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Abstract

We study span and stable span of Dold manifolds P (m,n). We present
several lower and upper bounds for these invariants, and for some pairs (m,n),
we determine the exact values of span or stable span. In the case P (m, 1),
m 6≡ 15 (mod 16), we show how the maximum number of everywhere linearly
independent vector fields can be constructed.

1 Introduction

Given a smooth manifoldM , its span is the maximum number of everywhere linearly
independent vector fields on M , denoted by spanM . Its stable span is the number
span(M ×S1)− 1, denoted by stabspanM . SpanM and stabspanM are important
characteristics of M . In many situations, some information about stable span can
be obtained more easily than about span, thus the stable span can play a relevant
role in finding the span. But the stable span in its own right is significant in various
applications, for instance, it is related to the existence of fold maps from M to
R
p (see O. Saeki [15]). Further information on span and stable span (and related

questions) can be found, for example, in [20], [6], [7], [9].
In this paper, we derive new results on span and stable span of the Dold manifolds

P (m,n) = (Sm × CP n)/ ∼, with (x, z) ∼ (−x, z̄), where CP n is the complex
projective space of (complex) dimension n. In particular, P (m, 0) = RPm and
P (0, n) = CP n are nothing but real and complex projective spaces.

We recall that the Dold manifolds were first introduced by A.Dold in [2], to
describe the generators in the unoriented cobordism ring N. Later on, many other
authors studied various properties of Dold manifolds. For instance, immersions
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and embeddings of these manifolds were studied by J. J.Ucci [22], W.-L.Ting [21],
T.Kobayashi [5]. The existence question for almost complex structures was ana-
lyzed by Z.Tang [19]. R. Stong [18] describes possible Stiefel-Whitney classes of
vector bundles over Dold manifolds and a partial smooth classification of manifolds
homotopy equivalent to a Dold manifold was given by H.K.Mukerjee [12]. But up
to now not much was known about the values of spanP (m,n) and stabspanP (m,n),
except for the particular cases P (m, 0) = RPm and P (0, n) = CP n. All that we
are aware of are the following papers. J.H.Kwak’s [11] attacks the question of
which manifolds P (m,n) are parallelizable (that is, such that spanP (m,n) is as
big as dimP (m,n) = m + 2n := D) or stably parallelizable (that is, such that
stabspanP (m,n) = D). In addition to this, in B. Junod and U. Suter [4] and M.-
Y. Sohn [16], some upper bounds for the span of Dold manifolds or products of Dold
manifolds can be found.

This paper is organized as follows. In Sec. 2, after recalling some basic facts, we
derive several bounds for (stab)spanP (m,n), and in some cases we find the value
of spanP (m,n).

In Sec. 3, we find more bounds for the stable span of P (m,n) and we present
further results on spanP (m,n) (in particular, on spanP (1, n)). In this section, we
also compare the results of [4] and [16] with our upper bounds obtained in Sec. 2
and show that, in most cases, our results are better.

Finally, in Sec. 4 we show how for the Dold manifolds P (m, 1) with m 6≡ 15
(mod 16) the maximum number of everywhere linearly independent vector fields
can be constructed.

2 Bounds for (stab)spanP (m,n) implied by Stiefel-Whitney

classes

The upper bounds coming from Stiefel-Whitney class calculations apply to stable
span, so they also apply to span since stable span is greater than or equal to span.

We recall ([2], [22]) that the canonical map Sm × CP n → P (m,n) induces a
double covering,

Z2 −→ Sm × CP n −→ P (m,n). (2.1)

The map p : P (m,n) → RPm induced by the projection Sm × CP n → Sm defines a
smooth fibre bundle,

CP n −→ P (m,n) −→ RPm. (2.2)

The cohomology ring with coefficients in Z2 is given by

H∗(P (m,n),Z2) = Z2[c, d]/(c
m+1 = dn+1 = 0), where c ∈ H1, d ∈ H2.

For the total Stiefel-Whitney class we have

w(P (m,n)) = (1 + c)m(1 + c+ d)n+1. (2.3)

Since χ(CP n) = n+ 1 and χ(Sm) = 1 + (−1)m, and we have the covering (2.1),
for the Euler characteristic of the Dold manifold we readily derive that

χ(P (m,n)) = 1
2
χ(Sm)χ(CP n) =







n + 1 if m is even,

0 if m is odd.
(2.4)
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From (2.3) we obtain w1(P (m,n)) = (m + n + 1)c, so P (m,n) is orientable if and
only if m+ n is odd or m = 0 (in the latter case, c = 0).

As an initial piece of information on spanP (m,n), we now obtain the following.

Proposition 2.5. We always have

spanP (m,n) ≥ spanSm.

Proof. This is readily seen, using the fibre bundle (2.2), [6, 3.1.6(1)] (if F → E → B
is a smooth fibre bundle, then stabspanE ≥ stabspanB and spanE ≥ spanB), and
recalling that spanSm = span RPm.

By (2.4), ifm is even, then there is no everywhere nonzero vector field on P (m,n).
On the other hand, we have spanP (m,n) ≥ 1 whenever m is odd (this also follows
from Proposition 2.5). Hence, when interested in the span of P (m,n), we shall
concentrate our attention on the Dold manifolds P (m,n) with m odd. For even
values of m, the question about stable span can have meaning.

Now we present some upper bounds for (stab)spanP (m,n) using Stiefel-Whitney
characteristic classes.

From (2.3) we obtain

w(P (m,n)) =
m∑

i=0

n∑

j=0

(

n+ 1

j

)(

m+ n + 1 − j

i

)

cidj. (2.6)

For the k-th Stiefel-Whitney class (for k = 0, 1, . . . , D), we have then the formula

wk(P (m,n)) =
min{n,⌊k/2⌋}

∑

j=max{0,⌊(k−m)/2⌋}

(

n+ 1

j

)(

m+ n + 1 − j

k − 2j

)

ck−2jdj.

We recall one standard fact from number theory, which we shall use in the sequel.

Proposition 2.7 (Lucas’ theorem). Let p be a prime and a, b be nonnegative inte-

gers with base p expansions

a = a0 + a1p+ a2p
2 + . . . ,

b = b0 + b1p+ b2p
2 + . . . (of course, 0 ≤ ai < p, 0 ≤ bi < p).

Then (

a

b

)

≡
∞∏

i=0

(

ai
bi

)

(mod p),

where
(
ai

bi

)

= 0 whenever ai < bi.

In particular, when p = 2, then the number
(
a
b

)

is even if and only if the binary
expansion of b has the digit 1 at a position where the binary expansion of a has the
digit 0. It will also be useful to denote, for a positive integer t, by 2ν(t) the highest
power of 2 dividing t.

Using the obvious implication

wD−k(P (m,n)) 6= 0 =⇒ (stab)spanP (m,n) ≤ k, (2.8)

we derive the following upper bound for the (stab)span of P (m,n).
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Theorem 2.9. Given a pair (m,n) of nonnegative integers, write m in the form

m = 2ν(n+1) · k + l, with 0 ≤ l < 2ν(n+1).

Then we have

(stab)spanP (m,n) ≤ 2ν(n+1)(2ν(k+1) + 1) − 2.

Proof. The coefficient of cm−2ν(n+1)(2ν(k+1)−1)dn−(2ν(n+1)−1) in the Stiefel-Whitney class

wm−2ν(n+1)(2ν(k+1)−1)+2(n−(2ν(n+1)−1))(P (m,n))

is by (2.6) equal to
(

n+ 1

n + 1 − 2ν(n+1)

)(

m+ n+ 1 − n− 1 + 2ν(n+1)

m− 2ν(n+1)(2ν(k+1) − 1)

)

=

(

n+ 1

2ν(n+1)

)(

m+ 2ν(n+1)

2ν(n+1)+ν(k+1)

)

.

The first binomial coefficient is odd by Lucas’ theorem. The second one can be
transformed into

(

m+ 2ν(n+1)

2ν(n+1)+ν(k+1)

)

=

(

2ν(n+1) · (k + 1) + l

2ν(n+1)+ν(k+1)

)

=

(

2ν(n+1)+ν(k+1) · r + l

2ν(n+1)+ν(k+1)

)

for some odd r, which also is odd by Lucas’ theorem. Thus the Stiefel-Whitney class
under consideration is nonzero, and by (2.8) we obtain

(stab)spanP (m,n) ≤ 2ν(n+1)(2ν(k+1) − 1) + 2(2ν(n+1) − 1) =

= 2ν(n+1)(2ν(k+1) + 1) − 2.

This upper bound leads us to the following observations.

Proposition 2.10. If n is even, then

(stab)spanP (m,n) ≤ 2ν(m+1) − 1.

Proof. Using the notation from Theorem 2.9, we have ν(n + 1) = 0 and k = m,
hence

(stab)spanP (m,n) ≤ 20(2ν(m+1) + 1) − 2 = 2ν(m+1) − 1.

It is well known (J. F.Adams [1]) that spanSm = ρ(m+1)−1, where ρ(m+1) is
the Hurwitz-Radon number defined by the formula ρ(m+1) = 2c+8d for ν(m+1) =
c + 4d, c, d ≥ 0, c ≤ 3. Therefore Propositions 2.10 and 2.5 imply the following.

Corollary 2.11. If n is even and ν(m+ 1) ∈ {1, 2, 3}, then

spanP (m,n) = spanSm = 2ν(m+1) − 1.

Proposition 2.12. If n ≡ 1 (mod 4) and m is odd (i. e., ν(m+ 1) > 0), then

(stab)spanP (m,n) ≤ 2ν(m+1).

Proof. Using the notation from Theorem 2.9, we have ν(n + 1) = 1, k = m−1
2

and
ν(k + 1) = ν(m+ 1) − 1, hence

(stab)spanP (m,n) ≤ 21(2ν(m+1)−1 + 1) − 2 = 2ν(m+1).
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In the same way as in 2.11, we obtain the following estimate, with upper and
lower bounds differing by just one.

Corollary 2.13. If n ≡ 1 (mod 4) and ν(m+ 1) ∈ {1, 2, 3}, then

2ν(m+1) − 1 ≤ spanP (m,n) ≤ 2ν(m+1).

For n = 1, we shall improve this result in Sec. 4 and prove that

spanP (m, 1) = 2ν(m+1) if ν(m+ 1) ∈ {1, 2, 3}.

Except for the cases described in 2.11 and the cases when m is even, it is impos-
sible to derive spanP (m,n) = spanSm, if true, using only Proposition 2.5 and the
implication (2.8). Namely, the class wD−spanSm(P (m,n)) vanishes by the following
theorem (recall that D denotes the dimension of P (m,n)).

Theorem 2.14. Let ν(m + 1) > 0 (i. e., m is odd). The Stiefel-Whitney classes

wD−i(P (m,n)), i = 0, 1, . . . , 2ν(m+1) − 2, are all zero. If n is odd, then also the class

wD−(2ν(m+1)−1)(P (m,n)) is zero.

Proof. In wD−i(P (m,n)), only the summands

cm−idn, cm−i+2dn−1, cm−i+4dn−2, . . .

can occur, i. e., the terms of the form cm−i+2jdn−j with j ≥ 0, j ≤ n, 2j ≤
i. So we wish to show (see (2.6)) that the coefficients

(
n+1
n−j

)(
m+1+j
m−i+2j

)

are even

for i = 0, 1, . . . , 2ν(m+1) − 2 (or for i up to 2ν(m+1) − 1 for n odd) and for j =
0, 1, . . . ,min{n, ⌊i/2⌋}. We proceed by induction on j. More precisely, we show
that the second factor of the product of the binomial coefficients under considera-
tion is even (except for the case when n is odd, i = 2ν(m+1) − 1 and j = 0, but then
obviously the first factor is even).

For j = 0, the number we are interested in,

(

m+ 1

m− i

)

=

(

q · 2ν(m+1)

i+ 1

)

(q odd),

is even for every i = 0, 1, . . . , 2ν(m+1) − 2 by Lucas’ theorem.
For j ≥ 1, j ≤ min{n, ⌊i/2⌋} we have

(

m+ 1 + j

m− i+ 2j

)

=

(

m+ 1 + (j − 1)

m− i+ 2j

)

+

(

m+ 1 + (j − 1)

m− i+ 2j − 1

)

=

=

(

m+ 1 + (j − 1)

m− (i− 2) + 2(j − 1)

)

+

(

m+ 1 + (j − 1)

m− (i− 1) + 2(j − 1)

)

.

By the induction hypothesis, the latter two binomial coefficients are even.

Further, we recall the following two criteria for the existence of two or three
everywhere independent vector fields.



692 P. Novotný

Fact 2.15 ([13], [10]). Let M be a smooth closed connected nonorientable manifold

of dimension D with D ≡ 3 (mod 4). If D = 3, then spanM ≥ 2 if and only if

w2
1(M) = 0. If D ≥ 7, then spanM ≥ 2 if and only if w2

1(M) = 0 or if w2
1(M) 6= 0

and wD−1(M) = 0.

Fact 2.16 ([14]). Let M be a smooth closed connected nonorientable manifold of

dimension D with D ≡ 3 (mod 4). If D ≥ 7, then spanM ≥ 3 if and only if

β∗wn−3(M) = 0 (where β∗ is the Bockstein homomorphism).

By applying 2.15 and 2.16, we obtain the following two results on spanP (m,n).

Proposition 2.17. If m ≡ n ≡ 1 (mod 4), then

spanP (m,n) = 2.

Proof. For n ≡ 1 (mod 4) we can use Corollary 2.13. If m ≡ 1 (mod 4), then we
have ν(m + 1) = 1, hence spanP (m,n) ≤ 2. For the dimension we have D =
2n+m ≡ 3 (mod 4). Since m+n is even and m 6= 0, P (m,n) is nonorientable. By
Theorem 2.14 we see that wD−1 = 0 (and in particular for P (1, 1), of dimension 3,
we have w2

1 = 0). Applying 2.15, we obtain spanP (m,n) ≥ 2.

Proposition 2.18. If m ≡ 1 (mod 4) and n ≡ 3 (mod 4), then

spanP (m,n) ≥ 3.

Proof. For the dimension we have D = 2n +m ≡ 3 (mod 4). Since m+ n is even,
P (m,n) is nonorientable and D = 2n+m ≥ 2 · 3 + 1 = 7. By Theorem 2.14, we see
that wD−3(P (m,n)) = 0, hence necessarily β∗wD−3(P (m,n)) = 0. Applying 2.16
we obtain spanP (m,n) ≥ 3.

Our results obtained above are summarized in the table; for typographical rea-
sons, we abbreviate spanP (m,n) = s.

m mod 16, n mod 4 n ≡ 0 n ≡ 1 n ≡ 2 n ≡ 3
m ≡ 1 s = 1 s = 2 s = 1 s ≥ 3
m ≡ 3 s = 3 s ∈ {3, 4} s = 3 s ≥ 3
m ≡ 5 s = 1 s = 2 s = 1 s ≥ 3
m ≡ 7 s = 7 s ∈ {7, 8} s = 7 s ≥ 7
m ≡ 9 s = 1 s = 2 s = 1 s ≥ 3
m ≡ 11 s = 3 s ∈ {3, 4} s = 3 s ≥ 3
m ≡ 13 s = 1 s = 2 s = 1 s ≥ 3
m ≡ 15 s ≥ 8 s ≥ 8 s ≥ 8 s ≥ 8

m ≡ 2t (all t) s = 0 s = 0 s = 0 s = 0

3 Bounds for the stable span of P (m,n) and further results on

spanP (m,n)

By [6, 2.2(a)], stabspanM > 0 if and only if χ(M) is even. Combining this with
(2.4), if m is even, then we have that

stabspanP (m,n) = spanP (m,n) = 0 for n even, and

stabspanP (m,n) > spanP (m,n) = 0 for n odd.
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Thus the stable span may or may not be equal to the span.
By [17], stabspan CP n = 2ν(n + 1). By [6, 3.1.6(2)], we have stabspanE ≤

stabspanF + dimB whenever F → E → B is a smooth fibre bundle with F con-
nected. Applying this to the fibre bundle (2.2), we obtain

stabspanP (m,n) ≤ stabspan CP n + dim RPm = 2ν(n + 1) +m. (3.1)

Of course, the number 2ν(n+1)+m is also an upper bound for spanP (m,n), and this
coincides with the bound given in [4] (where it was derived using the KU -theory).
With the notation from Theorem 2.9, we have

2ν(n+ 1) +m = 2ν(n+ 1) + 2ν(n+1) · k + l =

= 2ν(n+ 1) + 2ν(n+1)(r · 2ν(k+1) − 1) + l,

with odd r, which is for r ≥ 3 greater than 2ν(n+1)(2ν(k+1) +1)−2. Hence the bound
from Theorem 2.9 is better in this case. Only for r = 1, the bound (3.1) may be
better. This happens (with r = 1) whenever

(2ν(n+1)(2ν(k+1) + 1) − 2) − (2ν(n+ 1) +m) = 2ν(n+1)+1 − 2 − 2ν(n + 1) − l > 0.

This condition is fulfilled, for example, for ν(n+1) ≥ 3 with any l, or for ν(n+1) = 2
with l < 2.

We now compare the bound from Theorem 2.9 with the bound obtained from
[16, 3.2], which says that

(stab)spanP (m,n) ≤ m+ 2n− δ∗(m,n). (3.2)

Here, δ∗(m,n) is defined by

δ∗(m,n) =







max{s, 2
⌊
n
2

⌋

} if m 6= 0,

2
⌊
n
2

⌋

if m = 0,

where s is the largest integer for which 2s−1
(
m+n+1

s

)

is not divisible by 2φ(m) and

φ(m) is the number of integers t with 0 < t ≤ m and t ≡ 0, 1, 2, or 4 (mod 8).
Clearly s ≤ φ(m) ≤ m

2
+ 2, so

δ∗(m,n) ≤ max{m
2

+ 2, 2
⌊
n
2

⌋

} ≤ max{m
2

+ 2, n}.

For the bound in (3.2), we then have

m+ 2n− δ∗(m,n) ≥ m+ 2n− max{m
2

+ 2, n} = min{m
2

+ 2n− 2, m+ n}.

With the notation from Theorem 2.9, we have n = a · 2ν(n+1) − 1 for some odd
a, m = 2ν(n+1)k + l, and k = r · 2ν(k+1) − 1 for some odd r. Substituting into the
latter expression, one can readily verify that the bound (3.2) may be better than our
bound from Theorem 2.9 only for r = 1 (and also in that case, there are additional
restrictions on ν(k + 1), ν(n + 1), a and l). Hence, in most cases, the bound from
Theorem 2.9 is better.
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For the tangent bundle τ of P (m,n), one has ([22]) the formula τ ⊕ ξ ⊕ ε2 =
(m + 1)ξ ⊕ (n + 1)η, where ξ is the only nontrivial line bundle and η is a certain
2-plane bundle over P (m,n). Obstruction theory (see [3, 8.1.5]) implies that we can
cancel one ξ from both sides. In this way we obtain a full description of the stable
tangent bundle,

τ ⊕ ε2 = mξ ⊕ (n+ 1)η.

Let us consider the casem = 1. The above formula gives then τ⊕ε2 = ξ⊕(n+1)η.
Since dim(n+ 1)η = 2n+ 2 > 2n+ 1 = dimP (1, n), necessarily span((n+ 1)η) ≥ 1.
By [8, 1.1], we have, for any vector bundle β over any paracompact space, that
span(kβ) ≥ ρ(k) whenever span(kβ) ≥ 1. So we obtain span((n + 1)η) ≥ ρ(n + 1).
Hence

span(τ ⊕ ε2) = span(ξ ⊕ (n + 1)η) ≥ span((n+ 1)η) ≥ ρ(n + 1),

and consequently stabspanP (1, n) ≥ ρ(n + 1) − 2. By [10, 20.4], for any closed
connected manifold M of odd dimension D we have

spanM ≥ min{(D − 1)/2, s(M), stabspanM},

and by [10, 20.6], s(M) ≥ spanSD; see [10] for the definition of s(M). Applying
this to P (1, n), we have

spanP (1, n) ≥ min
{

n, spanS2n+1, stabspanP (1, n)
}

≥

≥ min {n, ρ(2n+ 2) − 1, ρ(n+ 1) − 2} = ρ(n + 1) − 2.

For ν(n + 1) = c + 4d (0 ≤ c ≤ 3, d ≥ 0), by combining the preceding inequality
and the bound (3.1), we obtain

2c + 8d− 2 ≤ spanP (1, n) ≤ 2c+ 8d+ 1.

In other words, there are only the following possibilities for spanP (1, n):

c possibilities for spanP (1, n) with ν(n + 1) = c+ 4d
0 8d− 1, 8d, 8d+ 1
1 8d, 8d+ 1, 8d+ 2, 8d+ 3
2 8d+ 2, 8d+ 3, 8d+ 4, 8d+ 5
3 8d+ 6, 8d+ 7

This improves on some of our results from Sec. 2. Indeed, for instance, for n = 7
we have now spanP (1, 7) ∈ {6, 7}, whilst by Sec. 2, we only had spanP (1, 7) ≥ 3,
and by (2.3), w(P (1, 7)) = 1 + c, hence using (2.8), we only had spanP (1, 7) ≤ 14.

The approach used above, based on [8, 1.1], can also be applied in more general
situations, to improve on some of the results previously achieved. Indeed, let d1 =
gcd(m,n+ 1), d2 = gcd(m− 1, n+ 1). Then

τ ⊕ ε2 = mξ ⊕ (n + 1)η = d1

(
m
d1
ξ ⊕ n+1

d1
η
)

︸ ︷︷ ︸

dim=2n+m+2

,
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and by [8, 1.1] stabspanP (m,n) ≥ ρ(d1) − 2. Analogously,

τ ⊕ ε2 = ξ ⊕ (m− 1)ξ ⊕ (n+ 1)η = ξ ⊕ d2

(
m−1
d2
ξ ⊕ n+1

d2
η
)

︸ ︷︷ ︸

dim=2n+m+1

,

so stabspanP (m,n) ≥ ρ(d2) − 2. For odd m ≥ 3, this is also true for spanP (m,n),
because by [10, 20.4, 20.6] we obtain

spanP (m,n) ≥ min
{
m+2n−1

2
, spanSm+2n, stabspanP (m,n)

}

≥

≥ min
{

(m−1)+(n+1)+(n−1)
2

︸ ︷︷ ︸

≥d2≥ρ(d2)

, ρ(m+ 2n+ 1) − 1
︸ ︷︷ ︸

≥ρ(d2)−1, since d2 | m+2n+1

, ρ(d2) − 2
}

= ρ(d2) − 2.

To show a concrete example of an improvement achieved in this way, for P (9, 7) we
now obtain spanP (9, 7) ≥ ρ(8) − 2 = 6, whilst by Proposition 2.18 we only had
spanP (9, 7) ≥ 3.

4 Vector fields on P (m, 1)

By Proposition 2.17, if m ≡ 1 (mod 4), then spanP (m, 1) = 2 = spanSm + 1. Now
we show that spanP (m, 1) ≥ spanSm + 1 also for other odd values of m. Hence,
excluding the case m ≡ 15 (mod 16), by Corollary 2.13, we obtain spanP (m, 1) =
spanSm + 1 for odd m.

Proposition 4.1. There is a homeomorphism g : CP 1 → S2 such that if g(z1, z2) =
(x1, x2, x3), then g(z̄1, z̄2) = (x1, x2,−x3). (We take the sphere S2 as the set {(x1, x2,
x3) ∈ R3; x2

1 + x2
2 + x2

3 = 1}.)

Proof. A suitable map is

g(z1, z2) =

(

2 Re(z1z̄2)

|z1|2 + |z2|2
,
|z2|

2 − |z1|
2

|z1|2 + |z2|2
,

2 Im(z1z̄2)

|z1|2 + |z2|2

)

.

One readily verifies that g(z1, z2) ∈ S2 and the given condition is fulfilled. Thus it
suffices to show that g is a homeomorphism. Clearly g is continuous, hence we are
done if we find any continuous map f : S2 → CP 1 such that f ◦ g and g ◦ f are the
identity maps. A suitable f is the map defined by

f(x1, x2, x3) =







(x1 + ix3, 1 + x2), for (x1, x2, x3) 6= (0,−1, 0),

(1 − x2, x1 − ix3), for (x1, x2, x3) 6= (0, 1, 0).

A short calculation shows that for (x1, x2, x3) /∈ {(0,−1, 0), (0, 1, 0)} both formulae
agree (the values are in CP 1), and f is well defined. It is continuous on the entire
S2 since it is continuous on the sets S2 \ (0,−1, 0) and S2 \ (0, 1, 0) and agrees on
their intersection. Finally, one verifies directly that f ◦ g and g ◦ f are identities.

Theorem 4.2. Let k ≥ 1 and v1, . . . , vk : Sm → TSm be vector fields linearly in-

dependent at every point of Sm and equivariant with respect to the relation x ∼
−x. Then there are at least k + 1 vector fields on Sm × S2 linearly indepen-

dent at every point and equivariant with respect to the relation (x, (x1, x2, x3)) ∼
(−x, (x1, x2,−x3)).
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Proof. Take the vector fields w1, . . . , wk+1 : Sm × S2 → T (Sm × S2) on Sm × S2

defined by

wi(x, (x1, x2, x3)) = (vi(x), (0, 0, 0)) for i = 1, . . . , k − 1,

wk(x, (x1, x2, x3)) = (x1vk(x), (x
2
1 − 1, x1x2, x1x3)),

wk+1(x, (x1, x2, x3)) = (x2vk(x), (x1x2, x
2
2 − 1, x2x3)).

As can be readily verified, these maps actually are smooth vector fields on Sm ×
S2. They also are linearly independent at every point. Indeed, to prove this, if
they are linearly dependent at a point (x, (x1, x2, x3)), there are some coefficients
α1, . . . , αk+1 ∈ R, not all zero, such that

∑k+1
i=1 αiwi = ~0. From this obviously

~0 =
k−1∑

i=1

αivi(x) + (αkx1 + αk+1x2)vk(x),

0 = αk(x
2
1 − 1) + αk+1x1x2 = x1(αkx1 + αk+1x2) − αk,

0 = αkx1x2 + αk+1(x
2
2 − 1) = x2(αkx1 + αk+1x2) − αk+1,

0 = αkx1x3 + αk+1x2x3.

Since v1, . . . , vk are independent at every point, it necessarily follows from the first
equality, that α1 = · · · = αk−1 = αkx1 + αk+1x2 = 0. Substituting this into the
second and third equality, we have αk = αk+1 = 0. The contradiction proves our
claim.

We are left with verifying the equivariance of our vector fields with respect
to the relation (x, z) ∼ Ψ(x, z), where z = (x1, x2, x3), Ψ(x, z) = (−x, ψ(z)),
ψ(x1, x2, x3) = (x1, x2,−x3). By our assumption, the fields vi are equivariant
with respect to the relation x ∼ −x. This means, that we can take a smooth
curve γix : R → Sm passing through x = γix(0) with velocity vi(x), and the curve
γi−x : R → Sm, defined by γi−x(t) = −γix(t), then passes through −x with velocity
vi(−x).

Clearly, for i = 1, 2, . . . , k− 1, the vector wi(x, z) is the velocity (at t = 0) of the
curve Γi(x,z) : R → Sm × S2, Γi(x,z)(t) = (γix(t), z). So we have

Ψ(Γi(x,z)(t)) = Ψ(γix(t), z) = (−γix(t), ψ(z)) = (γi−x(t), ψ(z)) =

= Γi(−x,ψ(z))(t) = ΓiΨ(x,z)(t).

Hence, for i = 1, 2, . . . , k − 1, the vector fields wi are equivariant.

The vector wk(x, z) is the velocity (at t = 0) of the curve Γk(x,z) : R → Sm × S2,

Γk(x,z)(t) = (γkx(x1t), βz(t)), where βz : R → S2 ⊂ R3 is a curve passing through

(x1, x2, x3) = z = βz(0) ∈ S2 with velocity (x2
1 − 1, x1x2, x1x3). In other words, we

have dβz

dt
(0) = (x2

1 − 1, x1x2, x1x3). For every point (x1, x2, x3) = z ∈ S2, the vector

d(ψ(βz))

dt
(0) = dψ(βz(0)) ·

dβz
dt

(0) =






1 0 0
0 1 0
0 0 −1




 · (x2

1, x1x2, x1x3)
T =

= (x2
1, x1x2,−x1x3)

T =
dβψ(z)

dt
(0)
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is the velocity, at t = 0, of the curve ψ(βz(t)). Hence the flow on S2 determined
by the curves ψ(βz) generates the same vector field as the flow determined by the
curves βψ(z). Necessarily, ψ(βz(t)) = βψ(z)(t), whence

Ψ(Γk(x,z)(t)) = Ψ(γkx(x1t), βz(t)) = (−γkx(x1t), ψ(βz(t))) =

= (γk−x(x1t), βψ(z)(t)) = Γk(−x,ψ(z))(t) = ΓkΨ(x,z)(t).

Thus wk is equivariant. The equivariance of the vector field wk+1 can be shown
analogously.

Corollary 4.3. If m is odd, then spanP (m, 1) ≥ spanSm + 1.

Proof. It is well known for odd m, that there are k everywhere linearly independent
vector fields on Sm with k = spanSm ≥ 1. Moreover, these vector fields can be
taken to be ”linear”, so we may assume they are equivariant with respect to x ∼ −x.
Combining 4.2 and 4.1, we produce k + 1 everywhere independent vector fields on
P (m, 1), hence we have spanP (m, 1) ≥ k + 1 = spanSm + 1.
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[6] J. Korbaš, P. Zvengrowski, The vector field problem: A survey with emphasis

on specific manifolds, Expo. Math. 12 (1994), 3–30.
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