ ≤ 6(n − 1), and
so were already dealt with. For d = 4, the same is true except for n = 23, since
133 ≤ µ ≤ 163 satisfies (∗∗∗) and has µ > 6(n − 1). The resulting values of m
are 6 and 7, and k must by Proposition 3.2(b) be ±1 or ±2. It is easy to check that
in these cases there is no square t2 meeting the conditions of Proposition 3.2(c),

which means α0(m, . . . , m, m + k) ≥ ((mn + k)/
√

n)
√

1 − 1/(nµ). So the claim
holds for n < 25 and hereafter we may assume that d ≥ 5.

The condition µ ≤ n(n − 1) guarantees that m < n and thus we can apply
Theorem A.6 to bound α0(m, . . . , m, m + k). Thus it is enough to show that ((mn +
k)/

√
n)
√

1 − 1/(nµ) is no bigger than the bound given in Theorem A.6. First we
show that s + ud + 1 ≥ (mn + k)/

√
n. Since r2 ≤ d2n, we see that (mn + k)/

√
n ≤

(mn + k)d/r, so it suffices to show that (mn + k)d/r ≤ s + ud + 1. If s = d − 1,
then s + ud + 1 = (u + 1)d = ⌈(mn + k)/r⌉d ≥ (mn + k)d/r as required, so
assume (s + 1)(s + 2) ≤ 2ρ < (s + 2)(s + 3) and s + 2 ≤ d. Then r(s + ud + 1) =
r(s + 1)+ (mn + k)d− dρ, so we need only check that r(s + 1)+ (mn + k)d− dρ ≥
(mn + k)d, or r(s + 1) ≥ dρ. If s = 0, then r(s + 1) ≥ r ≥ 3d = d(s + 2)(s +
3)/2 ≥ dρ, since

√
n ≥ 3. If s > 0, then r(s + 1) ≥ d(s + 3)(s + 2)/2 ≥ dρ, since

r(s + 1)/d ≥ d(s + 1) ≥ (s + 2)(s + 1) ≥ (s + 3)(s + 2)/2.
It remains to prove that ⌊(mr + k + g− 1)/d⌋+ 1 ≥ ((mn + k)/

√
n)
√

1 − 1/(nµ).
Observe that ⌊x/d⌋ + 1 ≥ x/d, so it is enough to prove (mr + k + g − 1)/d ≥
((mn + k)/

√
n)
√

1 − 1/(nµ), which we can rewrite as m(
√

n − 1/µ − r/d) ≤
(d − 3)/2 + k(1/d − (1/

√
n)
√

1 − 1/(µn)). But k2 ≤ m < n by Lemma A.3, so
k ≥ −d, hence it is enough to prove

m

(
√

n − 1

µ
− r

d

)

≤ d − 3

2
−
(

1 − d√
n

√

1 − 1

µn

)

.

As d ≥ 5, the term on the right is positive, so the inequality holds for m = 0.
But the term on the left is linear in m, so it will suffice to show that the inequality
holds for m = (µ − 1)/(n − 1) = ν, and this is equivalent to (∗∗∗).
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Proof of Lemma A.2. The conclusion is true when n is a square, so we may assume
n is a nonsquare. As we did in the proof of Theorem A.1, we treat cases 10 ≤ n <

25 (i.e., 3 ≤ d ≤ 4) with ad hoc arguments. When d = 3, it turns out that the only
value of µ satisfying the hypothesis is µ = 1. For d = 4, it turns out that µ is never

more than 19. From Table 2, we see that ε(n) ≥ (1/
√

n)
√

1 − 1/(µn) thus holds
for n < 25. So hereafter we may assume that d ≥ 5.

Theorem A.1 will imply our conclusion. To apply Theorem A.1, first note that
µ satisfies the inequalities µ ≤ n(n − 1) (by hypothesis) and

νr + g − 1

d
− 1 ≥

(

ν − d

n

)

√

n − 1

µ
.

To justify this second inequality, observe that

(ν − d/n)
√

n − 1/µ = (1/(n − 1))(µ − 1)
√

n − 1/µ − (d/n)
√

n − 1/µ

and (1/(n− 1))(µ− 1)
√

n − 1/µ− (d/n)
√

n − 1/µ ≤ (1/(n− 1)((µ− 1)r + g−
1)/d − (d/n)

√

n − 1/µ by hypothesis, so it will follow from

g − 1

d
− 1 ≥ g − 1

d(n − 1)
− d

n

√

n − 1

µ
.

Substituting g = (d − 1)(d − 2)/2 and rearranging the terms, this is equivalent
to 1 ≤ (d − 3)(n − 2)/(2n − 2) + (d/n)

√

n − 1/µ. But d ≥ 5 and µ ≥ 1, so

(d − 3)(n − 2)/(2n − 2) + (d/n)
√

n − 1/µ ≥ (n − 2)/n + (5/n)
√

n − 1, and it is
immediate that the last expression is bounded below by 1 when n > 25.

The other hypothesis in Theorem A.1 that needs to be checked is that α(m) ≥
m
√

n − 1/µ for uniform multiplicity sequences m = (m, . . . , m) in which m ≤
µ − 1. To this end we apply Theorem 1.3(c) of [HR1]. What we want is to
show that m

√

n − 1/µ is no bigger than the lower bound on α(m) given in that
theorem. Recall the quantities s, u and ρ defined in Theorem A.6. Exactly as
shown in the proof of Corollary 4.1 of [HR1], we have s + ud + 1 ≥ m

√
n. We

quote: “Since r2 ≤ d2n, we see that m
√

n ≤ mnd/r, so it suffices to show that
mnd/r ≤ s + ud + 1. If s = d− 1, then s + ud + 1 = (u + 1)d = ⌈mn/r⌉d ≥ mnd/r
as required, so assume (s + 1)(s + 2) ≤ 2ρ < (s + 2)(s + 3) and s + 2 ≤ d.
Then r(s + ud + 1) = r(s + 1) + mnd − dρ, so we need only check that r(s +
1) + mnd − dρ ≥ mnd, or even that r(s + 1) ≥ d(s + 2)(s + 3)/2 (which is
clear if s = 0 since d ≥ 3) or that r ≥ d2(s + 3)/(2(s + 1)) (which is also
clear since now we may assume s ≥ 1).” Thus, it only remains to prove that
⌊(mr + g− 1)/d⌋+ 1 ≥ m

√

n − 1/µ. As in the proof of Theorem A.1, it is enough

to prove (mr + g − 1)/d ≥ m
√

n − 1/µ. But both sides of this inequality are lin-
ear in m, it obviously holds for m = 0, and it holds for m = µ − 1 by hypothesis,
so it clearly holds for all 0 < m < µ.

The next Lemma is a technical result used to prove Theorem 2.1(e, f).
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Lemma A.7. Let n ≥ 17 be an integer, not a square, and define d = ⌊√n⌋, r = ⌊d
√

n⌋,
∆ = n − d2 and δ = ⌊∆/2⌋. Let

µn =







⌊

d
(

d − 3 + d(d−3)−1
(d−3)(d2+δ+1)

)

d2+δ
d2−δ2

⌋

+ 1 if ∆ = 2δ + 1 is odd,
⌊

d
(

d − 3 + d(d−3)−1
(d−3)(d2+δ)

)

d2+δ−1
2d2−(δ−1)2

⌋

+ 1 if ∆ = 2δ is even;

then µ = µn satisfies the inequalities of Lemma A.2.

Proof. We have to show first that µn ≤ n(n − 1) (µn ≥ 1 is obvious). Consider
the odd ∆ case. Since µn is an increasing function of δ and the maximum value
of δ is d − 1, we see µn ≤ ⌊d(d − 3 + (d(d − 3) − 1)/((d − 3)(d2 + d)))((d2 +
d − 1)/(2d − 1))⌋ + 1, but d(d − 3 + (d(d − 3)− 1)/((d − 3)(d2 + d)))((d2 + d −
1)/(2d − 1)) < d(d − 3 + 1/d)d, so the desired inequality follows from d2 − 3d +
1 < n, d < n. The even ∆ case is similar.

For the second inequality, we use a refined version of the proof of Corollary
4.1 of [HR1]. Consider the case in which ∆ is odd, so n = d2 + 2δ + 1 and r = d2 +
δ. We have to check that (µn − 1)(d2 + δ)/d + (d − 3)/2 ≥ (µn − 1)

√

n − 1/µn,
or equivalently,

(µn − 1)

(
√

n − 1

µn
− d2 + δ

d

)

≤ d − 3

2
.

Now
√

n − 1/µn ≤ √
n − 1/(2µn

√
n), so it will be enough to prove that

(µn − 1)

(√
n − d2 + δ

d

)

≤ d − 3

2
+

µn − 1

2µn
√

n
.

This is the same as µn − 1 ≤ ((d − 3)/2 + (1/(2
√

n))(1 − 1/µn))(d2/(d2 − δ2))
(
√

n + d + δ/d). Taking into account that d + (δ + 1)/d = (r + 1)/d >

√
n >

r/d = d + δ/d and that µn ≥ d(d − 3) (because d ≥ 4) it is enough to have
µn − 1 ≤ (d− 3 +(d(d− 3)− 1)/((d2 + δ + 1)(d− 3)))d(d2 + δ)/(d2 − δ2), which
holds by hypothesis.

One handles the even case similarly, but now n = d2 + 2δ and r = d2 + δ − 1,
and δ > 0 since n is not a square.

Proof of Theorem 2.1(e, f). By (◦◦◦), it is enough to prove nµn ≥ φ(n) for every
nonsquare n, where µn is as in Lemma A.7, and where φ(n) = n2 if ∆ is odd
and 2d − 1 > ∆ ≥ 4 4

√
n + 1, and where φ(n) = n(n

√
n − 5n + 5

√
n − 1)/2 if

∆ = 2d − 1.
Suppose that ∆ is odd with ∆ ≥ 4 4

√
n + 1, which implies that δ ≥ 2

√
d. We

have to see that in this case µn ≥ n, so that we can take φ(n) = n2, as claimed.
Consider the function

h(d, δ) = d

(

d − 3 +
d(d − 3)− 1

(d − 3)(d2 + δ + 1)

)

d2 + δ

d2 − δ2
− n.

Substitute x2 for d and 2x + t for δ, in which case n = d2 + 2δ + 1 = x4 +
4x + 2t + 1. We want to show that h ≥ 0 for x ≥ 2 (i.e., for d ≥ 4). By
multiplying through to clear denominators, h ≥ 0 becomes p(x, t) ≥ 0, where
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p(x, t) = x2((x2 − 3)2(x4 + 2x + t + 1) + x2(x2 − 3) − 1)(x4 + 2x + t) − (x4 +
4x + 2t + 1)(x2 − 3)(x4 + 2x + t + 1)(x4 − (2x + t)2). The partial ∂p(x, t)/∂t is
t3(8x2 − 24) + t2(9x6 − 27x4 + 48x3 + 9x2 − 144x − 27) + t(2x10 − 6x8 + 36x7 +
2x6 − 108x5 + 84x4 + 36x3 − 268x2 − 108x− 6)+ (4x11 − x10 − 12x9 + 33x8 + 4x7 −
91x6 + 40x5 + 36x4 − 152x3 − 100x2 − 12x). For x ≥

√
6, it is not hard to check

that the coefficients of the powers of t are all nonnegative. Thus ∂p(x, t)/∂t ≥ 0

for all t ≥ 0 for each x ≥
√

6. Therefore, p(x, t) ≥ p(x, 0) ≥ 0. (In addition to

δ ≥ 2
√

d we also have δ ≤ d − 1, so in fact there are integers δ as above only if
d ≥ 6.)

Finally, suppose n = d2 + 2d − 1, that is, ∆ = 2δ + 1 with δ = d − 1. Substi-
tuting the value of δ in the expression of µn we see that it is enough to verify

d6 − 4 d5 − 2 d4 + 15 d3 + d2 − 7 d + 1

(d + 1)(d − 3)(2 d − 1)
≥ 1

2
(n
√

n − 5n + 5
√

n − 1),

and the term on the left may be rewritten as

d3 − 2 d2 − 4 d

2
+

d5 − 2 d4 − d3 − 8 d2 − 2 d + 2

2 (d + 1)(d − 3)(2 d − 1)
.

It is a straightforward computation that the second summand in the last expres-
sion is bounded below by 4 for d ≥ 4. Now using the fact that n = d2 + 2d − 1
and

√
n ≤ d + 1 (and hence n

√
n ≤ d3 + 3d2 + d − 1) the desired inequality fol-

lows.
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