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Abstract

The existence of common fixed point results for a Banach operator pair
under certain generalized ϕ-contractions is established. As applications, the
corresponding invariant best approximation results are proved. Our results
unify and generalize various known results to the more general class of non-
commuting mappings.

1 Introduction and preliminaries

Let M be a subset of a normed space (X, ‖.‖). Let I : M → M be a mapping.
A mapping T : M → M is called I-Lipschitz if there exists k ≥ 0 such that
d(Tx, Ty) ≤ kd(Ix, Iy) for any x, y ∈ M. If k < 1 (respectively, k = 1), then T
is called an I-contraction (respectively, I-nonexpansive). The mapping T is said
to be completely continuous if {xn} converges weakly to x ∈ M implies that
Txn → Tx. A point x ∈ M is a coincidence point (common fixed point) of I and
T if Ix = Tx (x = Ix = Tx). The set of fixed points of I is denoted by F(I). The
set of coincidence points of I and T is denoted by C(I, T). The pair {I, T} is called
(1) commuting if TIx = ITx for all x ∈ M, (2) R-weakly commuting if for all
x ∈ M, there exists R > 0 such that d(ITx, TIx) ≤ Rd(Ix, Tx). If R = 1, then the
maps are called weakly commuting; (3) compatible [16] if limn d(TIxn, ITxn) = 0
whenever {xn} is a sequence such that limn Txn = limn Ixn = t for some t in M;
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320 L. Ćirić – N. Hussain – F. Akbar – J. S. Ume

(4) weakly compatible if they commute at their coincidence points, i.e., if
ITx = TIx whenever Ix = Tx. Suppose that M is q-starshaped with q ∈ F(I)
and is both T- and I-invariant. Then T and I are called (5) Cq-commuting if
ITx = TIx for all x ∈ Cq(I, T), where Cq(I, T) = ∪{C(I, Tk) : 0 ≤ k ≤ 1}
where Tkx = (1 − k)q + kTx; (6) pointwise R-subweakly commuting [23] on M
if for given x ∈ M, there exists a real number R > 0 such that ‖ITx − TIx‖ ≤
Rdist(Ix, [q, Tx]), where [q, x] = {(1 − k)q + kx : 0 ≤ k ≤ 1} and dist(u, M) =
in f{‖y − u‖ : y ∈ M}; (7) R-subweakly commuting on M if for all x ∈ M, there
exists a real number R > 0 such that ‖ITx − TIx‖ ≤ Rdist(Ix, [q, Tx]); if R = 1,
then the maps are called 1-subweakly commuting.
The set PM(u) = {x ∈ M : ‖x − u‖ = dist(u, M)} is called the set of best approx-
imants to u ∈ X out of M. Let CI

M(u) = {x ∈ M : Ix ∈ PM(u)}. We denote by
N and cl(M) (wcl(M)), the set of positive integers and the closure (weak closure)
of a set M in X, respectively. A Banach space X satisfies Opial’s condition if, for
every sequence {xn} in X weakly convergent to x ∈ X, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for all y 6= x. Every Hilbert space and the space lp(1 < p < ∞) satisfy
Opial’s condition. The map T : M → X is said to be demiclosed at 0 provided
for every sequence {xn} in M converging weakly to x and {Txn} convergent to
0 ∈ X, we have 0 = Tx.

The Banach Contraction Mapping Principle states that if (X, d) is a complete met-
ric space and T : X → X satisfies

(Tx, Ty) ≤ λd (x, y)

for all x, y ∈ X, where 0 < λ < 1, then T has a unique fixed point, say z in X,
and the Picard iterations {Tnx} converge to z for all x ∈ X. Jungck extended this
principle in the following way;

Theorem 1.1 (Jungck [15]). Let (X, d) be a complete metric space, T, I : X → X
satisfy the following contraction-type condition on X,

d (Tx, Ty) ≤ λd(Ix, Iy)

where 0 < λ < 1. Suppose that T, I are commuting maps, I is continuous and
T(X) ⊂ I(X). Then T and I have a unique common fixed point in X.

Jungck [16] coined the idea of compatible maps and extended Theorem 1.1 to
compatible maps. Ćirić [6, 7] introduced and studied self-mappings on X satisfy-
ing

d (Tx, Ty) ≤ λ max {d (x, y) , d (x, Tx) , d (y, Ty) , d (x, Ty) , d (y, Tx)} , (1.1)

where 0 < λ < 1.
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Theorem 1.2 (Das and Naik [8]). Let (X, d) be a complete metric space, T,
I : X → X satisfy the following contraction-type condition on X,

d (Tx, Ty) ≤ λ max{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty), d(Ix, Ty), d(Iy, Tx)}

where 0 < λ < 1. Suppose that T, I are commuting maps, I is continuous and
T(X) ⊂ I(X). Then T and I have a unique common fixed point in X.

Further investigations in this direction were carried out by Agarwal et al. [1],
Berinde [4], Jungck [17, 18], Jungck and Hussain [19], Hussain et al. [11], Hussain
and Rhoades [14], O’Regan and Hussain [23] and many other mathematicians(see
[7] and references therein). Applications of the contraction and generalized con-
traction principle for self mappings are well known (c.f. [7, 25, 26]).

In 1963, Meinardus [22] employed the Schauder fixed point theorem to prove
a result regarding invariant approximation. Further generalizations of the result
of Meinardus were obtained by Habiniak [9], Jungck and Sessa [20], Sahab et al.
[27], Singh [29], Smoluk [31] and Subrahmanyam [32]. Recently, Al-Thagafi [2] ex-
tended the work in [27, 29, 31, 32] and proved some results on invariant approxi-
mations for commuting maps. Hussain and Jungck [12], Jungck and Hussain [19],
O’Regan and Hussain [23], and Pathak et al. [24] extended the work of Al-Thagafi
[2] for pointwise R-subweakly commuting, compatible and Cq-commuting maps.
Recently, Chen and Li [5] introduced the class of a Banach operator pairs, as a
new class of noncommuting maps which is further investigated by Hussain [10]
and Pathak and Hussain [25]. The purpose of this paper is to prove common fixed
point results for newly defined class of the Banach operator pairs (T, I) where T is
generalized I-contraction with respect to a comparison function ϕ (see [1, 4]). We
shall prove our results without the assumptions of linearity or affinity of either T
or I and I-nonexpansiveness of T. As application, certain invariant approxima-
tion results for this class of maps are also derived. Our results extend, unify and
compliment the work of Al-Thagafi [2], Chen and Li [5], Habiniak [9], Pathak and
Hussain [25], Jungck and Sessa [20], Khan and Khan [21], Meinardus [22], Sahab,
Khan and Sessa [27], Shahzad [28], Singh [29], Smoluk [31], Subrahmanyam [32]
and many others.

2 Main Results

The ordered pair (T, I) of two self mappings of a metric space (X, d) is called
a Banach operator pair, if the set F(I) is T-invariant, namely T(F(I)) ⊆ F(I).
Obviously, commuting pair (T, I) is a Banach operator pair but the converse does
not hold, in general ;see [5, 10] and examples below. If (T, I) is a Banach operator
pair then, (I, T) need not be a Banach operator pair (cf. Example 1 [5]). If the self
mappings T and I of X satisfy

d(ITx, Tx) ≤ kd(Ix, x),
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for all x ∈ X and k ≥ 0, then (T, I) is a Banach operator pair. In particular , when
I = T and X is a normed space, the above inequality can be rewritten as

‖T2x − Tx‖ ≤ k‖Tx − x‖

for all x ∈ X. Such a T is called a Banach operator of type k in [32] (see [9] and
[21]).

We begin with the following result.

Theorem 2.1. Let (X, d) be a metric space , K be a nonempty subset of X,
T : K → K be a mapping satisfying the following contraction-type condition:

d (Tx, Ty) ≤ max{ϕ1 (d (x, y)) , ϕ2 (d (x, Tx)) , ϕ3 (d (y, Ty)) , ϕ4 (d (x, Ty)) , ϕ5 (d (y, Tx))}
(2.1)

for all x, y ∈ K, where ϕj : [0, +∞) → [0, +∞) (j = 1, 2, 3, 4, 5) are real functions
which are continuous from the right and each has the following properties:

(1) ϕj(t) < t for t > 0 and
(2) ϕj(t) is non-decreasing.

If cl(T(K)) is bounded and complete, then T has a unique fixed point in K.

Proof. Let x0 in K be arbitrary. Define inductively a sequence {xn} in K as follows:

xn = Txn−1 for all n ≥ 1.

We shell prove that {Tnx} is a Cauchy sequence. Set

An = ∪∞

i=nTxi,

αn = diam(An)

(n = 0, 1, 2, . . .). Since αn ≥ αn+1, it follows that {αn} converges to some α ≥ 0.
We shall show that α = 0. Let n be arbitrary and let Trx, Tsx ∈ An+1. Then from
(2.1),

d(Tr x, Tsx) = d(TTr−1x, TsTs−1x)

≤ max{ϕ1(d(Tr−1x, Ts−1x), ϕ2(d(Tr−1x, Tr), ϕ3(d(Ts−1x, Tsx), (2.2)

ϕ4(d(Tr−1x, Tsx), ϕ5(d(Ts−1x, Trx)}.

Since Tr−1x, Trx, Ts−1x, Tsx ∈ An and ϕj are nondecreasing, from (2.2) we get

d(Trx, Tsx) ≤ max{ϕ1(αn), ϕ2(αn), ϕ3(αn), ϕ4(αn), ϕ5(αn)}.

Since Trx, Tsx ∈ An+1 are arbitrary, we have

αn+1 ≤ max{ϕ1(αn), ϕ2(αn), ϕ3(αn), ϕ4(αn), ϕ5(αn)}.

Hence, as α ≤ αn+1,

α ≤ max{ϕ1(αn), ϕ2(αn), ϕ3(αn), ϕ4(αn), ϕ5(αn)}.
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Suppose that α > 0. Then, by the continuity from the right of ϕj and the property
(1), we have

α ≤ max{ lim
αn→α+

ϕ1(αn), lim
αn→α+

ϕ2(αn), lim
αn→α+

ϕ3(αn), lim
αn→α+

ϕ4(αn), lim
αn→α+

ϕ5(αn)}

≤ max{ϕ1(α), ϕ2(α), ϕ3(α), ϕ4(α), ϕ5(α)}
< α,

a contradiction. Therefore, α = 0. Thus, we proved that

lim
n→∞

diam({Tnx, Tn+1x, . . . , }) = 0

and consequently, the sequence {Tnx} is a Cauchy sequence. Since cl(T(K)) is
complete, {xn} converges to some point, say z in cl(T(K)). We show that Tz = z.
Suppose, by way of contradiction, that d(z, Tz) > 0. Using the triangle inequality
and (2.1), we have

d(z, Tz) ≤ d(z, xn+1) + d(Txn, Tz)

≤ d(z, xn+1) + max{ϕ1(d(xn, z)),

ϕ2(d(xn, Txn)), ϕ3(d(z, Tz)), ϕ4(d(xn, Tz)), ϕ5(d(z, Txn))}.

Hence, by the triangle inequality and by the property (2) of ϕj, we get

d(z, Tz) ≤ d(z, xn+1) + max{ϕ1(r), ϕ2(r), ϕ3(r), ϕ4(r), ϕ5(r)} (2.3)

where r = d(xn, z) + d(xn, Txn) + d(z, Tz).
Since d(xn, Txn) → 0 and d(z, xn) → 0 as n → ∞, it follows that

(d(z, Tz) + d(z, xn) + d(xn, Txn)) → d(z, Tz)

when n tends to infinity. Taking the limit in (2.3) when n tends to infinity and
having in mind the continuity from the right of ϕj and the property (1), we get

d(z, Tz) ≤max{ϕ1(d(z, Tz)), ϕ2(d(z, Tz)), ϕ3(d(z, Tz)), ϕ4(d(z, Tz)), ϕ5(d(z, Tz))}
<d(z, Tz),

a contradiction. Therefore, d(z, Tz) = 0. Hence Tz = z. Clearly, z ∈ K, as
z = Tz ∈ T(K) ⊆ K. The uniqueness of a fixed point is implied by (2.1).

The following result extends and improves Theorems 1.1 and 1.2, Lemma 3.1
of [5] and Theorem 1 in [21].

Lemma 2.2. Let (X, d) be a metric space, K be a nonempty subset of X, T,
I : K → K be mappings satisfying the following contraction-type condition on K,

d (Tx, Ty) ≤ max {ϕ1 (d (Ix, Iy)) , ϕ2 (d (Ix, Tx)) , ϕ3 (d (Iy, Ty)) ,

ϕ4 (d (Ix, Ty)) , ϕ5 (d (Iy, Tx))} , (2.4)

where ϕj : [0, +∞) → [0, +∞) (j = 1, 2, 3, 4, 5) are real functions which are contin-
uous from the right and each has the properties (1)–(2) of Theorem 2.1. Suppose
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that F(I) is nonempty, clT(F(I)) ⊆ F(I) and cl(T(K)) is complete and bounded,
then T and I have a unique common fixed point in K.

Proof. clT(F(I)) being subset of clT(M) is complete and bounded. Further, for all
x, y ∈ F(I), we have by the inequality (2.4),

d (Tx, Ty) ≤ max {ϕ1 (d (Ix, Iy)) , ϕ2 (d (Ix, Tx)) , ϕ3 (d (Iy, Ty)) ,

ϕ4 (d (Ix, Ty)) , ϕ5 (d (Iy, Tx))}
= max {ϕ1 (d (x, y)) , ϕ2 (d (x, Tx)) , ϕ3 (d (y, Ty)) ,

ϕ4 (d (x, Ty)) , ϕ5 (d (y, Tx))}

By Theorem 2.1, T has a unique fixed point z in F(I) and consequently F(T)∩ F(I)
is singleton.

Corollary 2.3. Let (X, d) be a metric space, K be a nonempty subset of X, T,
I : K → K be mappings satisfying the contraction-type condition (2.4) on K. Sup-
pose that cl(T(K)) is complete and bounded, (T, I) is a Banach operator pair, F(I)
is nonempty and closed, then T and I have a unique common fixed point in K.

Proof. By our assumptions, T(F(I)) ⊆ F(I) and F(I) is nonempty and closed.
Thus clT(F(I)) ⊆ clF(I) = F(I). The result now follows from Lemma 2.2.

Now we are in position to state our main result.

Theorem 2.4. Let K be a nonempty subset of a normed space X and I and T be
self mappings of K. Suppose that F(I) is closed and q-starshaped with q ∈ F(I).
If (T, I) is a Banach operator pair and satisfies, for each x, y ∈ K,

‖Tx − Ty‖ ≤ max{ϕ1(‖Ix − Iy‖), ϕ2(dist(Ix, [Tx, q])), ϕ3(dist(Iy, [Ty, q])),

ϕ4(dist(Ix, [Ty, q])), ϕ5(dist(Iy, [Tx, q]))}, (2.5)

where ϕj : [0, +∞) → [0, +∞) (j = 1, 2, 3, 4, 5) are real functions which are con-
tinuous from the right and each has the following properties:

(1) for each k ∈ (0, 1), ϕj(t) <
t
k for t > 0,

(2) ϕj(t) is non-decreasing,

then K ∩ F(I) ∩ F(T) 6= ∅, provided one of the following conditions holds;

(i) cl(T(K)) is compact and T is continuous,

(ii) X is complete, wclT(K) is weakly compact, I is weakly continuous and I −T
is demiclosed at 0,

(iii) X is complete, wclT(K) is weakly compact, I is weakly continuous and T is
completely continuous.
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Proof. Define Tn by
Tnx = (1 − kn)q + knTx

for all x ∈ F(I) and a fixed sequence of real numbers kn(0 < kn < 1) converging
to 1. As (T, I) is a Banach operator pair, for each x ∈ F(I) we have Tx ∈ F(I),
and hence Tnx = (1 − kn)q + knTx ∈ F(I) by the fact that F(I) is q-starshaped
with q ∈ F(I). Thus for each n ≥ 1, (Tn, I) is a Banach operator pair on F(I). Let

ϕ
(n)
j := kn ϕj, (j = 1, 2, 3, 4, 5). Then by (2.5),

‖Tnx − Tny‖ = kn‖Tx − Ty‖
≤ kn

(

max{ϕ1(‖Ix − Iy‖), ϕ2(dist(Ix, (q, Tx))),

ϕ3(dist(Iy, (q, Ty))), ϕ4(dist(Ix, (q, Ty))), ϕ5(dist(Iy, (q, Tx)))}
)

≤ max{kn ϕ1(‖Ix − Iy‖), kn ϕ2(‖Ix − Tnx‖), kn ϕ3(‖Iy − Tny‖),

kn ϕ4(‖Ix − Tny‖), kn ϕ5(‖Iy − Tnx‖)}
≤ max{ϕ

(n)
1 (‖Ix − Iy‖), ϕ

(n)
2 (‖Ix − Tnx‖), ϕ

(n)
3 (‖Iy − Tny‖),

ϕ
(n)
4 (‖Ix − Tny‖), ϕ

(n)
5 (‖Iy − Tnx‖)},

for each x, y ∈ F(I).

(i) As clT(F(I)) ⊆ clT(K) is compact, for each n ∈ N, clTn(F(I)) is compact
and hence complete and bounded. By Corollary 2.3, for each n ≥ 1, there
exists xn ∈ K such that xn = Ixn = Tnxn. The compactness of cl(T(K))
implies that there exists a subsequence {Txm} of {Txn} such that Txm →
z ∈ cl(T(F(I))) ⊆ F(I) as m → ∞. Since km → 1, xm = Tmxm = (1− km)q +
kmTxm → z. By the continuity of T, we obtain that, K ∩ F(T) ∩ F(I) 6= ∅.

(ii) By weak compactness of wclT(F(I)) ⊆ wclT(K), wclTn(F(I)) is weakly
compact[3, 19] and hence complete and bounded for each n. By Corol-
lary 2.3, there exists xn ∈ K such that xn = Ixn = Tnxn. Since wclT(K)
is weakly compact, there exists a subsequence {xm} of {xn} and y ∈ K such
that xm → y weakly. The weak continuity of I implies that y = Iy. Further,
‖Ixm − Txm‖ = ‖((1 − km)q + kmTxm) − Txm‖ = (1 − km)(q − Txm) con-
verges to 0, as xm is bounded and km → 1. The demiclosedness of I − T at 0
implies that Iy = Ty. Thus K ∩ F(I) ∩ F(T) 6= ∅.

(iii) As in (ii), we can find a subsequence {xm} of {xn} in F(I) converging
weakly to y ∈ F(I) as m → ∞. Since T is completely continuous, Txm

→ Ty as m → ∞. Since km → 1, xm = Tmxm = km f xm + (1 − km)q → Ty as
m → ∞. Thus Txm → T2y and consequently T2y = Ty implies that Tw = w,
where w = Ty. Also, since y ∈ F(I), we have Iw = ITy = TIy = Ty = w.
Hence K ∩ F(I) ∩ F(T) 6= ∅.

Taking ϕj(t) = t; (j = 1, 2, 3, 4, 5), in Theorem 2.4, we obtain;

Corollary 2.5 ([25], Theorem 2.2 ). Let K, X, I and T and F(I) be as in Theorem
2.4. If (T, I) is a Banach operator pair and satisfies, for each x, y ∈ K,

‖Tx − Ty‖ ≤ max{‖Ix − Iy‖, dist(Ix, [Tx, q]), dist(Iy, [Ty, q]),

dist(Ix, [Ty, q]), dist(Iy, [Tx, q])},
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then K ∩ F(I) ∩ F(T) 6= ∅, provided one of the conditions (i)–(iii) in Theorem 2.4
holds.

Theorem 2.4 and Corollary 2.5 extend and improve Theorem 2.2 of [2], The-
orems 3.2-3.3 of [5], Theorem 4 in [9] and Theorem 6 of [20]. A comparison of
Theorem 2.4 (ii) with Theorem 3.2 in [5] indicates that, the conditions M is q-
starshaped, M is weakly compact and I is continuous are dropped and T is not
necessarily I-nonexpansive.

For k ≥ 0, let Dk,I
M (u)=PM(u)∩ Gk,I

M (u), where Gk,I
M (u)={x ∈ M : ‖Ix − u‖ ≤

(2k + 1)dist(u, M)}.

Theorem 2.6. Let M be subset of a normed space X and T, I : X → X be
mappings such that u ∈ F(I) ∩ F(T) for some u ∈ X and T(∂M ∩ M) ⊂ M.

Suppose that Dk,I
M (u) ∩ F(I) is closed and q-starshaped and I(Dk,I

M (u)) = Dk,I
M (u).

If the pair (T, I) satisfies;

(a) ‖ITx − Tx‖ ≤ k‖Ix − x‖ for all x ∈ D
k,g
M (u) and k ≥ 0

(b) for all x ∈ Dk,I
M (u) ∪ {u},

‖Tx − Ty‖ ≤


















‖Ix − Iu‖ if y = u,

max{ϕ1(‖Ix − Iy‖), ϕ2(dist(Ix, [Tx, q])),

ϕ3(dist(Iy, [Ty, q])), ϕ4(dist(Ix, [Ty, q])),

ϕ5(dist(Iy, [Tx, q]))} if y ∈ Dk,I
M (u),

(2.6)

where ϕj : [0, +∞) → [0, +∞) (j = 1, 2, 3, 4, 5) are real functions which are
continuous from the right and each has the properties (1)-(2) in Theorem 2.4,
then PM(u) ∩ F(I) ∩ F(T) 6= ∅, provided one of the following conditions is
satisfied;

(i) cl(T(Dk,I
M (u))) is compact, and T is continuous,

(ii) X is complete, wcl(T(Dk,I
M (u))) is weakly compact, I is weakly continuous

and I − T is demiclosed at 0,

(iii) X is complete, cl(T(Dk,I
M (u))) is weakly compact, I is weakly continuous

and T is completely continuous.

Proof. Let x ∈ D
I,g
M (u). Then x ∈ PM(u) and hence ‖x − u‖ = dist(u, M). Note

that for any t ∈ (0, 1),

‖tu + (1 − t)x − u‖ = (1 − t)‖x − u‖ < dist(u, M).

It follows that the line segment {tu + (1 − t)x : 0 < k < 1} and the set M are
disjoint. Thus x is not in the interior of M and so x ∈ ∂M∩ M. Since T(∂M∩ M) ⊂
M, Tx must be in M. Also since Ix ∈ PM(u), u ∈ F(T) ∩ F(I) and T and I satisfy
(2.6) we have

‖Tx − u‖ = ‖Tx − Tu‖ ≤ ‖Ix − Iu‖ = ‖Ix − u‖ = dist(u, M).
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Thus Tx ∈ PM(u). From inequality in (a) and (2.6), it follows that,

‖ITx − u‖ = ‖ITx − Tx + Tx − u‖
≤ ‖ITx − Tx‖ + ‖Tx − u‖
≤ k‖Ix − x‖ + ‖Tx − u‖
= k‖Ix − u + u − x‖+ ‖Tx − u‖
≤ k(‖Ix − u‖ + ‖x − u‖) + ‖Tx − u‖
≤ k(dist(u, M) + dist(u, M)) + dist(u, M)

≤ (2k + 1)dist(u, M).

Thus Tx ∈ Gk,I
M (u). Consequently, T(Dk,I

M (u)) ⊂ Dk,I
M (u)=I(Dk,I

M (u)). Inequality
in (a) also implies that (T, I) is a Banach operator pair. Now by Theorem 2.4 we
obtain, PM(u) ∩ F(T) ∩ F(I) 6= ∅ in each of the cases (i)-(iii).

Let CI
M(u) = {x ∈ M : Ix ∈ PM(u)}. Then I(PM(u)) ⊂ PM(u) implies PM(u) ⊂

CI
M(u) ⊂ Gk,I

M (u) and hence Dk,I
M (u) = PM(u). Consequently, Theorem 2.6 re-

mains valid when Dk,I
M (u) = PM(u) and the pair (T, I) is Banach operator on

PM(u) instead of satisfying (a), which in turn extends the results in [2, 5, 9, 13, 20,
21, 22, 27, 29, 31, 32].

We denote by ℑ0 (resp. ℑw
0 ) the class of closed (resp. weakly closed) convex

subsets of X containing 0 ([2, 19]). For M ∈ ℑ0, we define Mu = {x ∈ M : ‖x‖ ≤
2‖u‖}. It is clear that PM(u) ⊂ Mu ∈ ℑ0 whenever M ∈ ℑ0.

As an application of Theorem 2.4(i), we obtain the following generalization of
the corresponding results in [2, 28, 31, 32].

Theorem 2.7. Let I and T be self mappings of a normed space X with u ∈ F(T) ∩
F(I) and M ∈ ℑ0 such that T(Mu ) ⊂ I(M) = M. Suppose that ‖Ix − u‖ =
‖x − u‖ for all x ∈ M, ‖Tx − u‖ ≤ ‖Ix − u‖ for all x ∈ Mu, T is continuous on
Mu and one of the following two conditions is satisfied;

(a) cl I(Mu) is compact,

(b) clT(Mu) is compact.

Then

(i) PM(u) is nonempty, closed and convex,

(ii) T(PM(u)) ⊂ I(PM(u)) = PM(u),

(iii) PM(u)∩ F(T)∩ F(I) 6= ∅ provided F(I)∩ PM(u) is closed and q-starshaped
with q ∈ F(I) ∩ PM(u), the pair (T, I) is a Banach operator on PM(u) and
satisfies (2.5) for all q ∈ F(I) and for all x, y ∈ PM(u), where ϕj : [0, +∞) →
[0, +∞) (j = 1, 2, 3, 4, 5) are real functions which are continuous from the
right and each has the properties (1)-(2) in Theorem 2.4.

Proof. (i) We follow the arguments used in [19, 23]. We may assume that
u /∈ M. If x ∈ M \ Mu, then ‖x‖ > 2‖u‖. Note that

‖x − u‖ ≥ ‖x‖ − ‖u‖ > ‖u‖ ≥ dist(u, Mu).
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Thus, dist(u, Mu) =dist(u,M)≤ ‖u‖. Also ‖z− u‖ = dist(u, cl I(Mu)) for some
z ∈ cl I(Mu). This implies that

dist(u, Mu) ≤ dist(u, cl I(Mu)) ≤ dist(u, I(Mu)) ≤ ‖Ix − u‖ = ‖x − u‖,

for all x ∈ Mu. Hence ‖z − u‖ = dist(u, M) and so PM(u) is nonempty. Moreover,
this set is closed and convex. The same conclusion holds whenever clT(Mu) is
compact where we replace I by T and utilize inequalities ‖Tx − u‖ ≤ ‖Ix − u‖
and ‖Ix − u‖ = ‖x − u‖ to obtain that PM(u) is nonempty.

(ii) Let z ∈ PM(u). Then ‖Iz − u‖ = ‖Iz − Iu‖ ≤ ‖z − u‖ = dist(u, M). This
implies that Iz ∈ PM(u) and so I(PM(u)) ⊂ PM(u). For the converse assume that
y ∈ PM(u). Then y ∈ M = I(M). Thus there is some x ∈ M such that y = Ix. Now

‖x − u‖ = ‖Ix − u‖ = ‖y − u‖ = dist(u, M).

This implies that x ∈ PM(u) and so I(PM(u)) = PM(u).
Let y ∈ T(PM(u)). Since T(Mu) ⊂ I(M) and PM(u) ⊂ Mu, there exist z ∈ PM(u)
and x0 ∈ M such that y = Tz = Ix0. Further, we have

‖Ix0 − u‖ = ‖Tz − Tu‖ ≤ ‖Iz − Iu‖ = ‖Iz − u‖ = ‖z − u‖ = dist(u, M).

Thus, x0 ∈ CI
M(u) = PM(u) and so (ii) holds.

By our assumption there exists q ∈ PM(u) such that F(I) is q-starshaped with
q ∈ F(I). In both of the cases (a) and (b), clT(PM(u)) is compact by (ii). Hence
(iii) follows from Theorem 2.4(i).

The following result extends and improves Theorem 4.2 in [2], Theorem 8 in
[9], and Theorem 2.1 in [28]

Theorem 2.8. Let I and T be self mappings of a normed space X with
u ∈ F(I) ∩ F(T) and M ∈ ℑ0 such that T(Mu ) ⊂ I(M) ⊂ M. Suppose that
‖Ix − u‖ ≤ ‖x − u‖ and ‖Tx − u‖ ≤ ‖Ix − u‖ for all x ∈ Mu, T is continuous on
Mu and one of the following two conditions is satisfied;

(a) cl I(Mu) is compact,

(b) clT(Mu) is compact.

Then

(i) PM(u) is nonempty, closed and convex,

(ii) T(PM(u)) ⊂ I(PM(u)) ⊂ PM(u), provided that ‖Tx − u‖ = ‖x − u‖ for all
x ∈ CI

M(u), and

(iii) PM(u) ∩ F(T) ∩ F(I) 6= ∅ provided that ‖Tx − u‖ = ‖x − u‖ for all
x ∈ CI

M(u), F(I) ∩ PM(u) is closed and q-starshaped with q ∈ F(I) ∩ PM(u),
the pair (T, I) is a Banach operator on PM(u) and satisfies (2.5) for all
q ∈ F(I) and for all x, y ∈ PM(u), where ϕj : [0, +∞) → [0, +∞) (j = 1, 2, 3,
4, 5) are real functions which are continuous from the right and each has the
properties (1)-(2) in Theorem 2.4.
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Proof. (i) and (ii) follow as in Theorem 2.7.
By our assumption there exists q ∈ PM(u) such that F(I) is q-starshaped with
q ∈ F(I). In both of the cases (a) and (b), clT(PM(u)) is compact by (ii). Hence
(iii) follows from Theorem 2.4(i).

Theorem 2.9. Let I and T be self mappings of a Banach space X with u ∈ F(I) ∩
F(T) and M ∈ ℑw

0 such that T(Mu) ⊆ I(M) ⊆ M. Suppose that wcl(I(Mu)) is
weakly compact, ‖Ix − u‖ = ‖x − u‖ for all x ∈ Mu, I is weakly continuous on
Mu, T satisfies ‖Tx − u‖ ≤ ‖Ix − u‖ for all x ∈ Mu and I − T is demiclosed at 0.
Then

(i) PM(u) is nonempty, closed and convex,

(ii) T(PM(u)) ⊆ I(PM(u)) ⊆ PM(u), provided that ‖Ix − u‖ = ‖x − u‖ for all
x ∈ CI

M(u), and

(iii) PC(u) ∩ F(I) ∩ F(T) 6= ∅ provided that ‖Ix − u‖ = ‖x − u‖ for all
x ∈ CI

M(u), F(I) ∩ PM(u) is closed and q-starshaped with q ∈ F(I) ∩ PM(u),
(T, I) is a Banach operator pair on PM(u) and T satisfies (2.5) for all
q ∈ F(I)∩ PM(u), and x, y ∈ PM(u), where ϕj : [0, +∞) → [0, +∞) (j = 1, 2,
3, 4, 5) are real functions which are continuous from the right and each has
the properties (1)-(2) in Theorem 2.4.

Proof. To obtain the result, use an argument similar to that in Theorem 2.7 and
apply Theorem 2.4(ii) instead of Theorem 2.4(i). Use Lemma 5.5 in ([30], p. 192)
with f (x) = ‖x − u‖ and C = wcl(I(Mu)) to show that there exists a z ∈ C such
that dist(u, C) = ‖z − u‖.

Following results are the consequences of Theorems 2.1 and 2.2 respectively
in [11](see also [1]).

Theorem 2.10. Let K be a subset of a metric space (X, d), and T be a self mapping
of K. Assume that cl(T(K)) ⊂ K, cl(T(K)) is complete, and there exists a continu-
ous nondecreasing function ϕ : [0, ∞) → [0, ∞) satisfying φ(t) < t for t > 0 such
that

d(Tx, Ty) ≤ ϕ(max{d(x, y), d(x, Tx), d(y, Ty),
1

2
[d(y, Tx) + d(x, Ty)]})

Then F(T) is a singleton.

Theorem 2.11. Let K, X, and T be as in Theorem 2.10 and there exists a continu-
ous function ϕ : [0, ∞) → [0, ∞) satisfying φ(t) < t for t > 0 such that

d(Tx, Ty) ≤ ϕ(max{d(x, y), d(x, Tx), d(y, Ty)})

Then F(T) is a singleton.

The proof of the following lemma is similar to that of Corollary 2.3; here in-
stead of applying Theorem 2.1, we apply Theorem 2.10 or Theorem 2.11 to get the
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conclusion.

Lemma 2.12. Let (X, d) be a metric space, K be a nonempty subset of X, T,
I : K → K be mappings satisfying the following contraction-type condition

d(Tx, Ty) ≤ ϕ(max{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty),
1

2
[d(Iy, Tx) + d(Ix, Ty)]})

(2.7)
(

or d(Tx, Ty) ≤ ϕ(max{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty)})
)

(2.8)

on K where ϕ : [0, +∞) → [0, +∞) is nondecreasing (or continuous) function sat-
isfying φ(t) < t for t > 0. Suppose that (T, I) is a Banach operator pair, cl(T(K))
is complete, F(I) is nonempty and closed, then T and I have a unique common
fixed point in K.

As an application of Lemma 2.12, we obtain the following generalizations of
the corresponding results in [2, 9, 5, 20, 21, 27, 29, 31, 32].

Theorem 2.13. Let K be a nonempty subset of a normed space X and I and T be
self mappings of K. Suppose that F(I) is closed and q-starshaped with q ∈ F(I).
If (T, I) is a Banach operator pair and satisfies, for each x, y ∈ K,

‖Tx − Ty‖ ≤ ϕ
(

max{‖Ix − Iy‖, dist(Ix, [q, Tx]), dist(Iy, [q, Ty]),

1

2
[dist(Ix, [q, Ty]) + dist(Iy, [q, Tx])}

)

, (2.9)

where ϕ : [0, +∞) → [0, +∞) is nondecreasing function satisfying for each k ∈
(0, 1), φ(t) <

t
k for t > 0, then K∩ F(I)∩ F(T) 6= ∅, provided one of the following

conditions holds;

(i) cl(T(K)) is compact and T is continuous,

(ii) X is complete, wclT(K) is weakly compact, I is weakly continuous and I −T
is demiclosed at 0,

(iii) X is complete, wclT(K) is weakly compact, I is weakly continuous and T is
completely continuous.

Proof. Define Tn as in the proof of Theorem 2.4. As (T, I) is a Banach operator
pair, for x ∈ F(I) we have Tx ∈ F(I), and hence Tnx = (1 − kn)q + knTx ∈ F(I)
by the fact that F(I) is q-starshaped with q ∈ F(I). Thus for each n ≥ 1, (Tn, I) is
a Banach operator pair on F(I). Let ϕn := kn ϕ. Then by (2.9),

‖Tnx − Tny‖ = kn‖Tx − Ty‖
≤ kn

(

ϕ(max{‖Ix − Iy‖, dist(Ix, [q, Tx]), dist(Iy, [q, Ty]),

1

2
[dist(Ix, [q, Ty]) + dist(Iy, [q, Tx])})

)

≤ ϕn(max{‖Ix − Iy‖, ‖Ix − Tnx‖, ‖Iy − Tny‖,

1

2
[‖Ix − Tny‖ + ‖Iy − Tnx‖}),
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for each x, y ∈ K. The analysis in Theorem 2.4 (using Lemma 2.12 above) guar-
antees that there exists xn ∈ K such that xn = Ixn = Tnxn. Rest of the proof is
similar to that of Theorem 2.4 and so is omitted.

Theorem 2.14. Let I and T be self mappings on a nonempty subset K of a normed
space X. Suppose that F(I) is closed and q-starshaped with q ∈ F(I). If (T, I) is a
Banach operator pair and satisfies, for each x, y ∈ K,

‖Tx − Ty‖ ≤ ϕ(‖Ix − Iy‖) (2.10)

where ϕ : [0, ∞) → [0, ∞) is continuous function satisfying, for each k ∈ (0, 1)
ϕ(t) <

t
k for t > 0, then K ∩ F(T) ∩ F(I) 6= ∅, provided one of the following

conditions holds;

(i) cl(T(K)) is compact and T is continuous,

(ii) X is complete, wclT(K) is weakly compact, I is weakly continuous and ei-
ther I − T is demiclosed at 0 or X satisfies Opial’s condition

(iii) X is complete, wclT(K) is weakly compact and T is completely continuous.

Proof. Proofs of (i) and (iii) are similar to the proofs of Theorem 2.13(i) and (iii),
respectively.

(ii) The analysis in Theorem 2.13, and the completeness of wcl(Tn(K)) guaran-
tee that there exists xn ∈ K such that xn = Ixn = Tnxn. The weak compactness of
wcl(T(K)) implies that there exists a subsequence {xm} of {xn} such that xm → y
weakly as m → ∞. As I is weakly continuous, Iy = y. Since {xm} is bounded,
km → 1, and

‖xm − Txm‖ = ‖Ixm − Txm‖ = ‖((1 − km)q + kmTxm)− Txm‖
≤ (1 − km)(‖q‖ + ‖Txm‖),

so ‖xm − Txm‖ → 0 as m → ∞. If I − T is demiclosed at 0, (I − T)y = 0 and
hence y = Iy = Ty.
Suppose that X satisfies Opial’s condition. If y 6= Ty, then

lim inf
m→∞

‖xm − y‖ < lim inf
m→∞

‖xm − Ty‖
≤ lim inf

m→∞
‖xm − Txm‖+ lim inf

m→∞
‖Txm − Ty‖

= lim inf
m→∞

‖Txm − Ty‖ ≤ lim inf
m→∞

ϕ(‖Ixm − Iy‖)

< lim inf
m→∞

1

km
‖xm − y‖

= lim inf
m→∞

‖xm − y‖

which is a contradiction. Thus Iy = y = Ty and hence K ∩ F(I) ∩ F(T) 6= ∅.

For ϕ(t) = t, t ∈ [0, ∞), from Theorem 2.14 we obtain:
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Corollary 2.15 (see [5], Theorem 3.2-Theorem 3.3). Let I and T be self map-
pings on a q-starshaped subset K of a normed space X. Assume that (T, I) is a
Banach operator pair on K, F(I) is q-starshaped with q ∈ F(I), I is continuous,
T is I-nonexpansive. Then K ∩ F(T) ∩ F(I) 6= ∅, provided one of the following
conditions holds;

(i) cl(T(K)) is compact,

(ii) X is complete, I is weakly continuous, wcl(T(K)) is weakly compact and
either I − T is demiclosed at 0 or X satisfies Opial’s condition.

Remark 2.16. As an application of Theorems 2.13 and 2.14, the analogue of all
the approximation results (Theorem 2.6-Theorem 2.9) can be established for a Ba-
nach operator pair (T, I) satisfying inequality (2.9) or (2.10) with their respective
comparison functions ϕ.

Remark 2.17.

(i) Theorems 2.7-2.9 represent very strong variants of Theorem 2.4 [2] and The-
orem 2.1 [28] in the sense that the commutativity of the maps T and I is
replaced by the general hypothesis that (T, I) is a Banach operator pair,
I need not be linear or affine and T need not be I-nonexpansive. Fur-
ther, the comparison of Theorems 2.4-2.9 with the corresponding results in
[3, 9, 12, 13, 14, 19, 23, 24], indicates that the concept of a Banach operator
pair is more useful for the study of common fixed points in best approxima-
tion theory in the sense that here we are able to prove the results without
the linearity or affinity of I.

(ii) Banach operator pairs are different from those of weakly compatible, Cq-
commuting and R-subweakly commuting maps, so our results are differ-
ent from those in [3, 12, 13, 14, 19, 23]. Consider K = R

2 with the norm
‖(x, y)‖ = |x| + |y|, (x, y) ∈ K. Define T and I on K as follows:

T(x, y) =
(

x3 + x − 1,
3
√

x2 + y3 − 1

3

)

,

I(x, y) =
(

x3 + x − 1, 3

√

x2 + y3 − 1
)

.

Then

F(T) = {(1, 0)}; F(I) = {(1, y) : y ∈ R1};

C(T, I) = {(x, y) : y =
3
√

1 − x2, x ∈ R1};

T(F(I)) = {T(1, y) : y ∈ R1} = {(1,
y

3
) : y ∈ R1} ⊆ {(1, y) : y ∈ R1} = F(I).

Thus, (T, I) is a Banach operator pair. It is easy to see that T is I-contractive
(and hence I-nonexpansive) and that T and I do not commute on the set
C(T, I). Clearly, I is not affine or linear, F(I) is convex and (1, 0) is a com-
mon fixed point of T and I.
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(iii) Now we present a simple example which shows that Corollary 2.3 extends
and improves Lemma 3.1 of [5], Lemma 2.10 of [10], Theorem 1.1 and The-
orem 1 in [21].
Let K = [0, +∞) be the subset of reals with the usual metric d. Define

Tx =

√
x√

x + 1
for all x ∈ K,

Ix =
√

x for 0 ≤ x ≤ 1

2

Ix = (
√

2)x for x >
1

2

and

ϕ(t) =
t

t + 1
for all t ≥ 0.

Let x, y ∈ [0, 0.5]. Then

d(Tx, Ty) =

∣

∣

√
x −√

y
∣

∣

√
x +

√
y +

√
xy + 1)

≤
∣

∣

√
x −√

y
∣

∣

∣

∣

√
x −√

y
∣

∣ + 1
= ϕ(|Ix − Iy|).

Consider now the case x > 1/2 and y ∈ [0, 0.5]. Then |Ix − Iy| = (
√

2)x −√
y. Thus

d(Tx, Ty) =

√
x −√

y√
x +

√
y +

√
xy + 1)

≤
√

x −√
y√

x −√
y + 1

≤

(
√

2)x −√
y

(
√

2)x −√
y + 1

= ϕ(|Ix − Iy|).

Clearly, ϕ(t) is continuous, increasing and ϕ(t) < t for all t > 0. Also, (T, I)
is a Banach operator pair. Thus the mappings T and I satisfy all hypotheses
in Corollary 2.3 and have a unique common fixed point z = 0.

To see that Lemma 3.1 of [5] is not applicable, let y = 0 and 0 < x ≤ 1/2.
Then we have d(Tx, T0) = Tx =

√
x/(

√
x + 1),

max{d(Ix, I0), d(Ix, Tx), d(I0, T0), d(Ix, T0), d(I0, Tx)} =
√

x.

Thus, for any fixed λ < 1 and 0 < x < [(1 − λ)/λ]2 ,

d(Tx, T0) =

√
x√

x + 1
> λ ·

√
x = λ · max{d(Ix, I0), d(Ix, Tx),

d(I0, T0), d(Ix, T0), d(I0, Tx)}.

Therefore, the hypothesis

d(Tx, Ty) ≤ λ · max{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty), d(Ix, Ty), d(Iy, Tx)}

in Lemma 3.1 of [5] and Theorem 1.1 is not satisfied.
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