
Computing with Actions and Communications

Wan Fokkink Jan Willem Klop

Abstract

The paradigm of computer science is nowadays shifting from computation
to communication. In this paper we aim to give an impression of the algebra of
actions and communications as it has been developed during the past quarter
of a century.

We present specifically the system ACP, Algebra of Communicating Pro-
cesses. Here a, b, c, . . . denote atomic events (or actions, or steps). For exam-
ple, a·a·(b + c) is the process able to perform two a-steps followed by a b-step
or a c-step. This differs from the process a·a·b + a·a·c, due to the different
timing of the choice between a b- and a c-step. Process x can operate in
parallel with process y, notation x‖y, where some actions in x may happen
simultaneously with some actions in y; the resulting actions are called com-
munication actions. Such actions are ‘half actions’, needing their counterpart
for the execution as a full action. In daily life a handshake is an example of
a pair of half actions. We even have ternary communication actions on the
keyboard of a PC: control-alt-delete. In music we find also quaternary actions,
etc. The results of such internal communications we want to abstract away.
This is formalised with the invisible action τ (‘silent move’), facilitating the
composition of modular hierarchies of process systems. The classical triple
specification-implementation-verification then takes a straightforward form.
The specification of the desired external behaviour is a simple process SPEC.
The implementation is a complicated process IMP. The verification that the
implementation is indeed correct, can be a purely algebraic, equational com-
putation that a suitable abstraction of IMP yields SPEC: ABS(IMP) = SPEC.

Next to an overview of the process algebraic framework, we present a
soundness and completeness proof for the axiom system underlying this frame-
work, with respect to a fundamental semantics called rooted branching bisimu-
lation. Thus a derivation of ABS(IMP) = SPEC implies that the implementa-
tion and its specification satisfy the same behavioural properties (soundness),
while on the other hand the absence of such a derivation implies that the

Bull. Belg. Math. Soc. 13 (2006), 789–805

790 W. Fokkink – J. W. Klop

implementation and its specification are not rooted branching bisimulation
equivalent (completeness).

Computing with actions and communications, process algebra, is logically
and mathematically interesting. On top of that, process algebra contributes
to security and comfort: current process algebra tools are used to prove cor-
rectness of railway emplacements, helicopter software, and communication
protocols in the remote control of a television set.

This paper has grown out of an invited lecture of the second author at the
Joint Mathematical BeNeLuxFra Conference in Ghent, May 2005. Slides of
that lecture can be found at www.cs.vu.nl/∼jwk.

1 History

A few words only on the origins of the present subject, seen from the Dutch per-
spective of the authors. The founding fathers of process algebra were around 1980
the Turing Award recipients Hoare (CSP) and Milner (CCS). Process algebra, then
also named ‘concurrency’, was introduced in the Netherlands by de Bakker in 1980,
via metric topology. In 1982-1990 an algebraic version named ACP, Algebra of
Communicating Processes, was developed by a group of people, led by Bergstra and
including Baeten and Klop. The subject was elaborated and various applications
were developed by van Glabbeek, Vaandrager, Groote, Fokkink, van de Pol, Rutten,
Kok and many others. Since 1985 there have been at least seventy PhD theses in
the Netherlands in this research area.

2 Basic Process Algebra

Consider the following situation. On the five-by-five grid in Figure 1 we want to
transport the black dot to the grey square, using elementary actions r, l, u, d. Several
transport processes are possible, that we can specify as process expressions or terms
using the operators ‘+’ (choice) and ‘·’ (sequencing) as follows: r3·u3, or (u·r)3, or
r3·u3 + (u·r)3, or u3·r3 + r·(r2·u3 + u3·r2). The last process is one that first chooses
between reaching the goal via three up steps and next three right steps; or first a
right step followed by the process r2·u3 + u3·r2 involving again a choice. It is at
present of no concern who actually makes these choices, ‘we’, or the environment.

At this moment we already have a simple algebra of actions and processes. The
processes originate by composing actions like u, r using the operators ‘+’ and ‘·’.
This Basic Process Algebra (BPA for short) is axiomatised by the axioms in Table
1. According to the classical rules of equational logic, the axioms yield after in-
stantiating equations like (u + r)·u = u·u + r·u, equations that are indeed true in
the situation of this example. Later on we will be able to represent the process of
Figure 1 in a quite different and more economic way, namely as r3‖u3, the parallel
execution or ‘merge’, also named ‘interleaving’, of r3 and u3.

Note the absence in BPA of the distributivity law z·(x + y) = z·x + z·y. This
is crucial – but at this stage of our presentation the compelling reason is not im-
mediately to be grasped. Adoption of this ‘wrong’ distributivity would invalidate
our whole endeavour; the insight in the choice structure of a process would be lost,

Computing with Actions and Communications 791

Figure 1: Move dot to square.

and so would our understanding whether complex systems may deadlock or may
function correctly.

x + y = y + x

x + (y + z) = (x + y) + z

x + x = x

(x + y)·z = x·z + y·z

(x·y)·z = x·(y·z)

Table 1: Basic Process Algebra.

3 Recursion

The simple axiom system BPA is already very interesting – at least, if we add the
construction principle to form infinite processes, namely recursion. This fascinating
and useful principle for constructing infinite objects is illustrated by the well-known
Droste nurse. In logic, computer science as well as in non well-founded set theory,
we usually have more general situations in which the nurse carries two or more boxes
of cacao, or where several nurses are operational with trays displaying several boxes,
each picturing (part of) the situation.

Figure 2 displays the recursively defined process X = a·X + b (with a, b actions
and recursion variable X) in the form of a transition diagram, or process graph. It
is a ‘finite-state’ process with only two states, the nodes of the graph, the entrance
node (root node) with label X and the empty termination node. The terminating
paths (‘finite traces’) of the process X can be succinctly described by the regular
expression a∗b, with the Kleene-star ‘∗’ denoting an iteration of zero or more times.

792 W. Fokkink – J. W. Klop

Figure 2: Recursion.

The equation X = a·X + b is called linear, because it does not contain products of
recursion variables X, Y, Linear systems of equations correspond to finite state
processes, which often suffice for purposes of verification as discussed below. More
interesting, from a theoretical perspective, are the non-linear systems of equations,
denoting infinite state processes. Here we find a nice link to the theory of formal
languages, in particular context-free languages. (Type 2 in the Chomsky hierarchy;
the systems of linear equations correspond to type 3 languages, the regular ones.)

Figure 3: Periodical structure of BPA processes with non-linear recursion.

Figure 3 (left) shows the process graph of the system of recursion equations
E = {X = d·Y +b·Z, Y = b+b·X+d·Y ·Y, Z = d+d·X+b·Z·Z}. This system is non-
linear, due to the products of recursion variables Y ·Y and Z·Z. The process 〈X|E〉,
which denotes the behaviour of X in the specification E, determines a context-free
language, containing the words obtained by traveling from the root node (marked by
the short arrow) to the termination node on top. These are just all words containing
equal numbers of b’s and d’s, e.g. bdddbb. The process graph is periodical in the
sense that it is built from finitely many, namely three, different graph fragments, as
suggested in Figure 3 (right). But note that it is not regular, i.e. it is infinite state.

An important consequence of this periodicity is that equality of such non-linear
recursive BPA-processes is decidable, at least when we understand equality in the
sense of process equality, given by bisimulation, a notion that we will discuss in Sec-
tion 5. This decidability under bisimulation equality is in marked contrast with the
classical theorem from formal language theory stating that equality of context-free
grammars is undecidable. There, equality refers to the equality of the corresponding

Computing with Actions and Communications 793

languages (the sets of finite completed traces), and that semantics is coarser than
bisimulation semantics.

4 Parallel processes

To describe parallelism and communication of processes, BPA is extended with the
parallel operator ‘‖’, called parallel composition or merge. The idea is that with ‖ we
are able to let two processes run in parallel, such that their actions are interleaved.
Figure 4 shows the merge of processes a·b and b·a (a and b are actions). Here the
original process a·b‖b·a is ‘pealed off’ by doing steps left and right as soon as they
are possible. The process tree that arises, stops when all actions are done. The
working of the operator ‖ may be clear with this verbal exposition, but our real goal
is to find an algebra that determines ‖. Such an algebra is given in Tables 1 and 2;
the latter table contains four axioms for ‖, using an auxiliary operator ‘ ’, called
left merge. A rather deep theorem says that without such an auxiliary operator a
finite axiomatisation is not possible.

Figure 4: Interleaving or merge of processes a·b and b·a.

Now the procedure that gave us the process tree in Figure 4 in an informal way,

794 W. Fokkink – J. W. Klop

x‖y = x y + y x

a x = a·x

a·x y = a·(x‖y)

(x + y) z = x z + y z

Table 2: Axioms for the merge.

takes the following formal algebraic form:

a·b‖b·a
= a·b b·a + b·a a·b
= a·(b‖b·a) + b·(a‖a·b)
= a·(b b·a + b·a b) + b·(a a·b + a·b a)
= a(b·b·a + b·(a‖b)) + b·(a·a·b + a·(b‖a))
= a·(b·b·a + b·(a b + b a)) + b·(a·a·b + a·(b a + a b))
= a·(b·b·a + b·(a·b + b·a)) + b·(a·a·b + a·(b·a + a·b)).

The final term

a·(b·b·a + b·(a·b + b·a)) + b·(a·a·b + a·(b·a + a·b))

is called a basic term: it does not contain parallel operators ‖ and anymore, but
only the basic operators + and ·. This basic term is the term corresponding to the
process tree in Figure 4.

Figure 5 displays the example process a3‖b3‖c3, with steps a, b, c as in Figure
5 right-below. This process describes the total of possibilities and choices that an
ant encounters, walking from starting-point A to end-point B along the edges of
the 3 x 3 x 3 cubes. When we compute this process a3‖b3‖c3 with the axioms in
Table 2 into a basic term, not containing the operators ‖ and anymore, just as
we did for the example above for a·b‖b·a, then we find a term of several pages long,
containing 1680 traces (i.e. different ways from A to B in Figure 5). The message
of this example is both positive and negative: positive, because we can describe a
process whose basic term is pages long, as a short process term (a3‖b3‖c3); negative,
because apparently there soon arises a state space explosion. This phenomenon of
enormous state spaces is a major concern for a large part of the efforts in formal
software verification.

At Eindhoven University of Technology, a special visualisation tool for very large
state spaces has been developed, in which clusters of states can be collapsed [3]. In
Figure 6, a computer generated visualisation of the state space of a protocol under-
lying the movement of robot arms for the construction of chips is depicted. Under
this ‘microscope’, the protocol turned out to contain a deadlock, which manifests
itself as a small dot.

Computing with Actions and Communications 795

Figure 5: The process a3‖b3‖c3.

5 Semantics of processes

Up to this point we have only treated the algebra of processes. There is also the
matter of semantics of processes – how do we interpret the process terms in a model,
in other words, what is the meaning of process terms. There are several models, and
in fact there is a whole model theory, also called ‘comparative concurrency seman-
tics’. There are models obtained via metric topology (due to de Bakker), models
constructed with projective limits or ultraproducts, but to our taste the simplest
and most straightforward models are the graph models, constructed from process
graphs, modulo a fundamental equivalence called bisimulation [5]. Figure 7 illus-
trates this notion. The upper part of this figure shows a bisimulation relation, with
the spaghetti-like strings, between a finite, cyclic process and the result of unwinding
the cycle, once; the lower part of Figure 7 shows the same process in bisimulation
with its infinite tree unwinding. (Now pairs of matching nodes are indicated by
equal number labels.) The matching relation is a bisimulation if (1) the root nodes
are related, and (2) in related nodes the same steps are possible, after which the end
points of such steps must again be related. This is a so-called coinductive definition.
Processes are bisimulation equivalent if there exists a bisimulation between these
processes. Bisimulation is the finest, most discriminating notion of process equal-
ity that exists; trace equality is the coarsest, least discriminating notion of process
equality. A foundational underpinning of these process semantical notions was given

796 W. Fokkink – J. W. Klop

Figure 6: Visualisation of a very large state space.

in the last two decades with the help of a new set theory, the non well-founded set
theory, mainly developed by Peter Aczel.

6 Communication

Thus far, we have developed an algebraic framework of processes that can be ex-
ecuted in parallel, but still independent from each other. We now turn our atten-
tion to the representation of communication. We approach this problem from the
negative side, namely starting from the phenomenon of deadlock, that arises when
processes want to communicate, but cannot.

Imagine a ring of five processes P1, . . . , P5, copies of each other, able to perform
a cycle of the five steps a, b, c, d, e, in that order. So Pi = ai·bi·ci·di·ei·Pi, for i =
1, . . . , 5; see Figure 8 (left).

Independent execution of these five processes is captured by the process term
P1‖P2‖P3‖P4‖P5. But we want more than independent execution. Suppose there
is a communication regime requiring that steps connected by a grey bar must be
performed simultaneously. So b1 forms a pair with e2, and c2 with a3, and d3 with
b4, and e4 with c5, and a5 with d1. We write b1|e2 for the simultaneous action b1 with
e2; likewise c2|a3, d3|b4, ... The total process T can still execute without deadlock,
cyclically, in many ways, of which one infinite cyclic execution path is given by:

p = a1·(b1|e2)·a4·a2·b2·c1·(c2|a3)·d2·b3·c3·(d3|b4)·e3·d3·(e4|c5)·a4·d5·e5·(a5|d1)·p.

We now modify two communication links, as shown in Figure 8 (right). Then the
process will halt after some steps: deadlock! One can still easily see by mental
inspection that this must be the case. But again our goal is to turn these verbal
and intuitive descriptions into algebraic equations.

The system in Figure 8 (right) has a state space as depicted in Figure 9, which
was generated by computer. In fact this process graph corresponds to the process
term (a1||a2·b2||a3·b3·c3)·δ. This yields 2 x 3 x 4 = 24 nodes (states), and all maximal
paths (traces) are six steps long. In this case we have a small state space, with steps
that are separately visible; in realistic cases with (hundreds of) millions of steps,
the network of steps is so fine that the steps are not separately visible or only after

Computing with Actions and Communications 797

Figure 7: Bisimulation of processes, after ‘unwinding’, once, and totally.

zooming in; then one has to resort to graphic visualisations such as in Figure 6
(right).

Formally deadlock is represented by the constant symbol δ, a special ‘step’ or
rather a ‘non-step’, the impossibility of a step. For δ we have the two laws in Table
3; note that we do not have x·δ = δ. For, a process terminating with δ is in fact
displaying deadlock, like the example above. Only in a choice the δ disappears.

x + δ = x

δ·x = δ

Table 3: Axioms for the deadlock δ.

Communication is modeled in process algebra by means of actions that have to
be simultaneously executed, as in the example of the ring of five cyclic processes
before.

Table 4 contains all axioms necessary to describe communication and encapsula-
tion of processes. γ is the communication function stipulating which atoms should

798 W. Fokkink – J. W. Klop

Figure 8: Ring of communicating processes without deadlock, and with deadlock.

communicate and with which result. The encapsulation operator ∂H removes from
its argument the remainders of failed communications, by renaming them into δ; H

is the set of atoms involved in a communication (the ‘half actions’).

The axiom system in Tables 1, 2, 3 and 4 is called ACP, Algebra of Communicat-
ing Processes [1]. At this point, we can make precise, why in setting up the system
initially, we discarded the distributivity law z·(x + y) = z·x + z·y. Suppose we have
communications a|a = â and b|b = b̂. The set of half actions is H = {a, b, c}. Now
we compute, using the axioms of ACP, on the one hand, ∂H(a·(b + c)‖a·b) = â·b̂,
and on the other hand, ∂H((a·b + a·c)||a·b] = â·b̂ + â·δ. The last process does
have a deadlock possibility, as the summand â·δ witnesses. So if we had adopted
z·(x + y) = z·x + z·y as one of our axioms, then ACP would not be able to detect
deadlock behaviour, and lose most of its value.

7 Abstraction

Now we have almost the capacity to calculate with communicating processes in a
very precise way, and also to verify their behaviour in an automated fashion. But
there is one vital element still missing: the possibility of abstraction. The discovery
of Robin Milner [4] was to facilitate this by the introduction of the silent action τ ,
signifying an invisible state transition in a process, a step without observable effect.
It is also referred to as a ‘silent move’, or ‘hidden move’. The τ -step is as before
subjected to axioms, namely the two τ -laws displayed in Table 5. Their effect is
that τ can be eliminated, contracted as it were, provided the process does not lose
options after the τ -step. Figure 10 (left) demonstrates such a situation; the τ -step
there connects two states having the same ‘potential’. In Figure 10 (right) there is
after the τ -step a difference in potential, since the a-option is lost; and therefore the
latter τ cannot be eliminated.

The hiding operator τI , for action sets I, renames in its argument all actions from
I into τ . Its axioms are given in Table 6. The hiding operator makes it possible to
abstract away from the internal communication actions of a system.

Computing with Actions and Communications 799

Figure 9: Computer-generated analysis of deadlocking ring of processes.

In the presence of the silent move, we consider process graphs modulo branching
bisimulation. That is, let processes p and q be related and p

a
→ p′. The notion of

bisimulation from Section 5 would impose that q
a
→ q′ for some process q′ where

p′ and q′ are related. In branching bisimulation, it is allowed that q first performs
some τ -transitions: q

τ
→ q1

τ
→ · · ·

τ
→ qk

a
→ q′, where p must be related to qk.

Moreover, if a = τ , then branching bisimulation allows that p′ is itself related to q,
in which case q does not need to mimic the τ -transition of p at all. The motivation for
branching bisimulation is that, like bisimulation, it leaves the branching structure of
processes intact, so that for instance deadlock behaviour is preserved. A rootedness
condition on top of branching bisimulation, saying that initial τ -transitions must
always be mimicked instantly, produces an equivalence that is preserved by the

Figure 10: Examples of the silent step

800 W. Fokkink – J. W. Klop

x‖y = (x y + y x) + x|y

a y = a·y

(a·x) y = a·(x‖y)

(x + y) z = x z + y z

a|b = γ(a, b)

a|(b·y) = γ(a, b)·y

(a·x)|b = γ(a, b)·x

(a·x)|(b·y) = γ(a, b)·(x‖y)

(x + y)|z = x|z + y|z

x|(y + z) = x|y + x|z

a 6∈ H ∂H(a) = a

a ∈ H ∂H(a) = δ

∂H(x + y) = ∂H(x) + ∂H(y)

∂H(x·y) = ∂H(x)·∂H(y)

Table 4: ACP, Algebra of Communicating Processes.

process algebraic operators. For instance, if pi is rooted branching bisimulation
equivalent to qi for i = 1, 2, then p1 + p2 is rooted branching bisimulation equivalent
to q1 + q2. Such a congruence property is crucial to capture the equivalence in an
axiomatic framework.

A linear recursive specification is called guarded if it does not give rise to τ -cycles.
A typical example of an unguarded linear recursive specification is X = τ ·X. Note
that in the setting of rooted branching bisimulation, this recursive specification has
multiple solutions; one could e.g. substitute τ ·a and τ ·b for X.

RDP and RSP are axiom schemes for recursion. RDP expresses that given
a linear recursive specification E, the process terms 〈X1|E〉, . . . , 〈Xn|E〉 form a
solution for E. RSP expresses that if E is guarded, then this is the only solution
for E, modulo rooted branching bisimulation.

Computing with Actions and Communications 801

B1 x·τ = x

B2 x·(y + τ ·(y + z)) = x·(y + z)

Table 5: Axioms for the silent step τ .

TI1 a 6∈ I τI(a) = a

TI2 a ∈ I τI(a) = τ

TI3 τI(δ) = δ

TI4 τI(x + y) = τI(x) + τI(y)

TI5 τI(x·y) = τI(x)·τI(y)

Table 6: Axioms for the hiding operator

8 Cluster fair abstraction

Central in process algebra are so-called soundness and completeness results, for a
given axiom system with respect to a given process semantics. An axiom system is
sound if for each equation p = q that can be derived from it, p and q are semantically
equivalent. Vice versa, an axiom system is complete if for each pair p, q of semanti-
cally equivalent terms, the equation p = q can be derived. Here we give a soundness
and completeness proof for the process algebra and axiom system presented in the
previous sections, with respect to rooted branching bisimulation (see also [2]).

We first present one more axiom scheme, to eliminate a cluster of τ -transitions,
so that only the exits of such a cluster remains.

Let E be a guarded linear recursive specification, and I ⊆ A. Two recursion
variables X and Y in E are in the same cluster for I if and only if there exist

sequences of transitions 〈X|E〉
b1→ · · ·

bm→ 〈Y |E〉 and 〈Y |E〉
c1→ · · ·

cn→ 〈X|E〉 with
b1, . . . , bm, c1, . . . , cn ∈ I ∪ {τ}. a or aX is an exit for the cluster C if:

1. a or aX is a summand at the right-hand side of the recursion equation for a
recursion variable in C; and

2. in the case of aX, either a 6∈ I ∪ {τ} or X 6∈ C.

Table 7 presents an axiom scheme called cluster fair abstraction rule (CFAR) [6]
for guarded linear recursive specifications. CFAR allows one to abstract away from
a cluster of actions that are renamed into τ , after which only the exits of this cluster
remain. In Table 7, E is a guarded linear recursive specification.

802 W. Fokkink – J. W. Klop

CFAR If X is in a cluster for I with exits {a1·Y1, . . . , am·Ym, b1, . . . , bn}, then

τ ·τI(〈X|E〉) = τ ·τI(a1·〈Y1|E〉 + · · · + am·〈Ym|E〉 + b1 + · · ·+ bn)

Table 7: Cluster fair abstraction rule

Theorem 1. The axiom CFAR is sound modulo rooted branching bisimulation equiv-
alence.

Proof. Let X be in a cluster for I with exits {a1·Y1, . . . , am·Ym, b1, . . . , bn}. Then
〈X|E〉 can execute a string of actions from I ∪ {τ} inside the cluster of X, followed
by an exit ai·〈Yi|E〉 (for some i ∈ {1, . . . , m}) or bj (for some j ∈ {1, . . . , n}). Hence,
τI(〈X|E〉) can execute a string of τ ’s inside the cluster of X, followed by an exit
τI(ai〈Yi|E〉) (for some i ∈ {1, . . . , m}) or τI(bj) (for some j ∈ {1, . . . , n}). The
execution of τ ’s inside the cluster does not lose the possibility to execute any of the
exits. Moreover, in the process graph of τ ·τI(〈X|E〉) these τ ’s are non-initial, owing
to the initial τ -transition, so they are truly silent. This means that modulo rooted
branching bisimulation equivalence only the exits of the cluster of X remain, i.e.,
τ ·τI(〈X|E〉) is rooted branching bisimulation equivalent to

τ ·τI(a1·〈Y1|E〉 + · · ·+ am·〈Ym|E〉 + b1 + · · · + bn).

So CFAR is sound modulo rooted branching bisimulation equivalence. �

For example, let E denote the guarded linear recursive specification

X = heads·X + tails .

The process term 〈X|E〉 represents tossing a fair coin until the result is tails. We
abstract away from throwing heads, expressed by τ{heads}(〈X|E〉).

{X} is the only cluster for {heads}, and the only exit of this cluster is the action
tails. So

τ ·τ{heads}(〈X|E〉)
CFAR
= τ ·τ{heads}(tails)

TI1
= τ ·tails . (1)

Hence,

τ{heads}(〈X|E〉)
RDP
= τ{heads}(heads·〈X|E〉 + tails)

TI1,2,4,5
= τ ·τ{heads}(〈X|E〉) + tails
(1)
= τ ·tails + tails .

In other words, fair abstraction implies that tossing a fair coin infinitely many times
will eventually produce the result tails.

Theorem 2. EACPτ
+ RDP, RSP, CFAR is complete for ACPτ with guarded linear

recursion, modulo rooted branching bisimulation equivalence.

Computing with Actions and Communications 803

Proof sketch. It suffices to prove that each process term t in ACPτ with
guarded linear recursion is provably equal to a process term 〈X|E〉 with E a guarded
linear recursive specification. Namely, then the desired completeness result follows
immediately from the known fact that if 〈X1|E1〉 is rooted branching bisimulation
equivalent to 〈Y1|E2〉 for guarded linear recursive specifications E1 and E2, then
〈X1|E1〉 = 〈Y1|E2〉 can be derived from EACP + B1, 2 + RDP, RSP.

We apply structural induction with respect to the size of t. It can be shown that
each process term in ACP with silent step and guarded linear recursion is provably
equal to a process term 〈X|E〉 with E a guarded linear recursive specification. So
the only case that remains to be covered is when t ≡ τI(s). By induction it may
be assumed that s = 〈X|E〉 with E a guarded linear recursive specification, so
t = τI(〈X|E〉). We divide the collection of recursion variables in E into its clusters
C1, . . . , CN for I. For i ∈ {1, . . . , N}, let

ai1·Yi1 + · · ·+ aimi
·Yimi

+ bi1 + · · ·+ bini

be the alternative composition of exits for the cluster Ci. Furthermore, for actions
a ∈ A ∪ {τ} we define

â =

{

τ if a ∈ I

a otherwise.

Finally, for Z ∈ Ci (i ∈ {1, . . . , N}) we define

sZ = âi1·τI(〈Yi1|E〉) + · · ·+ âimi
·τI(〈Yimi

|E〉) + b̂i1 + · · ·+ b̂ini
. (2)

For Z ∈ Ci and a ∈ A ∪ {τ},

a·τI(〈Z|E〉)
CFAR
= a·τI(ai1·〈Yi1|E〉 + · · · + aimi

·〈Yimi
|E〉 + bi1 + · · · + bini

)
TI1-5
= a·sZ . (3)

Let the linear recursive specification F contain the same recursion variables as
E, where for each Z ∈ Ci the recursion equation in F is

Z = âi1·Yi1 + · · · + âimi
·Yimi

+ b̂i1 + · · · + b̂ini
.

We show that there is no sequence of one or more τ -transitions from 〈Z|F 〉 to
itself. Suppose âij ≡ τ for some j ∈ {1, . . . , mi}. Then the fact that aij ·Yij is an
exit for the cluster Ci ensures that Yij 6∈ Ci, so there cannot exist a sequence of

transitions 〈Yij|E〉
d1→ · · ·

dℓ→ 〈Z|E〉 with d1, . . . , dℓ ∈ I ∪{τ}. Then by the definition
of F there cannot exist a sequence of transitions 〈Yij|F 〉

τ
→ · · ·

τ
→ 〈Z|F 〉. Hence, F

is guarded.
For each recursion variable Z ∈ Ci (i ∈ {1, . . . , N}),

sZ

(2),(3)
= âi1·sYi1

+ · · ·+ âimi
·sYimi

+ b̂i1 + · · ·+ b̂ini
.

This means that substituting sZ for recursion variables Z in F is a solution for F .
Hence, by RSP, sZ = 〈Z|F 〉 for recursion variables Z in F . So for a ∈ A ∪ {τ} and
recursion variables Z in F ,

a·τI(〈Z|E〉)
(3)
= a·sZ = a·〈Z|F 〉. (4)

804 W. Fokkink – J. W. Klop

Recall that t = τI(〈X|E〉). Let the linear recursion equation for X in E be

X = c1·Z1 + · · · + ck·Zk + d1 + · · ·+ dℓ.

Let the linear recursive specification G consist of F extended with a fresh recursion
variable W and the recursion equation

W = ĉ1·Z1 + · · ·+ ĉk·Zk + d̂1 + · · · + d̂ℓ.

Since F is guarded, it is clear that G is also guarded.

τI(〈X|E〉)
RDP
= τI(c1·〈Z1|E〉 + · · · + ck·〈Zk|E〉 + d1 + · · · + dℓ)

TI1-5
= ĉ1·τI(〈Z1|E〉) + · · · + ĉk·τI(〈Zk|E〉) + d̂1 + · · · + d̂ℓ

(4)
= ĉ1·〈Z1|F 〉 + · · ·+ ĉk·〈Zk|F 〉 + d̂1 + · · · + d̂ℓ.

Furthermore, for Z ∈ Ci (i ∈ {1, . . . , N}),

〈Z|F 〉
RDP
= âi1·〈Yi1|F 〉 + · · ·+ âimi

·〈Yimi
|F 〉 + b̂i1 + · · ·+ b̂ini

.

Hence, substituting τI(〈X|E〉) for W and 〈Z|F 〉 for all other recursion variables Z

in G is a solution for G. So RSP yields

τI(〈X|E〉) = 〈W |G〉.

�

Acknowledgements We thank Prof.Dr. Jan-Friso Groote for assistance with the
automatic verification of some processes, in particular those in Figures 6 and 9. For
a beautiful gallery of similar visualisations of large state spaces, see his homepage
www.win.tue.nl/∼jfg, and the one of Dr. Frank van Ham: www.win.tue.nl/
∼fvham/fsm/.

Computing with Actions and Communications 805

References

[1] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1/3):109–137, 1984.

[2] W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series. Springer, 2000.

[3] J.F. Groote and F.J.J. van Ham. Interactive visualization of large state spaces.
International Journal on Software Tools for Technology Transfer, 8:77–91, 2006.

[4] R. Milner. A Calculus of Communicating Systems. Volume 92 of Lecture Notes
in Computer Science. Springer, 1980.

[5] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
ed., Proceedings 5th GI (Gesellschaft für Informatik) Conference, Karlsruhe,
Volume 104 of Lecture Notes in Computer Science, pp. 167–183. Springer, 1981.

[6] F.W. Vaandrager. Verification of two communication protocols by means of
process algebra. Report CS-R8608, CWI, Amsterdam, 1986.

Vrije Universiteit Amsterdam, Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands CWI, Department of
Software Engineering
PO Box 94079, 1090 GB Amsterdam, The Netherlands Radboud Universiteit, In-
stitute for Computing and Information Sciences
PO Box 9010, 6500 GL Nijmegen
email: wanf@cs.vu.nl,jwk@cs.vu.nl

