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Abstract

We are interested in the asymptotic study of canard solutions in real sin-
gularly perturbed first order ODE of the form εu′ = Ψ(x, u, a, ε), where ε > 0
is a small parameter, and a ∈ R is a real control parameter. An operator Ξη

was defined to prove the existence of canard solutions. This demonstration
allows us to conjecture the existence of a generalized asymptotic expansion in
fractional powers of ε for those solutions. In this note, we propose an algo-
rithm that computes such an asymptotic expansions for the canard solution.
Furthermore, those asymptotic expansions remain uniformly valid.

Introduction

In what follows, we consider equations

εy′ = Ψ(x, y, a, ε)

where Ψ is C∞, x ∈ I ⊂ R, a is a real control parameter, y is a real function of the
variables x and ε, and ε ∈]0, ε0[ is a small real parameter which is tending to 0.
It is proved [8] (or see [9][7]) that, under assumptions, canard solutions exists in the
general equation

ηp+1u̇ = (p + 1)tpu + αtL + S(t, α) + ηp+1P (t, u, α, η) (1)

with t ∈ [−t0, t0], α ∈ R, u is a real function of the variables x and η, η = ε1/(p+1) ∈
]0, η0[, p is odd, L < p is even, and where the functions S and P are C∞ in their
variables. Furthermore, the function S is such that S(t, 0) = 0, and each of its
monomial term has a valuation, with pounds 1 for t and p − L + 1 for α, strictly
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bigger than p + 1.

As, for each fixed couple (β, v), the system





ηp+1u̇ = (p + 1)tpu + αtL + S(t, α) + ηp+1P (t, v, β, η)

u(−t0, η) = 0 = u(t0, η)

has a solution (α, u), we can define an operator Ξη : (β, v) 7→ (α, u) which was
proved [9][7] to be a contraction with Lipschitz constant equals to Oη→0(η).
Consequently, the fixed point theorem implies the existence of a canard solution for
this system. By iteration, a sequence ((a(n), u(n)))n which converges to the expected
canard solution (a∗, u∗) [6][2][13] can be defined. Commentaries on this result can
be found in the references mentionned below.
This result was already proved in a more general form, by using different methods
[10][4][3].
This result brings us to suppose that an asymptotic expansion in the powers of η

for the canard solution exists.

In this note, an algorithm that computes an asymptotic expansion in the powers of
η for the canard solutions is proposed. We recall that those kind of expansions are
series

∑
k ukη

k such that

∀K ∈ N,

∣∣∣∣∣

∣∣∣∣∣u
∗(., η) −

K−1∑

k=0

ukη
k

∣∣∣∣∣

∣∣∣∣∣ = Oη→0

(
ηK
)

where the coefficients uk have to be detailed. A formal substitution of this kind of
expansion in the studied equation implies that the coefficients uk cannot simply be
functions which are C∞ on the variable t. In order to introduce a dependency on η

in the coefficient uk, we fixed a family of functions ϕ, such that the coefficients uk

are C∞ functions of the variables x and ϕ.

A first application is proposed in the case of an attractive slow curve (p = 0), to
study the solutions with a boundary layer. We retrieve the so-called Combined
Asymptotic Expansions [11][1] for those kind of solutions.
In the case p = 1, this method led to the existence of an asymptotic expansion in
the powers of η with regular coefficients in t, which is a well-known result [5] too.
When p > 1, this method gives the existence of such expansions. Unfortunately
question of uniqueness is not solved in the general case. It is due to the interactions
between the functions of the family ϕ that are not sufficiently controlled. This last
point will be the subject of a future paper to appear, but remains readable in our
PhD work (in french).

1 The formal theorem

This section is dedicated to the demonstration of the formal equivalent of the theo-
rem mentionned in the introduction.

In this section, we give a sequence ((Ak, πk))k such that, for all k ∈ N, Ak is a vector



Asymptotic study of planar canard solutions 811

space, and πk is a linear application defined from Ak+1 to Ak which is surjective.
Furthermore, we adopt the notations A−1 := {0} and π−1 = 0.

The study of the set

Â := {(ak)k : ∀k ∈ N, ak ∈ Ak and ak = πk(ak+1)}

and of the functions π̂k defined, for all k, by π̂k((ai)i∈N) := ak gives the following
theorem.

Theorem 1. (Â, (π̂k)k) is a projective limit of the system ((Ak, πk))k

We recall that this property means that for every space E which has a given sequence
of functions (σk)k which satisfies to

∀k, σk : E → Ak , and πk ◦ σk+1 = σk

there exists a morphism χ : E → Â such that the following diagram is commutative:

E

?

χ

Â

... - Ak+1
-

πk
Ak

- ...

Z
Z

Z
Z

Z
Z~

σk+1

PPPPPPPPPPPPPq

σk

�
�

�
�

�
�>

π̂k+1

�������������1

π̂k

We consider a sequence of functions (Ξk)k where, for all k ∈ N, Ξk : Ak → Ak.

Definition 1. This sequence is said to be compatible if, for all k ∈ N, the following
diagram is commutative:

· · · -

· · · -

Ak+1
-

πk
Ak

?

Ξk+1

?

Ξk

Ak+1
-

πk
Ak

· · ·-

· · ·-

Proposition 1. If (Ξk)k is compatible, then there exists a function Ξ̂ : Â → Â
such that, for all k ∈ N, the following diagram is commutative:

Â -
π̂k

Ak

?

Ξ̂
?

Ξk

Â -
π̂k

Ak

The function Ξ̂ is called formal operator.
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Remark: Ξ̂ might be defined by Ξ̂((ak)k) := (Ξk(ak))k.

We consider, for all (â, b̂) ∈ Â2, the distance

d(â, b̂) := inf
{

1

2k
; π̂k(â) = π̂k(b̂)

}

As the set {k; π̂k(â) = π̂k(b̂)} is a real interval which contains −1, d is well defined.

The study of the metric space (Â, d) gives the following results:

Proposition 2. If the sequence of functions (Ξk)k is compatible, then the associated
formal operator Ξ̂ is an 1-Lipschitz function (so is continuous).
Reciprocally each given operator Ξ̂ : Â → Â, which is a 1-Lipschitz function, is the
formal operator of some compatible sequence of functions (Ξk)k.

By definition of d, this result is a consequence of the equivalence between the con-
tinuity of Ξ̂ and the property:

∀k ∈ N, ∀(â, b̂) ∈ Â2 : π̂k(â) = π̂k(b̂) ⇒ π̂k ◦ Ξ̂(â) = π̂k ◦ Ξ̂(b̂)

Furthermore, as we want to apply a fixed point theorem in this complete space, the
following definition is needed:

Definition 2. A sequence of functions (Ξk)k is said to be formally contractant

if
∀k ∈ N, ∀(ak, bk) ∈ A2

k : πk−1(ak) = πk−1(bk) ⇒ Ξk(ak) = Ξk(bk)

As a direct consequence of the previous proposition, we have:

Proposition 3. If (Ξk)k is compatible and formally contractant, then its associated
formal operator Ξ̂ : Â → Â is 1

2
-contractant.

Reciprocally each operator Ξ̂ : Â → Â, which is 1
2
-contractant, is the formal operator

of some sequence of functions (Ξk)k, compatible and formally contractant.

Remark: By construction of the space A−1, the sentence ”(Ξk)k is formally contrac-
tant” means two different things:

(k = 0) The restriction of Ξ0 at A0 is constant.

(k ≥ 1) In the following sections, its topological interpretation will be: ”The associated
formal operator is a contraction, with Lipschitz constant equals to Oη→0(η)”,
where η is the relevant small parameter.

Finally, we have the immediate result:

Proposition 4. The metric space (Â, d) is complete.

As an immediate consequence of the previous propositions, we prove the fundamental
theorem of this section.

Theorem 2. For all sequence of functions (Ξk)k, which is compatible and formally
contractant, there exists an unique â ∈ Â such that

Ξ̂(â) = â
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2 Link between the formal theorem and the topological one

In the two following sections, we will denote by τ the small parameter. In practice,
τ replaced ε or η, depending on the structure of the studied equation.

This section is a presentation of the general way for linking the formal theorem 2 to
the topological theorem mentionned in the introduction.
The main result of this section is the heart of this correspondence.

Let (Ξk)k be a sequence of functions such that, for all integer k, Ξk is defined from
Ak to itself, is given. We assume that this sequence is compatible.
The proposition 3 implies that this sequence has a projective limit Ξ̂, defined from
the complete space Â to itself, and that Ξ̂ is a contraction if and only if (Ξk)k

is formally contractant. Moreover, in this case, the theorem 2 implies that this
operator has a fixed point â ∈ Â.
This fixed point is interpreted as an asymptotic expansion of a topological object.

To construct the formal theory, we need to formalize the property ”∈ ◦τ→0(τ
k)”.

So, we consider a sequence of vector spaces (Nk)k such that

∀k ∈ N, Nk+1 ⊂ Nk

and, for all k ∈ N, a function ˜ defined from Ak to N0, which depends of the integer
k. This function is needed to assure a transition between the formal notation and
its topological version.

In what follows, we assume that:

Hypothesis (H1): ∀k ∈ N, ∀ak+1 ∈ Ak+1, ãk+1 − ˜πk(ak+1) ∈ Nk.

This hypothesis means that the topological difference between the truncation at order
k of the principal term of order k + 1 of a power series and the principal term of
order k of the same series, is negligible in comparison of τk, as τ tends to 0.

We denote by Ãk the space obtained by applying the function ˜ to Ak. In particular,
for all integer k, Ãk ⊃ Nk.
We adopt the following terminology.

Definition 3. A sequence â = (ak)k ∈ Â is a semi-asymptotic expansion of
a ∈ N0 if

∀k ∈ N, a − ãk ∈ Nk

In this definition we adopt the word ”semi” to point out that a problem of uniqueness
may occurs. For this reason, we have to assume that:

Hypothesis (H2): For each fixed k ∈ N, any ak ∈ Ak such that ãk ∈ Nk is equal to
0.

In practice, (H2) means that, for all k ∈ N, the family which generates Nk is asymp-
totically free. Under this hypothesis, for all integer k, Nk is some kind of kernel of
˜ : Ak → N0.
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Proposition 5. Assuming (H2), every semi-asymptotic expansion of a ∈ N0 is
unique. So, it is called asymptotic expansion of a.

Before giving the fundamental theorem which is the link between the formal theorem
and the topological one, we need a new definition:

Definition 4. A sequence of functions (Ξk)k is formally equivalent to a topolog-
ical operator Ξ : D ⊂ N0 → N0 if and only if, for all (ak)k ∈ Â and for all integer
k:

• ãk belongs to the set on which Ξ is defined.

• Ξ(ãk) − Ξ̃k(ak) ∈ Nk

As a consequence of the propositions proved in the previous section, we have:

Theorem 3. We consider a sequence (Ξk)k, compatible and formally equivalent
to a topological operator Ξ defined from N0 to itself. We suppose that Ξ is N-

contractant, in the sense that

∀(a, b) ∈ N2
0 , ∀k ∈ N, a − b ∈ Nk−1 ⇒ Ξ(a) − Ξ(b) ∈ Nk

Then the sequence (Ξk)k is formally contractant.

Proposition 6. Assuming the hypothesis (H2), every sequence of functions (Ξk)k

which is formally equivalent to a topological operator Ξ̃, defined from N0 to itself, is
unique.

Finally, we demonstrate the fundamental theorem of this section. This theorem is
the heart of the results that we will present in the section 4.

Theorem 4. We assume (H1).
Let (Ξk)k be a sequence of functions such that Ξk is defined from Ak to itself, which
is compatible. If this sequence is formally equivalent to a topological operator Ξ,
defined from N0 to itself, which is N-contractant and which has a fixed point a, then
the fixed point â = (ak)k of Ξ̂ is a semi-asymptotic expansion of a.
Moreover, if we assume (H2), then â is an asymptotic expansion of a.

Demonstration:
By definition, we have to prove that

∀k ∈ N, a − ãk ∈ Nk

This demonstration consists in a recurrence over the integer k ∈ N ∪ {−1}.

The theorem 3 shows that the sequence (Ξk)k is formally contractant. It implies the
existence of â = (ak)k, as a direct consequence of the theorem 2.

The initialization property of the recurrence is trivially satisfied at k = −1.

So we assume that, for a fixed integer k,

a − ãk ∈ Nk
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As â (resp. a) is a fixed point of Ξ̂ (resp. Ξ), we write

a − ãk+1 = Ξ(a) − ˜Ξk+1(ak+1)

That is leading us to the egality

a − ãk+1 = (Ξ(a) − Ξ(ãk+1)) +
(
Ξ(ãk+1) − ˜Ξk+1(ak+1)

)

The assumptions we took earlier implies that a− ãk ∈ Nk, and the hypothesis (H1)

brings to ãk − ãk+1 = ˜πk(ak+1) − ãk+1 ∈ Nk. Thus a − ãk+1 belongs to the vector
space Nk.
Finally, as the operator Ξ is N -contractant, we deduced that

Ξ(a) − Ξ(ãk+1) ∈ Nk+1

Furthermore, as (Ξk)k is formally equivalent to Ξ, we have

Ξ(ãk+1) − ˜Ξk+1(ak+1) ∈ Nk+1

Consequently,
a − ãk+1 ∈ Nk+1

3 Computation of the expansion

In this section, we present our choice for the spaces Ak. They link the topological
result with the formal theorem 2 for the algorithmic computation of those expan-
sions.
This section begins by a presentation of the relevant spaces Ak that are used to
apply the theorem 4. It is briefly followed by a presentation of an algorithm that
computes those expansions.

3.1 Definition of the relevant spaces

To define the spaces Ak which are relevant in this study, we need a finite family
of symbols ϕ. This family has to be chosen in a contable fixed set to define the
function ,̃ which consists in the substitution of the symbols ϕ by functions of the
variables t and τ which are associated. The choice of such functions is due to the
considered equation.

Consequently, the vector spaces Ak are such that Ãk is included in the vector space
of the functions of the variables t and τ . In practice, for all k ∈ N, the space Ak

is the vector space which generates the principal term of order k of the expected
asymptotic expansion in the powers of τ .
Remind that, by definition, the formal set Â is defined as the projective limit of
the sequence (Ak)k. In what follows, we use the alternative definition of Â, which
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consists in regarding its elements as series.

From this point of view, the definition of the spaces Ak needs the definition of an
order ord(.), associated to the asymptotic approximation in the powers of τ to each
of the ”monomial terms”.
Firstly, we choose a set of multi-indices I, such that I ⊂ N × (

⋃
n Nn) × N.

In the studied case, the decompositions carried out show that it is natural for the
sets Ak to be the vector spaces which are generated by terms made up of powers of
t, τ , and of the intermediary functions ϕ.

Terminology: In what follows, we call monomial every couple

(τn, tiϕJτ l) such that n ∈ N , and (i, J, l) ∈ I (where |J | is finite)

Definition 5. We call order, every application ord : I → N satisfying to

• ∀(i, l) ∈ N2, ord(i, 0, l) = l

• ∀((i, J, l), (i′, J ′, l′)) ∈ I × I, such that |J | and |J ′| are finite,

ord(i + i′, J + J ′, l + l′) ≥ ord(i, J, l) + ord(i′, J ′, l′)

By convenience, and without ambiguity, we adopt the notation ord(tiϕJτ l) :=
ord(i, J, l).

If the second assumption is natural, the first one is necessary because, whatever
the studied framework is, the monomial term tiτ l has always an asymptotic order
equals l (i.e. an asymptotic approximation of its associated topological quantity
equals Oτ→0(τ

l)).

The studied framework in the continuation being given, we stop working with general
concepts. Thus we will assume working hypothesis related to the particularity of the
objects on which we will apply the correspondence.
Firstly, we assume that the choice for ϕ is such that:

Working hypothesis:
For all integer k, the set {(i, J, l) ∈ I; |J | ≥ 1 and ord(i, J, l) = k} is finite.

So, for all integer k, we can define

Bk :=
{
tiϕJτ l : |J | ≥ 1, ord(i, J, l) = k

}
, and Ck := R.τk ×

(
C∞([−t0, t0]).τ

k ⊕ Vect Bk

)

Remark: The goal of this working hypothesis is to give sense to the topological
equivalent (i.e the image by ˜) of elements of those sets (i.e. the sets obtained by the
substitution of the symbols ϕ by a fixed family of functions).

Finally, for all integer k, we define

Ak := Ak−1 ⊕ Ck = ⊕l≤kCl (where we denote A−1 := C−1 := {(0, 0)} )

By definition of ,̃ it is natural to define Nk as

Nk :=

{
(α, u) ∈

⋃

l

Al; α̃ = Oτ→0(τ
k+1), ||ũ(., τ)|| = Oτ→0(τ

k+1)

}
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Proposition 7. For the sets defined above, the assumption (H1) is satisfied. More-
over:
Every topological operator Ξτ which is a contraction with Lipschitz constant equals
to Oτ→0(τ), is N-contractant and has a fixed point.

Finally we denote, for all k ∈ N, by πk the natural projection from Ak+1 to Ak.

Remark:

The choice of intermediary functions ϕ which are such that the order ord is satisfying,
for all monomials u and v, the inverse inequality

ord(uv) ≤ ord(u) + ord(v)

is not alleviating. It it is strongly related to the fact that the family (Ak)k defined
in the preceding part is asymptotically free.

3.2 Computation of the expected asymptotic expansions

This part is a presentation of the way the method described above is applied in
practice.

For the particular spaces defined in the previous part, we have the definition:

Definition 6. A couple (α, u), where α ∈ R and u : (t, τ) → u(t, τ) is a C∞

function, has the couple (
∑

k αk,
∑

k uk) ∈ Â for semi-asymptotic expansion if,
for all n ∈ N, (αn, un) ∈ Cn, and

∀k ∈ N,

∣∣∣∣∣α −
k∑

n=0

α̃n

∣∣∣∣∣ = Oτ→0(τ
k+1), sup

t∈[−t0,t0]

{∣∣∣∣∣u(t, τ) −
k∑

n=0

ũn(t, ϕ̃(t, τ), τ)

∣∣∣∣∣

}
= Oτ→0(τ

k+1)

We say that (α, u) has an asymptotic expansion if it has an unique semi-
asymptotic expansion.

The proof of the existence of an asymptotic expansion for (α∗, u∗) needs the defini-
tion of a family ϕ of intermediary functions. This choice gives a sequence of spaces
(Ak)k. So we define, from the topological operator Ξτ given in the introduction, a
sequence of functions (Ξk)k which is compatible and formally equivalent to Ξτ .

As the uniqueness of such expansions is equivalent to the assumption (H2), it is a
consequence of:

Proposition 8. If the family (Ak)k is asymptotically free, i.e. satisfied to

∀k ∈ N, ∀ak ∈ Ak, ãk = Oτ→0(τ
k+1) ⇒ ak = 0

then every semi-asymptotic expansion of ũ is an asymptotic expansion.

Remark: Proving the property ”(Ak)k is asymptotically free” is equivalent to prove
that, in Â, every semi-asymptotic expansion of 0 is the series 0.

All the results that have been presented gives a decomposition of the computation
of the asymptotic expansion in two steps:
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- Proving that the choice of intermediary functions ϕ (and so the construction
of the sets Ak) allows us to define, from the contraction Ξτ , a sequence of
functions (Ξk)k, where Ξk is defined from Ak to itself, which is compatible and
formally equivalent to Ξτ .
In practice, it will be a direct consequence of the construction of (Ξk)k.
Consequently, the theorem 4 implies the existence of a semi-asymptotic ex-
pansion for the canard solution.

- Proving that the choice of intermediary functions ϕ is such that the family
(Ak)k is asymptotically free.
Consequently, the last proposition implies the uniqueness of the computed
semi-asymptotic expansion obtained in the first step.
In this case, we say that we have defined an asymptotic scale {tiϕJτ l}.

Remark:

In order to give a formal sense to the definition with integrals of Ξτ , the application
of this correspondence consists in the substitution of the monomial terms of Ξτ by
some formal objects which can be written as a finite linear combination of elements
of
⋃

k Ak. This decomposition give the definition of the sequence (Ξk)k.

In practice we substitute, in the integral form of Ξτ , the functions P and γ by their
respective Taylor expansions that are truncated at order k. Then, all of the terms
are replaced by their associated formal terms in Ak.

In this construction, functions f satisfying to the property

<< When τ → 0, ∃(c, C) ∈ R2
+, ∀t ∈ [−t0, t0], |f̃(t, τ)| < Ce−ct/τ >>

appeared. Such terms are called exponentially decreasing. As those functions have
for asymptotic expansions in the powers of τ the series 0, they will systematically
be put out of our study.

Finally, in order to avoid problems of boundary layer in the neighborhood of the
initial condition, which do not concern the framework of our study, we apply this
formal framework to values of t ∈ [−t1, t1] ⊂] − t0, t0[ (because we are interested by
the study of an asymptotic expansion of the solution in an appreciable neighborhood
of 0).

In the last section, we present the application of this correpondence to two well-
known cases, and then we conclude this note by giving a few words about the
application in the degenerate case.

- Firstly, using the trivial asymptotic scale (which is the one which has no inter-
mediary functions), we prove that such structures have sense. It is proved that, in
the non-degenerate case (p = 1), this correspondence implies the existence and the
uniqueness of an asymptotic expansion in the powers of η, with regular coefficients
in t, for the canard solutions.

- In the case p = 0, which is not consisting in a study of canard solutions, we study
the solutions which have a limit layer.
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More particulary, we retrieve the existence and the uniqueness of a combined asymp-
totic expansion of solutions living near an attractive curve, after a limit layer.
This last study can be generalized, in the general case, to compute an asymptotic
expansion of a canard solution which has a limit layer (i.e. which is not satisfying
at u(±t0, η) = u0(±t0, η)).

4 Main results

In this last section we present two applications of the correspondence given in the
previous sections. The last part consists in a rapid survey of the application in the
degenerate case, whose study will be presented in a future paper.

4.1 Application to the non-degenerate case

In this part, we assume that p = 1. Thus, the hypothesis assumed on the general
equations bring us to consider the equations

η2u̇ = 2tu + α(1 + γ(t, α)) + η2P (t, u, α, η)

where t ∈ [−t1, t1], u is a real function of the variables t and η, α ∈ R, η ∈]0, η0[, γ

is a C∞ function in t and α such that γ(0, 0) = 0, and P is a C∞ function.
In this case, the application of the correspondence does not need intermediary func-
tions. Consequently, the uniqueness of the expansions that are algorithmically com-
puted is trivial.

So, we are only concerned with the study of the existence of such expansions, which
is resumed in the following result:

Theorem 5. The canard solution (α∗, u∗) has an unique asymptotic expansion α̂∗ ∼∑
l alη

l and û∗ ∼
∑

l ul(t)η
l, where the functions ũl are C∞ in t.

This result is a well-known result in asymptotics (see [5], for example).

To conclude this part, we give a sketch of the demonstration for the existence of
such an expansions (i.e. the existence of a sequence (Ξk)k which is compatible and
formally equivalent to Ξη).

To define each function Ξk, we fixed an integer k and a couple (βk, vk) ∈ Ãk.
By definition of Ãk, it is associated to (β̂k, v̂k) ∈ Ak. Finally, we note

(αk, uk) := Ξη(βk, vk)

Construction of α̂k:

The definition of Ξη shows that the parameter αk is a solution of the equation

0 = αk

( ∫ t0

−t0

e−(ξ/η)2dξ +

∫ t0

−t0

γ(ξ, αk)e−(ξ/η)2dξ

)
+ η2

∫ t0

−t0

P (ξ, vk(ξ, η), βk, η)e−(ξ/η)2dξ

We substitute to γ and P , which are C∞ functions, their Taylor expansions truncated
at order k, and to βk (resp. vk) the topological version of β̂k (resp. v̂k). Then, an
asymptotic approximation of the integrals gives an equation of the form

E(αk, η) = 0
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where E is a C∞ function of its variables.
Moreover, as all of the monomial terms which generated E are asymptotically dom-
inated by the term αk

∫ t0
−t0

e−(ξ/η)2dξ, which is one of them, the implicit function
theorem implies that αk is a C∞ function of η.
In conclusion, the expected term α̂k is defined as the formal truncature at order k

of the Taylor expansion of αk, as a function of η.

Construction of ûk:

By definition of Ξη we write, for all t and η, the function uk as

uk(t, η) =
1

η2
e(t/η)2

∫ t

−t0

(
αk (1 + γ(ξ, αk)) + η2P (ξ, vk(ξ, η), βk, η)

)
e−(ξ/η)2dξ

Considering the equation satisfied by αk, we arrive at

αk = −αk

∫ t0
−t0

γ(ξ, αk)e
−(ξ/η)2dξ

∫ t0
−t0

e−(ξ/η)2dξ
− η2

∫ t0
−t0

P (ξ, vk(ξ, η), βk, η)e−(ξ/η)2

∫ t0
−t0

e−(ξ/η)2dξ

which gives the formula

uk(t, η) =
1

η2
e(t/η)2

∫ t

−t0
αk

(
γ(ξ, αk) −

∫ t0
−t0

γ(ξ, αk)e
−(ξ/η)2dξ

∫ t0
−t0

e−(s/η)2ds

)
e−(ξ/η)2dξ + . . .

+e(t/η)2
∫ t

−t0

(
P (ξ, vk(ξ, η), βk, η) −

∫ t0
−t0

P (s, vk(s, η), βk, η)e−(s/η)2ds
∫ t0
−t0

e−(s/η)2ds

)
e−(ξ/η)2dξ

We substitute to the functions γ and P their respectives Taylor expansions truncated
at order k, and to βk (resp. αk, vk) the topological version of β̂k (resp. α̂k, v̂k). Then
we reduce this study to a linear combination of functions like

(t, η) 7→ e(t/η)2
∫ t

−t0
η

(
wn(ξ)ηn −

∫ t0
−t0

wn(s)ηne−(s/η)2ds
∫ t0
−t0

e−(s/η)2ds

)
e−(ξ/η)2dξ

where wn ∈ C∞([−t1, t1]).
Such functions can be properly studied as solutions of

η2u̇ = 2tu + η2λw + η2w , where lim
t→±∞

u(t, η)

It can be proved that those solutions, denoted by Iη(w), have a formal equivalent

in Â. This gives the definition of ûk.

Consequently, we are able to define an operator Ξk, leaving from Ak to itself, by

Ξk(β̂k, v̂k) := (α̂k, ûk)

And, by construction, the sequence (Ξk)k is compatible and is formally equivalent
to Ξη.
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4.2 Application to the combined asymptotic expansion

In this part, we assume that p = 0. The hypothesis assumed on the general equations
leads us to consider the equations

εu̇ = −u + εP (t, u, ε)

where t ∈ [0, t0], u is a real function of the variables t and ε, ε ∈]0, ε0[, and P is a
C∞ function.
As p = 0, it is not a study of canard solution. We assume that u(0, ε) := u0 is far
away 0 and that we are studying the asymptotic behavior of this function, which
has a boundary layer at t = 0, before living in the neighborhood of the attractive
slow curve u = 0. So, we restrict our study to t ∈ [0, t0].

In this case, the relevant intermediary function is ϕ(t, ε) = e−t/ε. So the order ord(.)
is well-defined by:

ord(tiϕjεl) :=





i + l if j > 0

l if j = 0

Furthermore, the relevant spaces for our study are

Ck =

{
f(t)εk + h

(
t

ε
, ϕ

)
ϕεk : f ∈ C∞([0, t0]), h is polynomial in T and C∞ in ϕ

}

Ak := Ak−1 ⊕ Ck = ⊕l≤kCl (where A−1 := C−1 := {(0, 0)} )

For this choice of spaces, the demonstration of the existence of a semi-asymptotic
expansion for this solution is similar to the one presented in the previous part, so
we won’t be interested by it.

On the other hand, it remains to prove that the family (Ak)k is asymptotically free,
which will imply the theorem:

Theorem 6. Each solution has an unique asymptotic expansion of the form

∑

k

(
fk(t) + hk

(
t

ε
, e−t/ε

)
e−t/ε

)
εk

where, for all k ∈ N, fk (resp. hk) is C∞ in t (resp. polynomial in T and C∞ in ϕ).

This expansion is a particular form of the combined asymptotic expansion [11][1],
which are expansions that can be written

∑

n

(
fn(t) + gn

(
t

ε

))
εn

where, for all k ∈ N, fk (resp. hk) is C∞ in t (resp. C∞ and exponentially decreasing
in T ∈ R).

In conclusion, it remains to prove the following result:

Proposition 9. The family (Ak)k is asymptotically free, which means that:

For each fixed K ∈ N, any uK ∈ AK such that ||ũK(., ε)|| = Oε→0(ε
K+1) is equal to 0
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Proof:
We have to prove that if, for all K ∈ N,

sup
t∈[0,t0]

{∣∣∣∣∣

K∑

k=0

(
fk(t) + hk

(
t

ε
, ϕ̃(t, ε)

)
ϕ̃(t, ε)

)
εk

∣∣∣∣∣

}
= Oε→0(ε

K+1)

then all of the functions fk and hk are 0.
The demonstration of these result consists in a recurrence over the integer K.

So, we assume that this is satisfied for a fixed integer K − 1. As we have
(
fK(t) + hK

(
t

ε
, ϕ

)
ϕ

)
εK ∈ CK

The definition of CK implies that its topological version is equal to Oε→0(ε
K).

So, the hypothesis implies that, for all l ≤ K−1, the terms fl and hi,l are 0, because

the term
∑K−1

k=0

(
fk(t) + hk

(
t
ε
, ϕ(t, ε)

)
ϕ(t, ε)

)
εk belongs to AK−1, and is such that

sup
t∈[0,t0]

{∣∣∣∣∣

K−1∑

k=0

(
fk(t) + hk

(
t

ε
, ϕ̃(t, ε)

)
ϕ̃(t, ε)

)
εk

∣∣∣∣∣

}
= Oε→0(ε

K)

Consequently, we have

sup
t∈[0,t0]

{∣∣∣∣fK(t) + hK

(
t

ε
, ϕ̃(t, ε)

)
ϕ̃(t, ε)

∣∣∣∣
}

= Oε→0(ε)

As the term ϕ is factorized in the second term, a study of the case t 6= Oε→0(ε)
implies that this term is exponentially small. It gives that fK(t) = Oε→0(ε). As the
term fK(t) do not depends of ε, we conclude that it is 0. So, we have

sup
t∈[0,t0]

{∣∣∣∣hK

(
t

ε
, ϕ̃(t, ε)

)
ϕ̃(t, ε)

∣∣∣∣
}

= Oε→0(ε)

The change of variable t = εξ gives

sup
ξ∈[0,

t0

ε
]

{∣∣∣hK(ξ, e−ξ)e−ξ
∣∣∣
}

= Oε→0(ε)

Assuming that ξ is fixed and considering that ε is tending to 0, we extend this
formula from

[
0, t0

ε

]
to [0, +∞[.

Moreover, as all of the terms do not depend of ε, we conclude that

∀ξ ∈ [0, +∞[, hK(ξ, e−ξ)e−ξ = 0

By the change of variable φ = e−ξ, a Taylor expansion of the function hK with
respect to its first variable brings

∀φ ∈]0, 1],
deg(hK(.,φ))∑

i=0

hi,K(φ).(− ln φ)iφ = 0

which gives that all of the functions hi,K are 0. As this linear comination is finite,
it implies that the function hK is 0.

So, we conclude that (Ak)k is asymptotically free.
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4.3 A remark about the application in the degenerate case

The application of the correspondence in the case p ≥ 3 will be detailed in a future
paper. Its demonstration, and many commentaries, can be found in our PhD work
[8] (in french).

It is proved that our relevant choice for the family ϕ allows us to prove the existence
and the uniqueness of the expected asymptotic expansion for the canard solution,
when the considered equation is linear in u.

In the general case, the correspondence gives the existence of a semi-asymptotic
expansion for the canard solutions, and the uniqueness of such expansions is con-
jectured but not proved. This problem is due to difficulties generated by the inter-
actions between our intermediary functions.
Nevertheless, a theorem which states the existence of a general asymptotic expan-
sion in the powers of η for the canard solution is proved. But this is at the price of
the loss of a formal method which computes such expansions.
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