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Abstract

In this paper we investigate connections between the class of Cohen strongly
summing multilinear operators and other classes of multilinear mappings,
such as multiple summing and strongly summing mappings (in the sense of
Dimant). As a consequence of our results, we show that if Y is a Lp∗-space
and X1, ..., Xm are Lp-spaces (1 < p < ∞ and 1/p + 1/p∗ = 1), then every
multiple p∗-summing m-linear operator is strongly p∗-summing.

Introduction

The concept of absolutely summing linear operators goes back to Grothendieck
in the 1950s, but just in 1967 and 1968, the classical works of Pietsch [15] and Lin-
denstrauss and Pelczynski [7] clarified Grothendieck’s precious ideas and con-
tributed decisively to the vigorous development of the theory. Since Pietsch’s
paper [16] , several generalizations of absolutely summing operators to the mul-
tilinear setting have been investigated. For example, we can mention the classes
of multiple summing -also called fully summing - and strongly summing multi-
linear mappings. The class of multiple summing mappings was firstly vaguely
sketched by Ramanujan and Schock [17] , and introduced independently by Matos
[8] and Bombal, Pérez-Garcı́a and Villanueva [2, 14] , and exhaustively explored
in the recent years (we mention, for example, [9, 11, 13, 18] ). The class of strongly
summing multilinear operators was introduced by Dimant in [6]. In this paper
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we will be interested in connections between the classes of multiple summing,
strongly summing and Cohen strongly summing multilinear operators (this last
class was introduced by Achour and the first named author in [1] ).

The main goal of this paper is to translate, to the multilinear case, some results
obtained by Cohen in [5] for linear operators. As a consequence of our multilinear
results, we obtain a nice connection between the classes of multiple summing and
strongly summing multilinear operators (in the sense of Dimant). Precisely, our
main result states that if Y is a Lp∗-space and X1, ..., Xm are Lp- spaces (1 < p <

∞), then every multiple p∗-summing m-linear operator is strongly p∗-summing,
where p∗ is the conjugate of p. For other recent papers comparing different classes
of multilinear mappings related to summability, we refer to [3, 4, 12].

This paper is organized as follows.
In section 1, we recall some notion and properties concerning Banach spaces

and Lp,λ-spaces.
In section 2, motived by the work of Cohen, we establish the relation between

Cohen strongly m-linear and multiple p-summing m-linear operators acting on
Lp-spaces.

Section 3 and final section, contains the relationship between a multilinear
operator T and its adjoint T∗ for certain classes of summability. As consequence,
we compare the notion of Cohen strongly p-summing m-linear operators with
the concept of strongly p-summing m-linear operators, when the space Y∗ is an
Lp-space. We end this section and the paper by announcing our main result.

1 Notation and preliminaries

We shall begin this section by recalling briefly some basic notations and terminol-
ogy. Let X be a Banach space, then BX is its closed unit ball and X∗ its (topolog-
ical) dual. Consider 1 ≤ p ≤ ∞. We denote by lp (X) (resp. ln

p (X)) the Banach

space of all sequences (xi) in X with the norm

‖(xi)‖lp(X) = (
∞

∑
1
‖xi‖

p)
1
p < ∞

(resp.
∥∥(xi)1≤i≤n

∥∥
ln
p(X)

= (
n

∑
1
‖xi‖

p)
1
p )

and by lω
p (X) (resp. ln ω

p (X)) the Banach space of all sequences (xi) in X with the
norm

‖(xn)‖lω
p (X) = sup

x∗∈BX∗

(
∞

∑
1
|〈xi, x∗〉|p)

1
p < ∞

(resp. ‖(xn)‖ln ω
p (X) = sup

x∗∈BX∗

(
n

∑
1
|〈xi, x∗〉|p)

1
p ).

Let 1 ≤ p < ∞ and let λ > 1. A Banach space X is said to be an Lp,λ-
space if, every finite dimensional subspace E ⊂ X is contained in a finite dimen-
sional subspace F ⊂ X for which there is an isomorphism u : F −→ ldim F

p with

‖u‖
∥∥u−1

∥∥ < λ. We say that X is an Lp-space if it is an Lp,λ-space for some λ > 1.
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Let now m ∈ N and let X1, ..., Xm, Y be Banach spaces over K (K = R or C).
We will denote by L (X1, ..., Xm; Y) the space of all continuous m-linear operators
from X1× ...×Xm into Y. If Y = K, we write L (X1, ..., Xm). In the case X1 = ... =
Xm = X, we will simply write L (mX; Y).

We shall finish this section by announcing the definition of multilinear opera-
tors of finite type, as stated in [8].

Definition 1.1 [8]. An m-linear operator T ∈ L(X1, ..., Xm; Y) is said to be of finite
type if it is generated by the mappings of the form

Ty⊗m
j=1x∗j

= x∗1 ⊗ ...⊗ x∗m ⊗ y :
(

x1, ..., xm
)
→ x∗1

(
x1
)

...x∗m (xm) y (1.1)

for some non-zero x∗j ∈ X∗j (1 ≤ j ≤ m) and y ∈ Y.

The vector space of all m-linear operators of finite type is noted byL f (X1, ..., Xm; Y).

2 Multilinear operators on Lp,λ-spaces

The goal of this section is to study the relationship between the classes of Co-
hen strongly p-summing and multiple p-summing multilinear operators acting
on Lp-spaces. We prove that the Banach space Πm

p∗(X1, ..., Xm; Y) of all mul-

tiple p∗-summing m-linear operators from X1 × ... × Xm into Y is included in
Dm

p (X1, ..., Xm; Y), the space of all Cohen strongly p-summing m-linear operators,
where Xj (1 ≤ j ≤ m) is an Lp-space and Y is a Banach space.

The following class of multilinear operators was introduced in [1] as an exten-
sion of the strongly p-summing operators introduced by Cohen in [5]. But for the
convenience of the reader we start by recalling the linear case.

A linear operator T between two Banach spaces X, Y is strongly p-summing
for (1 < p ≤ ∞) if there is a positive constant C such that for all n ∈ N, x1, ..., xn ∈
X and y∗1 , ..., y∗n ∈ Y∗, we have

∥∥∥(〈T (xi) , y∗i 〉)1≤i≤n

∥∥∥
ln
1

≤ C ‖(xi)‖ln
p(X) sup

y∈BY

‖(y∗i (y))‖ln
p∗

. (2.1)

The smallest constant C which is noted by dp(u), such that the inequality (2.1)
holds, is called the strongly p-summing norm on the spaceDp(X, Y) of all strongly
p-summing linear operators from X into Y, which is a Banach space. We have
D1(X, Y) = B(X, Y).

Definition 2.1 [1]. Let 1 ≤ p < ∞. An m-linear operator T : X1 × ...× Xm −→ Y
(Xj, Y are arbitrary Banach spaces and m ∈ N∗) is Cohen strongly p-summing if, and

only if, there is a constant C > 0 such that for any x
j
1, ..., x

j
n ∈ Xj, (j = 1, ..., m) and any

y∗1 , ..., y∗n ∈ Y∗, we have

∥∥∥
(〈

T
(

x1
i , ..., xm

i

)
, y∗i

〉)∥∥∥
ln
1

≤ C(
n

∑
i=1

m

∏
j=1

∥∥∥x
j
i

∥∥∥
p

Xj

)
1
p sup

y∈BY

‖(y∗i (y))‖ln
p∗

. (2.2)
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The class of all Cohen strongly p-summing m-linear operators from X1 × ...×
Xm into Y, which is denoted byDm

p (X1, ..., Xm; Y) is a Banach space with the norm

dm
p (T) which is the smallest constant C such that the inequality (2.2) holds.

For p = ∞, (2.2) becomes

∥∥(〈T
(

x1
i , ..., xm

i

)
, y∗i
〉)∥∥

ln
1
≤ C sup

1≤i≤n

(
m

∏
j=1

∥∥∥x
j
i

∥∥∥
Xj

)
sup
y∈BY

∥∥(y∗i (y)
)∥∥

ln
1
.

The following characterization can be found in [1, Theorem 2.4].

Theorem 2.2. An m-linear operator T ∈ L(X1, ..., Xm; Y) is Cohen strongly p-
summing (1 < p ≤ ∞) if, and only if, there exists a positive constant C > 0 and
Radon probability measure µ on BY∗∗ such that for all (x1, ..., xm) ∈ X1 × ...× Xm and
y∗ ∈ Y∗, we have

∣∣∣
〈

T
(

x1, ..., xm
)

, y∗
〉∣∣∣ ≤ C

m

∏
j=1

∥∥∥xj
∥∥∥ (
∫

BY∗∗
|y∗(y∗∗)|p

∗

dµ(y∗∗))
1
p∗ . (2.3)

Moreover, in this case
dm

p (T) = inf {C > 0 : for all C verifying the inequality (2.3)} .

Before stating another definition, let us remark that the inequality (2.3) is
equivalent to: for every xj ∈ BXj

(1 ≤ j ≤ m) and every y∗ ∈ Y∗ we have

∣∣∣
〈

T
(

x1, ..., xm
)

, y∗
〉∣∣∣ ≤ C(

∫
BY∗∗
|y∗(y∗∗)|p

∗

dµ(y∗∗))
1
p∗ . (2.4)

Definition 2.3 [2, 14]. An m-linear operator T : X1 × ...× Xm −→ Y is multiple

p-summing (1 ≤ p < ∞), if there is a constant C > 0 such that for any x
j
1, ..., x

j
nj
∈ Xj

(j = 1, ..., m), we have

(
n1,...,nm

∑
i1,...,im=1

∥∥∥T
(

x1
i1

, ..., xm
im

)∥∥∥
p
)

1
p ≤ C

m

∏
j=1

∥∥∥∥
(

x
j
ij

)nj

ij=1

∥∥∥∥
l
nj ω

p (Xj)
. (2.5)

As usual Πm
p (X1, ..., Xm; Y) will stand for the Banach space of all multiple p-

summing m-linear operators from X1 × ...× Xm into Y with its norm πm
p (T) =

inf{C : C verifies (2.5)}.

Proposition 2.4. Let r1, ..., rm ∈ N∗ and 1 < p ≤ ∞ be given. Let T be a multi-
linear operator from lr1

p × ...× lrm
p into Y. Then, T belongs to Πm

p∗(lr1
p , ..., lrm

p ; Y) and to

Dm
p (lr1

p , ..., lrm
p ; Y) with

dm
p (T) ≤ πm

p∗ (T) .

Proof. Consider a multilinear operator T : lr1
p × ...× lrm

p → Y. It is clear that

T ∈ L f (X1, ..., Xm; Y). Thus we have obviously that T belongs to Πm
p∗(lr1

p , ..., lrm
p ; Y)

and toDm
p (lr1

p , ..., lrm
p ; Y). Let now

(
ekj

)rj

kj=1
be the standard basis in l

rj
p (1 ≤ j ≤ m).

Since T is multiple p∗-summing, we have
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(
r1,...,rm

∑
k1,...,km=1

∥∥T
(
ek1

, ..., ekm

)∥∥p∗
)

1
p∗

≤ πm
p∗ (T)

m

∏
j=1

sup∥∥∥x∗j

∥∥∥
l
r j
p∗

=1

(

rj

∑
kj=1

∣∣∣x∗j
(

ekj

)∣∣∣
p∗

)
1

p∗

≤ πm
p∗ (T) .

Let x
j
1, ..., x

j
n be in l

rj
p (1 ≤ j ≤ m) such that x

j
i =

rj

∑
kj=1

a
j
kj ,i

ekj
. Consider y∗1 , ..., y∗n in

Y∗. We have

n

∑
i=1

∣∣〈T
(

x1
i , ..., xm

i

)
, y∗i
〉∣∣

≤
n

∑
i=1

r1,...,rm

∑
k1,...,km=1

∣∣∣
〈

T
(

a1
k1 ,iek1

, ..., am
km,iekm

)
, y∗i

〉∣∣∣

≤
n

∑
i=1

r1,...,rm

∑
k1,...,km=1

∣∣∣a1
k1 ,i...a

m
km ,i

∣∣∣
∣∣〈T

(
ek1

, ..., ekm

)
, y∗i
〉∣∣ .

If 1 < p < ∞, we have by Hölder’s inequality (used twice)

n

∑
i=1

∣∣〈T
(

x1
i , ..., xm

i

)
, y∗i
〉∣∣

≤
n

∑
i=1

(
r1,...,rm

∑
k1 ,...,km=1

∣∣∣a1
k1 ,i...a

m
km ,i

∣∣∣
p
)

1
p (

r1,...,rm

∑
k1,...,km=1

∣∣〈T
(
ek1

, ..., ekm

)
, y∗i
〉∣∣p∗)

1
p∗

≤
n

∑
i=1

m

∏
j=1

∥∥∥x
j
i

∥∥∥ (
r1,...,rm

∑
k1,...,km=1

∣∣〈T
(
ek1

, ..., ekm

)
, y∗i
〉∣∣p∗)

1
p∗

≤ (
n

∑
i=1

m

∏
j=1

∥∥∥x
j
i

∥∥∥
p
)

1
p (

r1,...,rm

∑
k1,...,km=1

∥∥T
(
ek1

, ..., ekm

)∥∥p∗
)

1
p∗ sup

y∈BY

∥∥(y∗i (y)
)∥∥

ln
p∗

≤ πm
p∗ (T) (

n

∑
i=1

m

∏
j=1

∥∥∥x
j
i

∥∥∥
p
)

1
p sup

y∈BY

∥∥(y∗i (y)
)∥∥

ln
p∗

.

This implies that dm
p (T) ≤ πm

p∗ (T) . If p = ∞

n

∑
i=1

∣∣〈T
(

x1
i , ..., xm

i

)
, y∗i
〉∣∣

≤ sup
1≤i≤n

sup
k1,...,km

∣∣∣a1
k1,i...a

m
km ,i

∣∣∣ (
n

∑
i=1

r1,...,rm

∑
k1,...,km=1

∣∣〈T
(
ek1

, ..., ekm

)
, y∗i
〉∣∣)

≤ sup
1≤i≤n

m

∏
j=1

∥∥∥x
j
i

∥∥∥
l
rj
∞

(
r1,...,rm

∑
k1 ,...,km=1

∥∥T
(
ek1

, ..., ekm

)∥∥)sup
y∈BY

∥∥(y∗i (y)
)∥∥

ln
1

≤ πm
1 (T) sup

1≤i≤n

m

∏
j=1

∥∥∥x
j
i

∥∥∥
l
ri
∞

sup
y∈BY

∥∥(y∗i (y)
)∥∥

ln
1

.

We obtain, dm
∞ (T) ≤ πm

1 (T). This completes the proof.



6 L. Mezrag – K. Saadi

The following theorem is the principal result of this section.

Theorem 2.5. Fix m ∈ N∗. Let 1 < p ≤ ∞ and let Xj (1 ≤ j ≤ m) be an
Lp,λ-space. Then

Πm
p∗ (X1, ..., Xm; Y) ⊂ Dm

p (X1, ..., Xm; Y) and dm
p (T) ≤ πm

p∗ (T) λm.

Proof. Let n ∈ N∗,x
j
1, ..., x

j
n be in Xj and T ∈ Πm

p∗ (X1, ..., Xm; Y). Since Xj is an

Lp,λ-space, then there exists a finite dimensional subspace Mj ⊂ Xj which con-

tains the linear subspace spanned by x
j
1, ..., x

j
n and an invertible operator Sj : l

rj
p →

Mj (dim Mj = rj) such that
∥∥Sj

∥∥
∥∥∥S−1

j

∥∥∥ ≤ λ. Consider the following diagram

X1 ×...× Xm
T
−→ Y

↑ i1 ↑ im T̃ ↑
M1 ×...× Mm ←−

(S1,...,Sm)
lr1
p ×...× lrm

p

↑ k1 ↑ km

span
{

x1
1, ..., x1

n

}
×...× span

{
xm

1 , ..., xm
n

}

where ij and kj are the canonical inclusion mappings and the operator T̃ is defined

by the equality T̃ = T (i1 ◦ S1, ..., im ◦ Sm) . Since T ∈ Πm
p∗ (X1, ..., Xm; Y), it follows

that πm
p∗

(
T̃
)
≤ πm

p∗ (T)
m

∏
j=1

∥∥Sj

∥∥ ∥∥ij

∥∥ . Therefore, using Proposition 2.4, we have

that T̃ ∈ Dm
p

(
lr1
p , ..., lrm

p ; Y
)

and dm
p

(
T̃
)
≤ πm

p∗

(
T̃
)
≤ πm

p∗ (T)
m

∏
j=1

∥∥Sj

∥∥ . If we let

z
j
i = S−1

j x
j
i in l

rj
p and y∗1 , ..., y∗n in Y∗, we have

n

∑
i=1

∣∣〈T
(

x1
i , ..., xm

i

)
, y∗i )

〉∣∣

=
n

∑
i=1

∣∣∣
〈

T̃
(
z1

i , ..., zm
i

)
, y∗i )

〉∣∣∣

≤ dm
p

(
T̃
)

(
n

∑
i=1

m

∏
j=1

∥∥∥z
j
i

∥∥∥
p

l
rj
p

)
1
p sup

y∈BY

∥∥(y∗i (y)
)∥∥

ln
p∗

≤ πm
p∗ (T)

m

∏
j=1

∥∥Sj

∥∥ (
n

∑
i=1

m

∏
j=1

∥∥∥z
j
i

∥∥∥
p

l
rj
p

)
1
p sup

y∈BY

∥∥(y∗i (y)
)∥∥

ln
p∗

.

Since z
j
i = S−1

j x
j
i , we obtain

n

∑
i=1

∣∣〈T
(

x1
i , ..., xm

i

)
, y∗i )

〉∣∣

≤ πm
p∗ (T) λm(

n

∑
i=1

m

∏
j=1

∥∥∥x
j
i

∥∥∥
p

Xj

)
1
p sup

y∈BY

∥∥(y∗i (y)
)∥∥

ln
p∗

.

Therefore, T belongs to Dm
p (X1, ..., Xm; Y) and
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dm
p (T) ≤ πm

p∗ (T) λm

which finishes the proof.

3 Comparison of Dm
p (X1, ..., Xm; Y) and L

p
s (X1, ..., Xm; Y)

In [8], the adjoint of an m-linear operator is defined as follows: let X1, ..., Xm, Y be
Banach spaces. If T ∈ L(X1, ..., Xm; Y), we define the adjoint of T by

T∗ : Y∗ → L(X1, ..., Xm), y∗ → T∗ (y∗) : X1 × ...× Xm → K (3.1)

with T∗ (y∗)
(

x1, ..., xm
)

= y∗
(
T
(

x1, ..., xm
))

(K = R or C). A natural question
is to study the connection between multilinear operators and their adjoints for
different classes of summability. If X1, ..., Xm are L∞-spaces, Y is an infinite-
dimensional Hilbert space and T ∈ L(X1, ..., Xm; Y), Pellegrino and Souza [10,
Theorem 2.4] have shown that if T∗ is almost summing, then T is absolutely (1, 2)-
summing multilinear operator. Here, we show that, T belongs to the class of Co-
hen strongly p-summing m-linear operators if, and only if, its adjoint T∗ belongs
to the class of absolutely p∗-summing linear operators. On the other hand, if T∗

is strongly p∗-summing linear operator then T is strongly p-summing m-linear
operator. As consequence, if Y is a Banach space such that Y∗ is an Lp-space

then, the space Dm
p (X1, ..., Xm; Y) is included in L

p∗

s (X1, ..., Xm; Y), the space of all
strongly p∗-summing m-linear operators, which we define below.

In the next result, we characterize the class of Cohen strongly m-linear oper-
ators by using the adjoint operator like that given by Cohen in the linear case
[5].

Theorem 3.1. Let 1 < p ≤ ∞. Let T ∈ L (X1, ..., Xm; Y) and T∗ its adjoint.
Then T belongs to Dm

p (X1, ..., Xm; Y) if, and only if, T∗ belongs to πp∗(Y∗,L(X1, ...,

Xm)) and we have dm
p (T) = πp∗ (T∗) .

Proof. Suppose that T ∈ Dm
p (X1, ..., Xm; Y). By (2.3) we have

∣∣〈T
(

x1, ..., xm
)

, y∗
〉∣∣ ≤ dm

p (T)
m

∏
j=1

∥∥xj
∥∥ (
∫

BY∗∗
|y∗∗(y∗)|p

∗

dµ(y∗∗))
1
p∗

for all xj ∈ Xj (1 ≤ j ≤ m) and y∗ ∈ Y∗. Taking the supremum over all sequences(
xj
)

1≤j≤m
with

∥∥xj
∥∥ ≤ 1, we obtain

sup
‖x1‖,...,‖xm‖≤1

∣∣T∗ (y∗)
(

x1, ..., xm
)∣∣ ≤ dm

p (T) (
∫

BY∗∗
|y∗∗(y∗)|p

∗

dµ(y∗∗))
1
p∗ .

Then

‖T∗ (y∗)‖ ≤ dm
p (T) (

∫
BY∗∗
|y∗∗(y∗)|p

∗

dµ(y∗∗))
1
p∗ .
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By Pietsch Domination Theorem, T∗ ∈ πp∗ (Y∗,L (X1, ..., Xm)) and we have
πp∗ (T∗) ≤ dm

p (T) .

To prove the converse, suppose that T∗ ∈ πp∗ (Y∗,L (X1, ..., Xm)). We have
∣∣〈T

(
x1, ..., xm

)
, y∗
〉∣∣ =

∣∣T∗ (y∗)
(

x1, ..., xm
)∣∣

≤ ‖T∗ (y∗)‖
m

∏
j=1

∥∥xj
∥∥ .

Using Pietsch Domination Theorem for p∗-summing linear operators, we obtain

∣∣〈T
(

x1, ..., xm
)

, y∗
〉∣∣ ≤ πp∗ (T∗)

m

∏
j=1

∥∥xj
∥∥ (
∫

BY∗∗
|y∗∗(y∗)|p

∗

dµ(y∗∗))
1
p∗ .

Thus by (2.3) T is Cohen strongly p-summing and dm
p (T) ≤ πp∗ (T∗).

We also need the definition of strongly p-summing multilinear operators in-
troduced by Dimant in [6].

Definition 3.2 [6]. Let 1 ≤ p ≤ ∞ and T ∈ L (X1, ..., Xm; Y) . The operator T is

strongly p-summing if there exists a positive constant C such that for every x
j
1, ..., x

j
n ∈

Xj (j = 1, ..., m) we have

(
n

∑
i=1

∥∥∥T
(

x1
i , ..., xm

i

)∥∥∥
p
)

1
p ≤ C sup

Φ∈BL(X1,...,Xm)

(
n

∑
i=1

∣∣∣Φ
(

x1
i , ..., xm

i

)∣∣∣
p
)

1
p . (3.1)

The class of all strongly p-summing m-linear operators from X1 × ...× Xm into
Y, which is denoted by L

p
s (X1, ..., Xm; Y) is a Banach space with the norm ‖T‖ss,p

which is the smallest constant C such that the inequality (3.1) holds.

We add that, this definition does not coincide with Cohen’s concept for m = 1.
This kind of multilinear operators verify some analogous properties of those

in the linear case, in particular the Pietsch Domination Theorem.

Theorem 3.3 [6, Proposition 1.2]. Let T ∈ L (X1, ..., Xm; Y). The following asser-
tions are equivalent.
(i) The operator T is strongly p-summing.
(ii) There exist a regular probability measure µ on (BL(X1,...,Xm), ω∗) and a constant

C > 0 such that for every
(

x1, ..., xm
)

in X1 × ...× Xm, we have
∥∥∥T
(

x1, ..., xm
)∥∥∥ ≤ C(

∫
BL(X1,...,Xm)

∣∣∣Φ
(

x1, ..., xm
)∣∣∣

p
dµ (Φ))

1
p . (3.2)

We have the following result.

Theorem 3.4. Let 1 < p ≤ ∞. If T ∈ L (X1, ..., Xm; Y) is such that T∗ is a
Cohen strongly p∗-summing linear operator, then T is strongly p-summing multilinear
operator.

Proof. Suppose that T∗ is strongly p∗-summing linear operator. We have by
(2.1)
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∣∣∣∣∣
n

∑
i=1

〈
T∗
(
y∗i
)

, z∗i
〉
∣∣∣∣∣ ≤ dp∗ (T∗) (

n

∑
i=1

∥∥y∗i
∥∥p∗

)
1

p∗ sup
Φ∈BL(X1,...,Xm)

(
n

∑
i=1

∣∣z∗i (Φ)
∣∣p)

1
p .

Let now x
j
1, ..., x

j
n ∈ Xj (1 ≤ j ≤ m). We consider the linear operator Tx1

i ,...,xm
i

:

L (X1, ..., Xm)→ K defined by

Tx1
i ,...,xm

i
(Φ) = Φ

(
x1

i , ..., xm
i

)
.

We obtain
∣∣∣∣∣

n

∑
i=1

〈
T
(

x1
i , ..., xm

i

)
, y∗i
〉
∣∣∣∣∣

=

∣∣∣∣∣
n

∑
i=1

〈
T∗
(
y∗i
)

, Tx1
i ,...,xm

i

〉∣∣∣∣∣

≤ dp∗ (T∗)

(
n

∑
i=1

∥∥y∗i
∥∥p∗
) 1

p∗

sup
Φ∈BL(X1,...,Xm)

(
n

∑
i=1

∣∣∣Tx1
i ,...,xm

i
(Φ)

∣∣∣
p
)

1
p

= dp∗ (T∗)

(
n

∑
i=1

∥∥y∗i
∥∥p∗
) 1

p∗

sup
Φ∈BL(X1,...,Xm)

(
n

∑
i=1

∣∣Φ
(

x1
i , ..., xm

i

)∣∣p)
1
p .

Taking the supremum over all sequences
(
y∗i
)

1≤i≤n
with (

n

∑
1

∥∥y∗i
∥∥p∗

)
1

p∗ ≤ 1, we

obtain

(
n

∑
i=1

∥∥T
(

x1
i , ..., xm

i

)∥∥p
)

1
p

= sup

{∣∣∣∣∣
n

∑
i=1

〈
T
(

x1
i , ..., xm

i

)
, y∗i
〉
∣∣∣∣∣ : (

n

∑
1

∥∥y∗i
∥∥p∗

)
1

p∗ ≤ 1

}

≤ dp∗ (T∗) sup
Φ∈BL(X1,...,Xm)

(
n

∑
i=1

∣∣Φ
(

x1
i , ..., xm

i

)∣∣p)
1
p .

Then, T is strongly p-summing and we have ‖T‖ss,p ≤ dp∗ (T∗).

Finally, if Y∗ is an Lp-space we can give the following comparison between
the classes of Cohen strongly p-summing and strongly p-summing m-linear op-
erators.

Corollary 3.5. Let 1 < p ≤ ∞. If Y∗ is an Lp-space then

Dm
p (X1, ..., Xm; Y) ⊂ L

p∗

s (X1, ..., Xm; Y).

Proof. Let T ∈ Dm
p (X1, ..., Xm; Y). From Theorem 3.1, we know that T∗ is

p∗-summing. Since Y∗ is an an Lp-space, from [5, Theorem 3.2.3] we conclude
that T∗ is (Cohen) strongly p-summing. According to Theorem 3.4, we obtain

T ∈ L
p∗

s (X1, ..., Xm; Y).
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Our main result is the following corollary, that is a straightforward conse-
quence of Corollary 3.5 and Theorem 2.5.

Corollary 3.6. Let 1 < p < ∞. Suppose that Xj (1 ≤ j ≤ m) is an Lp-space and Y
is an Lp∗-space. Then

Πm
p∗(X1, ..., Xm; Y) ⊂ L

p∗

s (X1, ..., Xm; Y).
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