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Abstract

The aim of this paper is to study the canonical partial metric associated to

the norm of a normed space, whose related non-translation-invariant topology

can be used to characterize the convexity properties of the original space. In

order to do this, we define and characterize a new intermediate geometric

property that we call continuous convexity, which appears in a natural way

in the context of the canonical partial metric topology.

1 Introduction

The notion of partial metric was introduced by Matthews in [7] as a part of the study
of programming language semantics. Later on, this concept was also used in other
contexts, as in the complexity analysis of algorithms and programs (see [3, 5, 10, 11,
13, 14]). Actually, several structures that provide models for the complexity analysis
can be identified with certain subsets of linear spaces with particular topologies.
However, these examples do not fit with the usual scheme of topological linear spaces.
For instance, the topologies defined in this context are not in general Hausdorff, or
they are non-translation-invariant (see [1, 4, 8, 9]).

In this paper we show that partial metrics also provide an adequate framework
to define new topologies on linear spaces that can be used to investigate geometrical
properties of normed spaces. Our motivation is given by the fact that strict convexity
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and related geometric notions of the theory of Banach spaces can be characterized
by comparing topologies on linear spaces which do not provide topological linear
space structures. Some preliminary results in this direction can be found in [9]; in
this paper we continue this research by introducing and characterizing the notion of
continuous convexity. We conclude in this way our investigation on the geometrical
applications of partial metrics defined on linear spaces.

We will present these ideas in three sections. Section 1 is devoted to recall several
definitions and basic results on partial metrics. In Section 2 we define the canonical
partial metric associated to a norm that induces the topology of the space and
prove several fundamental results. Since some of these results also work for the case
of translation invariant topologies defined by metrics, we also explain the suitable
extension of these ideas when we replace norms by a more general class of functions
ϕ associated to distances (Remark 2.4). Finally, in Section 3 we characterize the
notion of continuous convexity in terms of the convexity properties of the norm using
the canonical partial metric. Our aim is to show that it provides a natural way to
define a (non-translation-invariant) topology on normed spaces that in fact contains
all the information about the convexity properties of the norm. Actually, we show
that convergence properties of sequences with respect to the canonical partial metric
can be used to characterize strict and uniform convexity; the notion of continuous
convexity is the main tool for our analysis.

In all the paper, R will denote the set of real numbers, R+ the set of the non-
negative real numbers, and N the set of natural numbers. A quasi-metric on a set
X is a function d : X × X → R+ such that for all x, y, z ∈ X :

(1) d(x, y) = d(y, x) = 0 ⇔ x = y;
(2) d(x, y) ≤ d(x, z) + d(z, y).
If d is a quasi-metric on X, we say that (X, d) is a quasi-metric space. If d(x, y) =

d(y, x) = 0 does not necessarily imply x = y in the definition above, then d is said
to be a quasi-pseudo-metric. In this case we say that (X, d) is a quasi-pseudo-metric
space. A quasi-pseudo-metric d generates a topology T (d) on X which has as a base
the family of open d-balls

Bd(x, ε) = {y ∈ X : d(x, y) < ε}, x ∈ X, ε > 0.

Note that if d is a quasi-metric, the function ds(x, y) = max{d(x, y), d(y, x)} is a
metric on X. In this case, T (d) is clearly a T0-topology on X.

Definition 1.1. A partial metric on X is a function p : X ×X → R+ such that for
all x, y, z ∈ X,

(1) p(x, y) = p(x, x) = p(y, y) ⇔ x = y,

(2) p(x, x) ≤ p(x, y),

(3) p(x, y) = p(y, x), and

(4) p(x, y) + p(z, z) ≤ p(x, z) + p(z, y).

If the equalities of (1) hold for some x and y which are not necessarily equal, we
say that p is a partial pseudo-metric. Each partial pseudo-metric defines a quasi-
pseudo-metric by means of the formula d(x, y) := p(x, y)−p(x, x), and the topology
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generated by p is the one given by d, i.e. by the base B = {Vε,p(x) : x ∈ X, ε > 0},
where

Vε,p(x) = {y ∈ X : p(x, y) < ε + p(x, x)}

(see [2]). Clearly, if p is a partial metric then d is a quasi-metric. If p is a partial
pseudo-metric on X we say that (X, p) is a partial pseudo-metric space (a partial
metric space if p is a partial metric). If X is a linear space, we will also call (X, p)
a partial pseudo-metric linear space. If x is an element of a linear space X, we will
write [0, x] for the set {αx | 0 ≤ α ≤ 1}.

Through the paper the set X will be a real linear space. We will use several
definitions of the classical framework of the Functional Analysis. Our basic reference
is [12]. For notions related to convexity in Banach spaces and lattices we refer to
[6]. If ϕ is a norm on X, ε > 0 and x ∈ X, we denote by Bε,ϕ(x) the open ball
{y ∈ X|ϕ(x− y) < ε}.

The following lemma, which is a direct consequence of Lemma 2.2 in [7], gives
information about the basic sets Vε,p(x) that will be useful in this paper.

Lemma 1.2. Let x ∈ X. Then B = {Vε,p(x) : ε > 0} is a base of neighborhoods of
x for the space (X, p).

2 The canonical partial metric topology

In this section we define and characterize the canonical partial metric pϕ associated
to a norm ϕ.

Lemma 2.1. Every norm ϕ on a linear space X defines a partial metric pϕ by
means of the formula

pϕ(x, y) := ϕ(x − y) + ϕ(x) + ϕ(y), x, y ∈ X.

Moreover, pϕ satisfies

(1) pϕ(x, 0) = pϕ(−x, 0) for every x ∈ X and

(2) pϕ(x, y) = 0 if and only if x = y = 0.

Proof. Consider the function pϕ defined as above. The following calculations show
that pϕ is a partial metric. For (1) in Definition 1.1, note that pϕ(x, x) = pϕ(x, y) =
pϕ(y, y), if and only if

2ϕ(x) = ϕ(x − y) + ϕ(x) + ϕ(y) = 2ϕ(y),

i.e. ϕ(x−y)+ϕ(x)−ϕ(y) = 0 and ϕ(x−y)−ϕ(x)+ϕ(y) = 0. This is also equivalent
to ϕ(x − y) = 0. Since ϕ is a norm, it follows that pϕ(x, x) = pϕ(x, y) = pϕ(y, y) if
and only if x = y.

Let be x, y ∈ X. An easy calculation shows that pϕ(x, x) ≤ pϕ(x, y). It is also
clear that pϕ(x, y) = pϕ(y, x) for every x, y ∈ X, as a consequence of the equality
ϕ(z) = ϕ(−z) for every z ∈ X. To prove the last condition in Definition 1.1, consider
x, y, z ∈ X. Then

pϕ(x, y) + pϕ(z, z) = ϕ(x − y) + ϕ(x) + ϕ(y) + 2ϕ(z)
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≤ ϕ(x − z + z − y) + ϕ(x) + ϕ(y) + 2ϕ(z)

≤ ϕ(x − z) + ϕ(x) + ϕ(z) + ϕ(z − y) + ϕ(y) + ϕ(z) = pϕ(x, z) + pϕ(y, z).

So, pϕ defines a partial metric. The statements (1) and (2) follow as direct conse-
quences of the properties of the norms.

We will call the partial metric pϕ the canonical partial metric associated to a norm
ϕ, and we will denote by τpϕ

the topology generated by the quasi-metric associated
to pϕ. An analogous definition has been made by Matthews in the last section of
[7]. Some preliminary results regarding the canonical partial metric associated to a
norm can be found in [9].

Remark 2.2. The definition of the basic neighborhoods of 0 given by pϕ makes clear
that the local structure at 0 is equivalent for τpϕ

and for the norm topology τϕ. It is
also easy to see that this is not the case for elements x ∈ X such that x 6= 0.

The norm topology τϕ is finer than τpϕ
. To see this, consider ε > 0, x ∈ X and

the neighborhood Vε,pϕ
(x) = {y : ϕ(x − y) + ϕ(y) < ϕ(x) + ε}. Let us show that

B ε

2
,ϕ(x) ⊂ Vε,pϕ

(x). Take y ∈ B ε

2
,ϕ(x). We can find z ∈ B ε

2
,ϕ(0) such that y = x+ z.

Then ϕ(x − (x + z)) + ϕ(x + z) < ε
2

+ ϕ(x) + ε
2
, and we obtain the result.

Let us finish this section providing a representation theorem for topologies with
a particular local structure by means of the canonical partial metric.

Theorem 2.3. Let X be a linear space, let τ be a topology on X and let ϕ be a
norm on X. The following statements are equivalent.

(1) For every x ∈ X, the family of subsets

∪α+β=ϕ(x)+ε(Bα,ϕ(0) ∩ Bβ,ϕ(x)), ε > 0, α ≥ 0, β ≥ 0,

defines a base of neighborhoods of x for the topology τ .

(2) τ = τpϕ
.

Proof. Let us prove first (1) → (2). Consider the canonical partial metric pϕ. Take
x ∈ X and ε > 0. Since

Vε,pϕ
(x) = {y ∈ X : pϕ(x, y) < ε+pϕ(x, x)} = {y ∈ X : ϕ(y−x)+ϕ(y) < ϕ(x)+ε},

we have that for each element y ∈ X such that there are α ≥ 0 and β ≥ 0 satisfying
ϕ(y) < α, ϕ(y − x) < β, and α + β = ϕ(x) + ε, we obtain that y ∈ Vε,pϕ

(x). This
proves ∪α+β=ϕ(x)+ε(Bα,ϕ(0) ∩ Bβ,ϕ(x)) ⊂ Vε,pϕ

(x). The reverse inclusion is given by
the following argument. Consider an element y ∈ Vε,pϕ

(x), i.e. ϕ(x − y) + ϕ(y) <
ϕ(x) + ε. There are always α ≥ 0 and β ≥ 0 such that α + β < ϕ(x) + ε, ϕ(y) < α
and ϕ(x − y) < β. It follows that y ∈ Bα,ϕ(0) ∩ Bβ,ϕ(x) and then

y ∈ ∪α+β=ϕ(x)+ε(Bα,ϕ(0) ∩ Bβ,ϕ(x)), for every ε > 0.

Thus, τ and τpϕ
coincide.

For the converse, if τ = τpϕ
, then for every x ∈ X the sets Vε,pϕ

(x) define a base
of neighborhoods of x for the topology τ . A direct calculation using the arguments
of the paragraph above gives that Vε,pϕ

(x) = ∪α+β=ϕ(x)+ε(Bα,ϕ(0) ∩ Bβ,ϕ(x)) for
every ε > 0.
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Remark 2.4. The construction above can also be considered in the case that the
topology on the linear space is given by a metric. If ϕ : X → R+ is just a real
function that satisfies that for every x, y ∈ X, ϕ(x+y) ≤ ϕ(x)+ϕ(y), ϕ(x) = ϕ(−x),
and ϕ(x) = 0 if and only if x = 0 —i.e., if we do not require homogeneity to the
function ϕ— the same definition of pϕ provides a topology on X. A natural way
of defining such a function ϕ is by using a metric d : X × X → R+ that satisfies
d(x, 0) = d(−x, 0), x ∈ X. But even if we define a translation invariant topology
generated by such a function just considering the neighborhoods of x ∈ X given by
the sets Bε,ϕ(x) = x + Bε,ϕ(0) —where Bε,ϕ(0) := {y ∈ X : ϕ(y) < ε}— we do
not obtain in general a topological linear space structure for X; the continuity of
the linear operations may fail, as can be easily seen by considering the function ϕ
given by the discrete metric on 0. Other example of a function ϕ that satisfies the
requirements above and is not a norm is the following. Let (X, ‖.‖) be a normed
space and consider the function given by ϕ(x) = log(‖x‖ + 1), x ∈ X; the triangle
inequality of ϕ is a consequence of

‖x+y‖+1 ≤ ‖x‖+‖y‖+1 ≤ ‖x‖+‖y‖+1+‖x‖‖y‖ = (‖x‖+1)(‖y‖+1), x, y ∈ X,

and the other requirements clearly hold. Other examples of functions ϕ are given by
topological linear spaces whose topology is described by a countable base of neighbor-
hoods of 0; it can be used to define a balanced (countable) local base that provides
such a function ϕ following a standard construction (see for instance the proof of
Th.1.24 in [12]).

3 Continuous convexity in normed spaces

In this section we develop a new geometrical concept that is related to the convex-
ity properties of the norm. We will call it continuous convexity, since it involves
convergence of sequences with respect to the canonical partial metric topology and
the norm topology. We will also show the relations between this concept and the
classical convexity properties: strict convexity and uniform convexity. If (xn)n is a
sequence in X, we will say that it pϕ-converges to x ∈ X if limn pϕ(x, xn) = pϕ(x, x).
We also write in this case x ∈ pϕ − limn xn.

Definition 3.1. Let ϕ be a norm on a linear space X. Let x ∈ X. We say that
ϕ is continuously convex at x if every sequence that pϕ-converges to x satisfies that
there is a subsequence that ϕ-converges to an element y ∈ [0, x]. We will say that
ϕ is continuously convex if it is continuously convex at x for every x ∈ X. We will
also say that the normed space (X, ϕ) is continuously convex.

Simple examples of norms that satisfy this property are given by the natural
norms of the finite dimensional spaces ℓn

p , n ∈ N , 1 < p < ∞, i.e. the n-dimensional
spaces Rn endowed with the usual p-norm. Since every pϕ-convergent subsequence
is bounded, there is a subsequence that converges in the norm topology (recall that
each bounded subset of a finite dimensional normed space is relatively compact).
But the limit y of this subsequence satisfies ϕ(x − y) + ϕ(y) = ϕ(x). Therefore, if
the space is strictly convex —and this happens whenever 1 < p < ∞, see Definition
3.7 below— we obtain that y = αx for some 0 ≤ α ≤ 1.
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Proposition 3.2. Let ϕ be a norm on X and x ∈ X. The following statements are
equivalent.

(1) ϕ is continuously convex at x.

(2) For every ε > 0 there exists a δ > 0 such that ϕ(x − y) + ϕ(y) < ϕ(x) + δ
implies

inf{ϕ(αx − y) : 0 ≤ α ≤ 1} < ε

for every y ∈ X.

Proof. Let us show first (2) → (1). Consider a sequence (yn)n that pϕ-converges
to x ∈ X, i.e. x ∈ pϕ − limn yn. Note that for each pair x, y ∈ X the function
fx,y : [0, 1] → R+ given by fx,y(α) := ϕ(αx−y) is continuous; then fx,yn

is continuous
for each n ∈ N ; thus, there is a sequence (αn)n in [0, 1] such that

ϕ(αnx − yn) = inf{ϕ(αx − yn) : 0 ≤ α ≤ 1}.

Note that there are also a subsequence (αn′)n′ of (αn)n and an α0 ∈ [0, 1] such that
αn′ → α0, and so ϕ(α0x − αn′x) → 0.

Now choose an arbitrary ε > 0. Then for its associated δ ∈]0, ε[ of condition (2),
there is n′

0 ∈ N such that for n′ ≥ n′
0,

ϕ(α0x − αn′x) = |α0 − αn′ |ϕ(x) < δ and ϕ(x − yn′) + ϕ(yn′) < ϕ(x) + δ.

It follows from the assumption that ϕ(αn′x − yn′) < ε and hence

ϕ(α0x − yn′) ≤ ϕ((α0 − αn′)x) + ϕ(αn′x − yn′) < δ + ε < 2ε,

whenever n′ ≥ n′
0. So that the subsequence (yn′)n′ converges to α0x ∈ [0, x].

To prove that (1) → (2) we check that if the condition (2) does not hold, then
neither does (1). Suppose that (2) does not hold. Then there is ε0 > 0 such that
for every δ > 0 there is yδ that satisfies that

ϕ(x − yδ) + ϕ(yδ) < ϕ(x) + δ but ϕ(αδx − yδ) > ε0,

where αδ is the element of the interval [0, 1] for which inf{ϕ(αx − yδ) : 0 ≤ α ≤ 1}
is attained. Note that this αδ exists as a consequence of the fact that for every
x, y ∈ X the function fx,y defined at the beginning of the proof is continuous.

Take now δ = 1
n

for every n ∈ N . Then the sequence (yn)n defined in this way
pϕ-converges to x. But for every α0 and n ∈ N ,

ϕ(α0x − yn) ≥ inf{ϕ(αx − yn) : 0 ≤ α ≤ 1} > ε0.

Then there is no α0 such that α0x = limn′ yn′ for any subsequence (yn′)n′ of (yn)n.

In what follows we characterize continuous convexity in terms of the base of
neighborhoods of the topology τpϕ

given by the sets Vε,pϕ
. We need to introduce a

new type of topology on linear spaces.
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Definition 3.3. Let τ be a topology on a linear space X. We say that τ is a radial
topology if

(1) 0 has a countable local base V = {Vη(0) : η ∈ N}, and

(2) for every x ∈ X, the family

∪0≤α≤1(αx + Vη(0)), η ∈ N,

defines a local base of x.

Lemma 3.4. Let ϕ be a norm on a linear space X. Then the class of families

Rx = {Rε(x) := ∪0≤α≤1(αx + Bε,ϕ(0)) | ε > 0}

when considered as a base of neighborhoods for each x ∈ X defines a radial topology.

Proof. It is enough to prove that for every x ∈ X and ε > 0, every y ∈ R ε

2
(x)

satisfies that R ε

2
(y) ⊂ Rε(x). Take y ∈ R ε

2
(x) and z ∈ R ε

2
(y). Then there are

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, and v, w ∈ X such that y = αx + v and z = βy + w, and
ϕ(v) < ε

2
, ϕ(w) < ε

2
. Note that

z = βy + w = β(αx + v) + w = βαx + (βv + w).

Since 0 ≤ βα ≤ 1 and ϕ(βv + w) ≤ ϕ(βv) + ϕ(w) ≤ βϕ(v) + ϕ(w) < ε, we have a
representation of z as γx + r, where γ := βα and r := βv + w. Since ϕ(r) < ε we
obtain the result.

Lemma 3.5. Let ϕ be a norm on a linear space X. For every x ∈ X and ε > 0,
R ε

2
(x) ⊂ Vε,pϕ

(x).

We omit the straightforward proof. The following result gives a characterization
of continuous convexity for a normed space as a geometric condition. This will
be also useful to motivate the introduction of uniform convexity as an associated
property.

Proposition 3.6. Let (X, ϕ) be a normed space. The following statements are
equivalent.

(1) (X, ϕ) is continuously convex.

(2) For every x ∈ X and every ε > 0 there exists a δ(x) > 0 such that

ϕ(x − y) + ϕ(y) < ϕ(x) + δ(x)

implies inf{ϕ(αx − y) : 0 ≤ α ≤ 1} < ε for every y ∈ X.

(3) For every z ∈ X and for every ε > 0 there is a δ(z) > 0 such that for every
x, y ∈ X such that x + y = z, if ϕ(x) + ϕ(y) < ϕ(z) + δ(z) then

inf{ϕ(αx − (1 − α)y) : 0 ≤ α ≤ 1} < ε.

(4) The topology τpϕ
is radial.



554 S. Romaguera – S. Oltra – E.A. Sánchez Pérez

Proof. The equivalence between (1) and (2) is given by applying Proposition 3.2
for every x ∈ X. Let us show now that (2) implies (3). Let z ∈ X and ε > 0.
Consider a decomposition z = x + y. If we apply (2) to the element z, we obtain
that there exists a δ (depending on z and ε) such that for every v ∈ X satisfying
ϕ(z − v) + ϕ(v) < ϕ(z) + δ, we have inf{ϕ(αz − v) : 0 ≤ α ≤ 1} < ε. Now take
y = v = z − x and δ(z) = δ, and suppose that ϕ(x) + ϕ(y) < ϕ(z) + δ(z). Then
ϕ(z − v) + ϕ(v) < ϕ(z) + δ. Consequently, we obtain

ε > inf{ϕ(αz − v) : 0 ≤ α ≤ 1} = inf{ϕ(α(x + y) − y) : 0 ≤ α ≤ 1}

= inf{ϕ(αx − (1 − α)y) : 0 ≤ α ≤ 1}.

For the converse, let x ∈ X and ε > 0. Take z = x in (3). Then there is a δ(x) > 0
such that if y ∈ X satisfies that ϕ(x − y) + ϕ(y) < ϕ(x) + δ(x), then

inf{ϕ(α(x − y) − (1 − α)y) : 0 ≤ α ≤ 1} < ε.

But this inequality can be rewritten as inf{ϕ(αx − y) : 0 ≤ α ≤ 1} < ε. This
proves that (3) implies (2).

Let us prove now that (2) implies (4). Note that the sets {Bε,ϕ(0) : ε > 0}
define a local base at 0 for the topology τpϕ

, since pϕ(x, x) = 2ϕ(x) for every x ∈ X.
Suppose that ϕ satisfies the requirements of the statement. Let x ∈ X and ε > 0.
As a consequence of Lemma 3.5, we only need to prove that there is a δ > 0 such
that Vδ,pϕ

(x) ⊂ Rε(x). Since ϕ satisfies (2), we have that there is δ > 0 such
that, if y satisfies ϕ(x − y) + ϕ(y) < ϕ(x) + δ, then there is 0 ≤ α ≤ 1 such that
ϕ(y − αx) < ε. Then y can be written as y = αx + z, where ϕ(z) < ε. This proves
the desired inclusion.

For the converse, suppose that the topology is radial and fix x ∈ X. Since the
family of subsets {Vγ,pϕ

(x) : γ > 0} is a local base for τpϕ
in x, for every Rε(x)

there is a δ > 0 such that Vδ,pϕ
(x) ⊂ Rε(x). Consider y ∈ Vδ,pϕ

(x) ⊂ Rε(x). Then
ϕ(x − y) + ϕ(y) < δ + ϕ(x) implies that for an α0 ∈ [0, 1], y − α0x ∈ Bε,ϕ(0). Then

inf{ϕ(αx − y) : 0 ≤ α ≤ 1} ≤ ϕ(αx0 − y) < ε.

This finishes the proof.

In the rest of the paper we analyze the relation between strict convexity, uniform
convexity and continuous convexity. We will introduce a new sequential property
for norms on linear spaces that is closely related to the definition of continuous
convexity. Let us recall first several classical definitions and characterizations.

Definition 3.7. We say that a norm ϕ is strictly convex if for every x, y ∈ X, if
ϕ(x) 6= 0 and ϕ(x + y) = ϕ(x) + ϕ(y), then y ∈ 〈x〉.

It is well known that the definition above is equivalent to the following condition.
We say that the norm ϕ —equivalently, the normed space (X, ϕ)— is strictly convex

if for every pair of norm one elements x, y ∈ X, ϕ
(

x+y
2

)

= 1 implies x = y.

Proposition 3.8. A norm ϕ is strictly convex if and only if for each x ∈ X,
⋂

ε>0

Vε,pϕ
(x) ⊂ 〈x〉.
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Proof. Let us show first that the inclusion implies that ϕ is strictly convex. Let
x, y ∈ X such that x 6= 0 and ϕ(x) + ϕ(y) = ϕ(x + y). A direct computation shows
that

⋂

ε>0

Vε,pϕ
(x + y) = {z : ϕ(x + y − z) + ϕ(z) = ϕ(x + y)}.

Therefore, y ∈ ∩ε>0Vε,pϕ
(x+ y). Since the inclusion in the statement holds, we have

that there is a real number λ such that y = λ(x + y). Note that λ 6= 1 —in other
case x = 0, which gives a contradiction with ϕ(x) 6= 0—. Thus, (1 − λ)y = λx, and
then y = λ

1−λ
x.

For the converse, consider an element y ∈ ∩ε>0Vε,pϕ
(x). If x = y, then obviously

y ∈ 〈x〉. Then we can assume that y 6= x. As a consequence of the calculations
above, we obtain ϕ(x − y) + ϕ(y) = ϕ(x). If x = 0, this formula implies y = 0, and
then the inclusion holds. Thus we can assume that x 6= 0. The strict convexity of ϕ
gives that there is a real number λ such that y = λ(x − y), and so y = λ

1+λ
x (note

that λ 6= −1; in other case x = 0). Therefore y ∈ 〈x〉. This proves the proposition.

Proposition 3.9. If the space (X, ϕ) is continuously convex, then it is strictly
convex.

Proof. Let x 6= 0 and consider an element y ∈ ∩ε>0Vε,pϕ
(x). Then the constant

sequence (y) converges to x with respect to pϕ. Since ϕ is continuously convex, we
obtain that there is an α ∈ [0, 1] such that αx = y. Thus, ∩ε>0Vε,pϕ

(x) ⊂ 〈x〉, and
(X, ϕ) is strictly convex as a consequence of Proposition 3.8.

A direct application of Proposition 3.9 provides more examples of spaces which
are not continuously convex. For instance, the Banach spaces (ℓ1, ‖.‖1) and (c0, ‖.‖∞)
do not have this property.

A straightforward argument shows that the strict convexity for a norm ϕ is
equivalent to the following property: for every x, y ∈ X, if x 6= 0 and ϕ(x − y) +
ϕ(y) = ϕ(x), then y ∈ 〈x〉. Note that in this case, ϕ(y) ≤ ϕ(x). This and the
proposition above motivate the following definition.

Definition 3.10. We say that a norm satisfies the sequential convex-compact prop-
erty —SCC property for short— if for every sequence (xn)n that pϕ-converges to an
element x ∈ X, there is a subsequence that ϕ-converges.

Example 3.11. (i) Every finite dimensional normed space satisfy the SCC prop-
erty. This is a straightforward consequence of the fact that convergence with
respect to the canonical partial metric implies boundedness of the sequence;
if (xn)n converges in this sense to an element x ∈ X, then in particular
ϕ(x−xn)+ϕ(xn) < ϕ(x)+1 for every n ≥ n0 for a certain n0 ∈ N . Therefore,
(xn)n is bounded. Since the closure of each bounded set in a finite dimensional
normed space is compact, we obtain a convergent subsequence.

(ii) Every continuously convex norm satisfies also the SCC property, as a direct
consequence of the definition of continuous convexity.

However, there are also simple examples of spaces which do not satisfy this
property.
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Example 3.12. Consider the Banach space (ℓ∞, ‖.‖∞), the element x = (2, 0, 0, 0, ...)
and the sequence (yi)i, yi = (1, 1, ..., 1, 0, 0, ...), where the last 1 is situated in the i-th
position, i ∈ N . It is easy to see that for every i ∈ N , ‖yi‖∞ + ‖x− yi‖∞ = 1 + 1 =
‖x‖∞. This obviously means that (yi)i converges to x with respect to the canonical
partial metric p

‖.‖∞
. However, for every i 6= j we have that ‖yi − yj‖∞ = 1, and

therefore there is no norm convergent subsequence for the sequence (yi)i.

Theorem 3.13. Let (X, ϕ) be a normed space. Then the following statements are
equivalent.

(1) ϕ is continuously convex.

(2) ϕ is strictly convex and satisfies the SCC property.

Proof. Let us show first that (2) implies (1). Consider a sequence (yn)n that pϕ-
converges to an element x ∈ X. Since ϕ satisfies the SCC property, we have that
there is a subsequence —which we still denote by (yn)n— that converges with respect
to ϕ. Let us call y to the limit of this subsequence. Then, since for every δ there is
an index n0 such that for every n ≥ n0,

ϕ(x − yn) + ϕ(yn) < ϕ(x) +
δ

3
and |ϕ(y) − ϕ(yn)| ≤ ϕ(y − yn) <

δ

3
,

we have that

ϕ(x−y)+ϕ(y) ≤ ϕ(x−yn)+ϕ(yn−y)+ϕ(y) < ϕ(x−yn)+
δ

3
+

δ

3
+ϕ(yn) < ϕ(x)+δ.

These inequalities hold for every δ > 0, and so we obtain that ϕ(x−y)+ϕ(y) = ϕ(x).
Therefore y ∈ ∩ε>0Vε,pϕ

(x). Since ϕ is strictly convex, we have that y ∈ [0, x], and
thus ϕ is continuously convex. The converse is a direct consequence of Proposition
3.9.

Example 3.14. Let us show another example of the continuous convexity property
by using Proposition 3.6 in order to motivate the study of the relation between this
property and the uniform convexity of a norm. Consider a Hilbert space H with
norm ‖.‖2. Then the following calculations show that ‖.‖2 defines a continuously
convex norm.

Let x ∈ H . Take a scalar δ > 0 and suppose that a vector y ∈ H satisfies
‖x − y‖2 + ‖y‖2 < ‖x‖2 + δ. Consider the projection λx of y on the subspace 〈x〉,
and let us define z := y − λx. Note that z is orthogonal to x. We distinguish two
cases.

(i) 0 ≤ λ ≤ 1. Then we have that

‖x‖2 + δ ≥
√

(1 − λ)2‖x‖2
2 + ‖z‖2

2 +
√

λ2‖x‖2
2 + ‖z‖2

2 ≥
√

‖x‖2
2 + 4‖z‖2

2.

Therefore ‖z‖2 ≤
√

‖x‖2δ

2
+ δ2

4
.

Let ε > 0. Then, it is enough to take a δ > 0 such that ε >
√

‖x‖2δ

2
+ δ2

4
to

obtain that ‖y − λx‖2 < ε, and this implies that

inf{‖αx − y‖2 | 0 ≤ α ≤ 1} < ε.
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(ii) λ > 1 or λ < 0. In the first case let us consider z′ such that y = x + z′. A
direct calculation shows that ‖x‖2 ≤ ‖x + z′‖2. Then

‖z′‖2 + ‖x‖2 ≤ ‖ − z′‖2 + ‖x + z′‖2 < ‖x‖2 + δ.

Thus, ‖y−x‖2 = ‖z′‖2 < δ, which clearly implies that inf{‖αx−y‖2 | 0 ≤ α ≤
1} < δ. The same kind of argument shows that for the other case ‖y − 0‖2 =

‖y‖2 < δ. Therefore, if we take δ > 0 such that max{δ,
√

‖x‖2δ

2
+ δ2

4
} < ε, we

obtain the scalar δ for which the desired property is satisfied.

Note that the relation between the ε and the δ of the characterization of con-
tinuous convexity in Example 3.14 depends on the norm of the element x ∈ H . It
can be easily seen that this would happen in any space having this property. Con-
sequently, and in order to define the uniform version of this convexity property for
normed spaces, we need to restrict the definition using a boundedness condition for
the elements of the space. Taking into account this requirement, we can define the
uniform continuous convexity property as follows. Actually, Theorem 3.17 states
that this uniform version of the continuous convexity property gives in fact a new
characterization of the uniform convexity.

Definition 3.15. We say that a norm ϕ is uniformly continuously convex if for
every ε > 0 there exists a δ > 0 (depending only on ε) such that for every z ∈ X
that can be written as a sum x + y = z of two norm one elements x, y ∈ X,
2 = ϕ(x) + ϕ(y) < ϕ(z) + δ implies inf{ϕ(αx + (1 − α)(−y)) : 0 ≤ α ≤ 1} < ε.

Definition 3.16. Recall that a norm ϕ is uniformly convex if for every ε > 0 there
is a δ > 0 such that, if x, y ∈ X, ϕ(x) = ϕ(y) = 1 and 1 − δ < ϕ(x+y

2
), then

ϕ(x − y) < ε.

Theorem 3.17. Let (X, ϕ) be a normed space. The following statements are equiv-
alent.

(1) ϕ is uniformly continuously convex.

(2) ϕ is uniformly convex.

(3) For every ε > 0 there is a δ > 0 such that if x, y ∈ X are norm one elements
and y ∈ Vδ,pϕ

(x + y), then y ∈ Vε,pϕ
(x).

Proof. Let us prove first that (1) → (2), i.e. if ϕ is uniformly continuously convex
then ϕ is uniformly convex. Consider ε′ > 0 and two elements x, y ∈ X such that
ϕ(x) = ϕ(y) = 1. Let us define ε = ε′/4. Then there exists a δ > 0 such that
ϕ(x+y

2
) > 1−δ implies that inf{ϕ(αx+(1−α)(−y)) : 0 ≤ α ≤ 1} < ε. Hence, there

is an 0 ≤ α ≤ 1 such that

ε > ϕ(αx+(1−α)(−y)) ≥ |ϕ(αx)−ϕ((1−α)(−y))| = |αϕ(x)−(1−α)ϕ(y)| = |2α−1|.

Thus |2α−1| < ε. Let us define now τ such that α = 1
2
+ τ . Then |τ | < 1

2
, and thus

the condition above is equivalent to the following one: |2(1
2

+ τ) − 1| = 2|τ | < ε.
Therefore, if ϕ(x+y

2
) > 1 − δ then 2|τ | < ε. Then the following holds

ε > inf
0≤α≤1

{ϕ(αx + (1 − α)(−y))} = inf
|τ |≤ 1

2

{

ϕ
((

1

2
+ τ

)

x +
(

1

2
− τ

)

(−y)
)}

=
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= inf
|τ |≤ 1

2

{

ϕ
(

1

2
x −

1

2
y + τ(x + y)

)}

= inf
|τ |≤ 1

2

{

ϕ
(

1

2
(x − y) + τ(x + y)

)}

.

Fixing an adequate τ , we obtain

ε > inf
|τ |≤ 1

2

{

ϕ
(

1

2
(x − y) + τ(x + y)

)}

≥
∣

∣

∣

∣

ϕ
(

1

2
(x − y)

)

− |τ |ϕ(x + y)
∣

∣

∣

∣

≥

≥ ϕ
(

1

2
(x − y)

)

− |τ |2 ≥ ϕ
(

1

2
(x − y)

)

− ε.

We conclude that ϕ(x − y) < 4ε = ε′, so ϕ is uniformly convex.
For the converse, suppose that ϕ is uniformly convex. Consider an ε > 0. Then

there is a δ > 0 such that, if ϕ(u) = ϕ(v) = 1 and 2 − 2δ < ϕ(u + v), then
ϕ(u − v) < ε. Take two norm one elements x, y ∈ X such that

2 = ϕ(x) + ϕ(y) < ϕ(z) + δ < ϕ(z) + 2δ,

where x+y = z. The uniform convexity condition at the beginning of this paragraph
gives that ϕ(x − y) < ε. Therefore

inf{ϕ(αx − (1 − α)y) : 0 ≤ α ≤ 1} ≤ ϕ(
x − y

2
) ≤ ϕ(x − y) < ε,

where the first inequality is obtained by the evaluation of ϕ(αx − (1 − α)y) for
α = 1/2.

Let us prove now (2) → (3). First note that the uniform convexity is equivalent
to the following property: given ε > 0, there is a δ > 0 such that ϕ(x+y

2
) ≥ 1 − δ

implies ϕ(x − y) < ε for each couple of norm one elements x, y ∈ X. Suppose now
that ϕ is uniformly convex and consider ε > 0. This ε gives a δ > 0 satisfying
the condition that appears in the definition of uniform convexity. Let δ′ = 2δ and
x, y ∈ X such that ϕ(x) = ϕ(y) = 1 and

ϕ(x) + ϕ(y) < ϕ(x + y) + δ′,

i.e. y ∈ Vδ′,pϕ
(x + y). Thus 1 − δ < 1

2
ϕ(x + y) = ϕ(x+y

2
), and hence, ϕ(x − y) < ε

and then y ∈ Vε,pϕ
(x). The same argument proves also the converse.
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