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Abstract
Let ¢, 0 be odd increasing homeomorphisms from R onto R satisfying
»(0) =0(0) =0, f:[0,1] x RxR — R be a function satisfying Carathéodory
conditions and e : [0,1] — R be a function in L'[0,1]. Let &,7; € (0,1), a;,
bjeR,i=1,2,--- - m—2,j=1,2,---,n—-2,0<&§ <&{E < <o <1,
0<m <Ty<---<Tp_o <1 be given. We study the problem of existence of
solutions for the generalized multi-point boundary value problem

(¢($'))'=f(txa:’)+e 0<t<l,

zaz (&), zbe (1)

in the non-resonance case. We say that this problem is non-resonant if the
associated problem:

(gb( N =0,0<t<1,

zaz (&), zb e (2)

has the trivial solution as its only solution. This is the case if
n—2 m—2

1=> b)) > a

j=1 i=1

Our methods consist in using topological degree and some a priori estimates.
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1 Introduction

Let ¢, 6 be odd increasing homeomorphisms from R onto R satisfying ¢(0) = 6(0) =
0, f:[0,1] x R x R — R be a function satisfying Carathéodory conditions and
e : [0,1] — R be a function in L'[0,1]. Let &,7; € (0,1), a;, b; € R, i = 1,2, -, m—2,
7=1,2,-- - n—20<EE<E << 0<],0<m << <Th_9<1be
given. We study the problem of existence of solutions for the generalized multi-point
boundary value problem

—~

o)) = flt,z,2")+e, 0 <t <1,

)= 3 aile), 0 (1) = Z 02! (7). 3)

.
[y

in the non-resonance case. We say that this problem is non-resonant if the associated
problem:

(G(z)) = 0,0 <t <1,

z(0) = aﬂ:(@ Z b;0(x (4)
has the trivial solution as its only solution. This is the case if

n—2 m—2
1

(1= X )1~

i=1

This problem was studied by Gupta, Ntouyas, and Tsamatos in [20] and by the
author in [16] when the homeomorphisms ¢, 6 from R onto R are the identity
homeomorphisms, i.e for second order ordinary differential equations. The study of
multi-point boundary value problems for second order ordinary differential equations
was initiated by II'in and Moiseev in [22], [23] motivated by the works of Bitsadze
and Samarskii on nonlocal linear elliptic boundary value problems, (see [2], [3], [4])
and has been the subject of many papers, see for example, [5], [6], [11], [12], [13],
[14], [15], [17], [18], [19], [21], [24], [29] and [30]. More recently multipoint boundary
value problems involving a p-Laplacian type operator or the more general operator
—(¢(2"))" has been studied in [1], [7], [8], [9], [10], [25] to mention a few.

We present in Section 2 some a priori estimates for functions z(¢) that satisfy
the boundary conditions in (3). Our a priori estimates are sharper versions of the
corresponding estimates in [16] and explicitly utilize the non-resonance condition for
the boundary value problem (3). In section 3, we present an existence theorem for
the boundary value problem (3) using degree theory.
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2 A Priori Estimates

We shall assume throughout that ¢, 6 are odd increasing homeomorphisms from R
onto R satisfying ¢(0) = 6(0) = 0. We shall also assume that the homeomorphisms
¢, 0 satisfy the following conditions:

(a) For any constant M > 0,

lim sup (b(;](\J)z )

(b) For any 0,0 <o < 1,

= a(M) < . (5)

G(o) = lim sup (220 )@2)

S Ged ) - ©)

The boundary value problem (3) is a non-resonant problem if the boundary value
problem (4) has only the trivial solution. This holds if and only if

n—2 m—2
(1= b)1— Y a) #0. ™)

j=1 i=1
We shall assume in the following that &;,7; € (0,1), a;, b, e R,i=1,2,---, m—2,
=12 n—20<§E << <0< ,0<i << < Tyl 2<1satisfy
the condition (7). We observe that when condition (7) holds then 1—-Ym2%a; #0
and 1 — Y727 b; # 0. Now, for a € R, we set ™ = max(a,0), a~ = max(—a,0) so

that a = a™ — a™ and |a| = a™ + a~. Accordingly, we notice that

m2 af +5" 2 . . m—
01 = min { 1?23"{ 22?’ Zl e “}e[0,1),if X a £0 (8)
lf Z:n 12 a+ 0.

2
Z:L 1 bj 1+Z] 1 J

}e[o 1), if 0275 #0

=min{ 14> 76, YT b7 ’ (9)
0,if S1-2b7 = 0.

are well-defined. The a priori estimate obtained in the following proposition is
similar to the a priori estimate of Lemma 4 of [16]. We repeat the details given in
Lemma 4 of [16] for the sake of completeness.

Proposition 1. Let & € (O D,a,eR,i=1,2, -+ m—2,0<&E <<+ <
Em_o < 1, with (1 — X" %a;) # 0, be given. Also let the function x(t) be such that
x(t), «'(t ) be absolutely continuous on [0,1] and x(0) = X772 a;2(&;). Then

|2 oo M || 2" oo (10)
where
S | ai |
M = min{——— | a; | N + m” ),
|Zzla2 ; |1 Zzlal|
a;&; 1
L+ 1 aid | )

|1—Z;ﬂ1 a; |’1—oy
with \; = max(&,1 —=&;) fori=1,2,---, m—2, and 01 as defined in (8).
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Proof. Since (1 — 7% a;) is non-zero we see that M < oco. Next, we see from

z(&) — 2(0) = [Si2'(s)ds for i=1,2, - — 2 and the assumption that z(0) =
St ar(€) that (1 -7 2a;)x(0) = ZZ” 12 a; [§ a'(s)ds. Tt then follows that
azéz /
20 1< LS L (1)
Also, since z(t) = (&) + f& 2'(s)ds, we see that
m—2 m—2 m—2 ¢ m—2 t
(> a)z(t) = az(&) + Y ai/g 7' (s)ds = z(0) + ai/ x'(s)ds.
i=1 i=1 i=1 i i=1 i

Accordingly,

|Zaz||x =E |+Z|az||/ $)ds |,

i z& 2
< (FEL R RICTIEY N

in view of (11). It is now immediate that

1 |az€z e /
+ Xilai )| 2 || - 12
s (e > Al )| (12)

| [loo<

If we next use the equation x(t) = z(0) + [y 2’(s)ds and the estimate (11) we obtain

Y | ai |
||~‘CH<><>§(|1_1 =) ‘+1) |2 [loo - (13)

i=1 @i

Next, since £(0) = "% a;2(&;) we see that
m—2 m—
2(0)+ > a7 Z o 2(&).
i=1 i=1

It follows that there must exist x1, x2 in [0, 1] such that

m—2

| +mz 0 )r(u) = (X af)a(xa). (14)

i=1
If, now, one of z(x1), x(x2) is zero or ZT 12 a; = 0 (which would imply z(x;) = 0, in
view of the assumption 0 # 1 — "% a; =1 - Y7 2 af + X7 %a; =1 - 22 a‘)
we see using one of the two equations

Xk+/ S)ds, k= 1,2t € [0, 1] (15)

that
|2 oo <[l 2" [loo - (16)
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If both z(x1), z(x2) are non-zero we see that x(x;) # z(x2) since 1 — X7 % a; # 0,
or equivalently 1+ 7% a; # S % a;f. It then follows easily from (14) and (15)
that

(17)

|l —

where oy is as defined in (8).
The proposition is now immediate from (12), (13), (16), (17) and the definitions
of oy as given in (8). [

With oy as given in (9), we see that

(608 (o)
ooz) =l e =N G

in view of our assumption (6). Let ¢ > 0 be such that &(o3)+¢ < 1 and the constant
C. be such that

<1 (18)

(o0 M (022) < (a(oa) +e)(pof ) (2) + C., for every z € R. (19)

Proposition 2. Let 7; € (0,1), b, e R, 7 =1,2,- -, n—=2,0<7 <7 <
e < Ty < 1, with 1 — Z;L;f bj # 0 be given. Also let the function x(t) be
such that x(t), '(t) be absolutely continuous on [0,1] with (¢(z')) € L'(0,1) and
0(2'(1)) = Z?;lz b;0(«'(1;)). Then

1 C
/ OO< ANV € 20
166 I Ty == | G oy + 7= (20)
where & and C. are as in (19). Moreover, if -7 b =0, then
I (") [l <l (&()" [ 210,1) - (21)
Proof. 1f Z;‘:—f bj = 0, then b; < 0 for every j =1, 2, - - -, n — 2. It then follows

easily for our assumption (2/(1)) = 3727 b;0(a'(7;)) that there exists an 7 € [0, 1]
such that 0(z'(n)) = 0 which implies = (770) =0, ¢('(ny)) = 0. Estimate (21) is
now immediate from

o' (1) = [ (9! ().

0
Next, suppose that 2/(t) = ¢, for all ¢ € [0, 1], where ¢ is a constant. We then see
from our assumptions 1 —37-7b; # 0, 0(2'(1)) = 3727 b;0(«/(73)) that z'(t) = 0 for
all t € [0, 1] and accordingly both the estimates (20) (21) are satisfied.
Suppose next that ¥7-7 b # 0 which implies o5 # 0. Then from 6(2/(1)) =
Y b;0(a’ (75)) we see that

+Zb9 Zb*@

and thus from the definition of o5 and the intermediate value property for continuous
functions we find that there exist 71,79 in [0, 1] such that

0(z'(m)) = 0260(2"(n2))
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so that
' (m) = 07" (020(2" (112)))
and
¢(2'(m)) = (¢ 0 07")(020(' (112)))
We, next, use the equation
o(1) = ol (m) + [ (o) (s)ds

— (600 ) (oub@ ) + [ (6(z)) (s)ds.

m
to get

(|l 2" lloe) < (@007 (@20(]| 2" [loc))+ [ (6(2")" 210,y - (22)
Now, for o3 as given in (9), let € > 0 be such that &(o9) +¢ < 1. It follows from the
definition of @(o9) that there exists a constant C. such that for = € R we have

(¢007")(02l2]) < (a(02) +e)(¢007")(|2]) + C,
(see (19)). We thus get from (22) that
(Il ' lloo) < (@l02) +)(@ 0 87O ' lo)+ I (6(2)) 11 (01) +C--

Hence, we obtain the estimate

1

/ o < AN C ,
¢(|| x || ) = (1 _ (d(0_2) +5)) || (¢(x )) ||L1(0,1) +C.
Ce _
where we have set W = CE.
This completes the proof of the proposition. [ |

3 Existence Theorem

Let ¢, 0 be odd increasing homeomorphisms from R onto R satisfying ¢(0) = 6(0) =
0, f:[0,1] x R x R — R be a function satisfying Carathéodory conditions and
e : [0,1] — R be a function in L*[0,1]. Let &,7; € (0,1), a;, b; € R, i =1,2, -,
m—2,7=1,2,--- n—20<&E <E << o< ,0<m << <7 o<l
with (1 —>"27b;)(1 — X% a;) # 0 be given.

Theorem 3. Let f : [0, 1] xRxR — R be a function satisfying Carathéodory’s con-

ditions such that there exist non-negative functions di(t), dy(t), and r(t) in L'(0,1)
such that

£t u,0)| < di()o(Jul) + da()([v]) + r(2),
for a. e. t €[0,1] and all u, v € R. Suppose, further,

a(M)||dl|zro) + lldall o) <1 = aloz) (23)

where M is as defined in Proposition 1, (M) is as defined in (5), oo and &(o2) are
as defined in (9), (18). Then, for every given function e(t) € L'[0,1], the boundary
value problem (3) has at least one solution x(t) € C*[0,1].
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Proof. We consider the family of boundary value problems

(p(2")) = Af(t,z,2") + Xe, 0 <t <1, A €[0,1]
0) = mZ__; a;x(&:), 0(a'(1)) = nZ:jl b;0 (2 (7))- (24)

Also, we define an operator ¥ : C''[0,1] x [0,1] — C*[0, 1] by setting for (z,\) €
C10,1] x [0,1]

W W) = 2(0)+ [ 6700+ [ (F7a(r),2/(7) + e(r)dr)ds
3 0al€) + 101 - ) (29

i=1

Let us, suppose that z(t) € C'[0,1] is a solution to the operator equation, for some
A€ [0,1],

v o= U\
_ +/¢1 <o>+A/Sff,m,x'ﬂwe(f))df)ds

-2

+(@(0) = > aw(&)) + Z b;0(x (26)

=1

S

Evaluating the equation (26) at t = 0 we see that z(t) satisfies the boundary condi-
tion

d0)= 3 aialé).

1=1

Next, we differentiate the equation (26) with respect to t to get
2t = ¢! +>\/ (7, 2(7),2'(r)) + e(r))dr
- Z b;0(2'(77))- (27)
j=1
Evaluating, now, the equation (27) at ¢ = 0 we see that x(t) satisfies the boundary
condition ,
) =2 b0 (1))
=1
and on differentiating the equation (27) with respect to ¢ we get

(6(2")) = Mf(t,z,2') + de, 0 <t < 1, A € [0,1].

Thus we see that if z(t) € C''[0, 1] is a solution to the operator equation z = ¥(x, \)
for some A € [0,1] then x(¢) is a solution to the boundary value problems (24) for
the corresponding A € [0, 1]. Conversely, it is easy to see that if z(¢) € C[0,1] is a
solution to the boundary value problems (24) for some A € [0, 1] then z(¢) € C1[0,1]
is a solution to the operator equation x = W(x, \) for the corresponding A € [0, 1].
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Next, it is easy to show, following standard arguments, that ¥ : C'[0,1] x
[0,1] — C1[0,1] is a completely continuous operator.

We shall next show that there is a constant R > 0, independent of A € [0, 1],
such that if z(t) € C'[0,1] is a solution to (26), equivalently to the boundary value
problems (24), for some A € [0, 1] then ||z||c1p01) < R.

We note first that if z(t) € C*[0, 1] satisfies

x = VY(z,0), (28)

then z(t) = 0 for all ¢ € [0,1]. Indeed, from the definition of ¥ or from the
boundary value problem (24), it follows that z(t) = 2(0) + 2/(0)¢. It then follows
from the two boundary conditions in (24) and the non-resonance assumption (7)
that z(0) = 2/(0) = 0, implying that z(¢) = 0 for all ¢ € [0, 1].

We shall assume, in the following, that A € (0,1]. We shall also assume that oy,
as defined in (9) is positive, since the proof for the case oo = 0 is simpler. Let us
choose € > 0 such that &(oy) +¢ < 1 and

(a(M) +e)lldil|zro1) + lld2l[210,) <1 —a(oz) — ¢, (29)

which is possible to do, in view of our assumption (23). Here M is as defined in
Proposition 1 and «(M) is as defined in (5) so that for the ¢ > 0, chosen above,
there exists a constant C! > 0 such that

d(Mz) < (a(M) +€)¢(z) + CL, for every z € R. (30)

Also, from Proposition 2 we see that there is a constant C? > 0, for the chosen
g > 0, such that

(T p—

< a2 o + €2 (31)

We, now, see from the equation in (24), using our assumptions on the function f,
Proposition 1, and estimates (30), (31) that

(@) 01y < dlfloo)ldill 10,1y + @112 |loo) ol £1(0,1)
+|7llz10,1) + llel] Lo,

(M ||| |oo) |l L1 (0,1) + D12 lloo) |2l 1(0,1)
+|7llz10,1) + llel] Lo,

((a(M) +e)l|du|[ 10,1y + ldal|z10.1)) P ([ |2"]o0)
7l 0,1) + el o, + Caldil 0,1y

((M) +¢e)|ldi||zr0,1) + dal| L1 (0,1) N
1— &(0_2) —e ||(¢($ )) ||L1(0,l) + Ca>

IA

IN

<

where Cg = ||T||L1(0,1) + ||6||L1(071) + C€1||d1||L1(071) + Cg[(a(M) + E)Hdl”Ll(O,l) +
l|da|£1(0,1)])- It, now, follows from (29) that there exists a constant Ry, indepen-
dent of X\ € [0,1], such that if z(t) € C'[0,1] is a solution to the boundary value
problems (24) for some A € [0, 1] then

[1(&(2) 10,1y < Ro.
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This combined with (31) and (10) give that there exists a constant R > 0 such that

||$Hcl[o,1] < R.

This then implies that deg; ¢(I — W(-, A), B(0, R),0) is well-defined for all A € [0, 1],

where B(0, R) is the ball with center 0 and radius R in C*[0, 1].
Let, now, X denote the two-dimensional subspace of C1[0,1] given by

X ={A+Bt|for A, BeR}.

Let us define the isomorphism i : R? — X by

i(g)i“)ex,m(g)em

B

where

>@:A+BLM¢EMH

~.
Solie

We note that for v(t) = A+ Bt € X we have

m—2 m—2 n—2

(I =9, 0)(v) === > a)A+ (3 a&)B—t(1-3 b)0(B),

i=1 i=1 j=1

Consider the following mappings from R? onto R?:

F1:<g>_>< ~(1 =T ?;zfa,-ﬂ(g)
ee(s) = (00)(5)

o A . 1 0 A
T\ B 0 —(1—3027b)) B
Now we see that

(&o&oﬂ)(é)

(35)

R O

)

We thus see that

(I —¥(-,0)) Z( g ) - i(F:;oFgoFl)< g )
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and it follows that
FsoFyoly =i to((I—¥(-0))|xoi.

Now, we see from the homotopy invariance property of the Leray-Schauder degree
that

degLS(I - \I](u 1)7B(OvR)7O) = degLS([ - @(,O),B(O,R),O)
= degg(l — V(-,0)|x,X N B(0,R),0)
= degB(FgoFgoFl,B(O,R),O),

where B(0, R) denotes the ball of radius R in R? with center at the origin. Finally,
we have, using standard results for Brouwer degree, (see [26], [27], [28]) that

degB(F3 © F2 © FI,E(O,R),()) % 07

in view of the non-resonance assumption (7) ie. (1 — X% a;)(1 — X1=7b;) # 0.
Accordingly, we have deg;¢(I — (-, 1), B(0, R),0) # 0 and there exists at least one
z(t) € B(0,R) C C'[0,1] that satisfies

x=V(x,1),
or equivalently x(t) is a solution to the boundary value (3). This completes the
proof of the theorem. [
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