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Abstract

This work considers the fundamental groups and diameters of positively
Ricci curved Riemannian n-manifolds. By combining the results of equiv-
arient Hausdorff convergence with the Ricci version of a splitting theorem,
some new information on the topology of compact manifolds with positive
Ricci curvature was discovered. Moreover, a weak Margulis’s lemma was also
obtained for Riemannian manifolds with a lower Ricci curvature bound.

1 Introduction

This investigation studied the obstruction problems for compact Riemannian n-
manifolds with positive Ricci curvature. When the dimension n = 2, this problem
is easy to understand since only the projective plan RP 2 and the 2-sphere admit
metrics with positive curvature. Hamilton showed in [6] that a compact 3-manifold
with positive Ricci curvature also admits a metric with a constant sectional curvature
of +1, and is then covered by the 3-sphere. In general, the classical Myers’ theorem
shows that the fundamental group of a compact positively Ricci curved manifold
must be finite. Moreover, since the Ricci curvature of SU(n) is positive, any finite
group can be the fundamental group of some manifold with positive Ricci curvature.

Problem 5 listed in Lecture Series 4 in [[8], p.105] states: Considering a compact
positively Ricci curved manifold, what can be said about the fundamental group de-
pending only on the dimension n, except that it is finite? Our work partially answers
this problem as indicated in [10] as a conjecture. Moreover, the diameter of the uni-
versal Riemannian covering space of a compact positively Ricci curved manifold M
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can not be too larger than that of M .

Theorem A. Given n ≥ 2, there exist constants pn and Cn depending only on n such
that if a compact Riemannian n-manifold Mn has the Ricci curvature RicMn > 0,
then
(a) the first betti number b1(M

n,Zp) with p-cyclic group coefficient Zp satisfies
b1(M

n,Zp) ≤ n− 1 for all prime p ≥ pn, and
(b) the ratio of diameters satisfies

diam(M̃n)

diam(Mn)
< Cn,

where M̃n denotes the universal covering of Mn.

Remark 1.1. Considering the flat n-torus T n, b1(T
n,Zp) = n is obtained for all

prime p, and the canonical Euclidean n-space Rn is its universal covering space.
Hence Theorem A assumes an optimal. Fukaya and Yamaguchi showed in [Corol-
lary 0.9 in [3]] that if a compact Riemannian n-manifold M with sectional curvature
KM and diameter diam(M) satisfies KMdiam(M)2 > −εn for some constant εn de-
pending only on n, then b1(M

n,Zp) ≤ n for all p ≥ p(n), and the maximal case
b1(M

n,Zp) = n aries only when Mn is diffeomorphic to a torus. They also found in
[Corollary 0.11 in [3]] that diam(M̃)/diam(M) is uniformly bounded by a constant
depending only on n provided the fundamental group π1(M) is finite. Theorem A
extends their results to manifolds with positive Ricci curvature. Notably, positively
Ricci curved n-manifolds with n ≤ 3 are covered by spheres as discussed above.
Hence Theorem A holds for these manifolds.

Remark 1.2. An application of Theorem A is presented here. As well-known, any
finite group G can be the fundamental group of a compact 4-manifold. If G = Sm

is taken to be the permutation group of m elements, and the 4-manifolds M4
m are

considered with fundamental group Sm, then M4
m admits no metric with positive

Ricci curvature for a large m.

The proof of Theorem A leads to the following weak Margulis’s lemma under
a lower Ricci curvature bound. Recall that the length of polycyclicity of a solvable
group G is the smallest integer m for which G admits a filtration

{e} = Gm ⊂ Gm−1 ⊂ . . . ⊂ G1 ⊂ G0 = G

such that each Gi/Gi−1 is cyclic.

Theorem B (A weak Margulis’s Lemma). There exists a positive number
δn depending only on n and satisfying the following: Let (Mn, p) be a complete
pointed Riemannian n-manifold with RicMn ≥ −(n − 1). Then there exists a point
p′ ∈ Bp(1/2) such that the image of the inclusion homomorphism

Γ′ = Im[π1(Bp′(δn)) → π1(Bp(1))]
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admits a subgroup Λ′ ⊂ Γ′ with
(1) [Γ′ : Λ′] < wn, where wn depends only on n;
(2) Λ′ is solvable with length of polycyclicity ≤ n.

In particular, if a complete Riemannian n-manifold M has RicMdiam(M)2 >
−(n− 1)δn, then π1(M) is almost solvable. That is, π1(M) contains a solvable sub-
group of finite index.

Remark 1.4. Gromov conjectured in [5] that a positive number εn exists which
depends only on n such that if a compact Riemannian n-manifold with almost non-
negative Ricci curvature RicMdiam(M)2 > −εn, then π1(M) is almost nilpotent.
Fukaya and Yamaguchi have shown that Gromov’s conjecture holds when the condi-
tion KMdiam(M)2 > −εn in [3]. By using a solvable subgroup instead of a nilpotent
subgroup, Fukaya and Yamaguchi gave a generalized Margulis’s lemma in [Theorem
A2.1 in [3]]. Some scholars suggested that establishing a splitting theorem and a
volume convergence theorem under an almost nonnegative Ricci curvature bound is
sufficient to extend Margulis’s lemma to the Ricci case. However, it is not enough to
extend Fukaya and Yamaguchi’s result to the Ricci case with the original arguments,
since their argument depends heavily on having a fibration with almost Riemannian
submersion, which cannot generally be constructed under a lower Ricci curvature
bound. Therefore, Fukaya and Yamaguchi’s approaches cannot be applied directly
to Riemannian manifolds with a lower Ricci curvature bound.

The proposed approach considers strongly the induction steps to prove the Tech-
nical lemma 3.1 in section 3, which is a weaker version of [Theorem 7.1 in [3]]. The
Margulis’s lemma under a lower Ricci curvature bound cannot be obtained. We can
only obtain a weaker version of the Margulis’s lemma for only ” one point ” in the
Riemannian manifold under consideration, which is sufficient to prove the solvability
theorem for almost nonnegatively Ricci curved manifolds. Although the nilpotency
result still cannot be obtained, Theorem B confirms, in some sense, that the almost
solvability version of Gromov’s conjecture.

The remainder of this paper is organized into four sections. Section 2 introduces
the main theories used herein including the theory of pointed equivarient convergence
and the splitting theorems for the proposed proof of Theorem A and Theorem B.
In particular, Corollary 2.6 is established by merging the above two tools. Section
3 proves a Technical lemma, which extends the solvability theorem in [Theorem 7.1
in [3]]. Section 4 proves of Theorem B by using the Technical lemma. Then, section
5 proves Theorem A using Theorem B.

2 Equivariant Pointed Hausdorff Convergence and the Splitting

Theorem

Recall the equivariant pointed Hausdorff convergence in [3]. Let M be the set of all
isometry classes of pointed metric spaces (X, p) such that, for each D > 0, the ball
Bp(D) around p with radius D is relatively compact and such that X is a length
space. Let Meq be the set of triples (X,Γ, p), where (X, p) ∈ M and Γ denote a
closed subgroup of isometries of X. Put Γ(D) = {γ ∈ Γ | d(γp, p) < D}.
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Definition 2.1. Let (X,Γ, p), (Y,G, q) ∈Meq. An ε-equivariant pointed Hausdorff
approximation is a triple (f, φ, ψ) of maps f : Bp(1/ε) → Y , φ : Γ(1/ε) → G(1/ε)
and ψ : G(1/ε) → Γ(1/ε) such that
(2.1.1) f(p) = q;
(2.1.2) the ε-neighborhood of f(Bp(1/ε)) contains Bq(1/ε);
(2.1.3) if x y ∈ Bp(1/ε), then | d(f(x), f(y))− d(x, y) |< ε;
(2.1.4) if γ ∈ Γ(1/ε), x ∈ Bp(1/ε), γx ∈ Bp(1/ε), then

d(f(γx), φ(γ)(f(x)) < ε;

(2.1.5) if λ ∈ G(1/ε), x ∈ Bp(1/ε), ψ(µ)(x) ∈ Bp(1/ε), then

d(f(ψ(µ)(x)), µf(x)) < ε.

Hereafter the notion limi→∞(Xi, Gi, xi) = (Y,G, y) means

lim
i→∞

deH((Xi, Gi, xi), (Y,G, y)) = 0

, where deH denotes the equivariant pointed Hausdorff distance. For brevity, deH is
also expressed as dH in the remainder of this paper.

The following theorem comes from [Proposition 3.6 in [3]].

Theorem 2.2. Let (Xi,Γi, pi) ∈ Meq, (Y, q) ∈ M. Suppose that limi→∞(Xi, pi) =
(Y, q). Then G and a subsequence ki can be found such that (Y,G, q) ∈ Meq and
limi→∞(Xki

,Γki
, pki

) = (Y,G, q).

The following theorem is shown in [Theorem 4.2 in [4]] by Fukaya and Yam-
aguchi and its proof is found in [Appendix A.1 in [3]].

Theorem 2.3. Let (Xi,Γi, pi), (Y,G, q) ∈ Meq be such that limi→∞(Xi,Γi, pi) =
(Y,G, q), and let G′ be a normal subgroup of G. Assume that
(2.3.1) G/G′ is discrete.
(2.3.2) Y/G is compact.
(2.3.3) Γi is discrete and free and Xi is simply connected.
(2.3.4) G′ is generated by G′(R0) for some R0 > 0.
Then there exists a sequence of normal subgroups Γi of Γ such that
(2.3.5) limi→∞(Xi,Γ

′
i, pi) = (Y,G′, q).

(2.3.6) Γi/Γ
′
i is isometric to G/G′ for sufficiently large i.

(2.3.7) G/G′ is finitely presented.
(2.3.8) Γ′i is generated by Γ′i(R0 + εi) for some εi → 0

Cheeger and Colding indicate in [Theorem 6.64 in [1]] that the limit space of
a sequence of complete pointed-Riemannian n-manifolds with almost nonnegative
Ricci curvature splits as long as it contains a line.

Theorem 2.4. Let (Mn
i , pi) be a sequence of complete pointed-Riemannian n-

manifolds. Denote Bpi
(Ri) be the open Ri-ball in Mn

i around pi and Ri → ∞
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as i → ∞. Let (X, p∞) ∈ M with limi→∞(Bpi
(Ri), pi) = (X, p∞). Suppose

RicBpi (Ri) ≥ −ε2i , where εi → 0 as i → ∞, and X contains a line. Then X splits,
isometrically, X = R×X ′.

Combining Theorem 2.2 with Theorem 2.4, as in [Corollary 5.3 and Theorem 5.4
in [3]], yields Corollary 2.5 and Corollary 2.6 respectively. Corollary 2.6 is especially
important for the main proof.

Corollary 2.5. Let (Mi, pi), Bpi
(Ri) and (X, p∞) be as in Theorem 2.4. Suppose

Gi is a closed subgroup of Isom(Bpi
(Ri)) such that diam(Bpi

(Ri)/Gi) ≤ D for some
constant D. Then there exists a subsequence ki that

lim
i→∞

(Bpki
(Rki

), Gki
, pki

) = (R` × Y,G, p∞)

, where Y is a compact metric space and G is a closed subgroup of Isom(R`×Y )
with ` ≤ n.

Corollary 2.6. Let (Mi, pi) be a sequence of complete pointed-Riemannian n-
manifolds with RicMi

≥ −(n − 1). Suppose limi→∞(Mi, pi) = (X, p∞), where
(X, p∞) ∈ M. Then for every x ∈ X there exists sequences yi ∈ X, qi ∈ Mi and
ri →∞ as i→∞ such that
(2.6.1) yi → x, qi → x as i→∞,
(2.6.2) limi→∞((X, ridX), yi) = (Rk, can, 0) = limi→∞((Mi, rigi), qi),
(2.6.3) k ≤ n,
where dX and gi are the original metric of X and Mi respectively.

Remark 2.7 As in the proof of [Theorem 5.4 in [3]], Corollary 2.6 can be demon-
strated by blowing up the metrics at most finite times and using Theorem 2.4.
Notably, for a given convergent sequence δi → 0, a sequence ri → ∞ in Corollary
2.6 can always be found such that riδi → 0.

Let Y be a compact metric space, and let G a closed subgroup of Isom(R`×Y ).
Since G preserves the splitting R` × Y , the projection φ : G → Isom(R`) is well
defined. The following theorem was shown in [Lemma 6.1 in [3]].

Theorem 2.8. For each ε > 0 there exists a normal subgroup Gε of G such that
(2.8.1) G/Gε is discrete;
(2.8.2) there exists an exact sequence 1 → Gε → G→ Λ → 1,
where Λ contains a finite-index free abelian subgroup of rank not greater than dim(R`/φ(G));
(2.8.3) for every g ∈ Gε and every x ∈ R` × Y there exists g1, . . . , gs ∈ Gε satis-
fying

(i) g = gs . . . g1,
(ii) d(gigi−1 . . . g1(x), gi−1 . . . g1(x)) < ε for all 1 ≤ i ≤ s.

The group Gε was constructed in [3] as follows: Let K = Ker(φ), which acts
on Y . Set K̂ε = {g ∈ K | d(g(x), x) < ε ∀x ∈ Y }. Let Kε be the group generated
by K̂ε. Since Kε is normal in G, the natural projection π : G → G/Kε is defined.
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Define Gε = π−1((G/Kε)0) , where (G/Kε)0 is the identity component of G/Kε.

Remark 2.9. Fukaya and Yamaguchi showed in [4] that if the limit space Y is an
Alexandrov space, then Isom(Y ) is in fact a Lie group. Thus G is a Lie group and
G0 can be treated as Gε for every ε. Moreover, Cheeger and Colding announced a
result that if RicMn

i
≥ −(n − 1) and V ol(Bpi

(1)) ≥ v > 0 for all i and all pi ∈ Mi,
then the isometry group of the limit space is a Lie group. Siganificantly, Gε in
Theorem 2.8 is independent of curvature and volume.

3 A Technical Lemma

The following Technical lemma plays a very important role in the proposed approach
to proving Theorem A and Theorem B, and it has its own interest for investigating
manifolds with lower Ricci curvature bounds. The proposed lemma can be viewed
as a weak Ricci version of [Theorem 7.1 in [3]].

Technical Lemma 3.1. For given positive integers n and k, n ≥ k and a positive
number µ0, there exist positive numbers ε = εn,k(µ0), w = wn,k and a function
τ(ε) = τn,k,µ0(ε) with limε→0 τ(ε) = 0 such that if (Mn, p) and (Nk, q) are pointed-
Riemannian manifolds of dimension n and k respectively such that
(3.1.1) RicM ≥ −(n− 1), RicN ≥ −(n− 1) and inj(N) > µ0 > 0,
(3.1.2) dGH((M, p), (N, q)) < ε,
where dGH denotes the Gromov-Hausdorff distance, then there exists a map f : M →
N with f(p) = q satisfying the following:
(3.1.3) f is a continuous τ(ε)-Hausdorff approximation such that f∗ : π1(M, p) →
π1(N, q) is surjective;
(3.1.4) Let V = Bq(

µ0

2
) be the ball around q with radius µ0

2
. Set U = f−1(V ). Then

there is a normal subgroup H of the fundamental group Γ = π1(U) of U such that
(i) H is a solvable subgroup of Γ with length of polycyclicity ≤ n− k,
(ii) [Γ : H] ≤ wn,k.

Remark 3.2. Sormani and Wei considered in [9] the group π̄1(Y ) of deck transforms
in the universal cover Y of the Gromov-Hausdorff limit of compact manifolds {Mn

i }
with RicMn

i
≥ (n − 1)H and diam(Mn

i ) ≤ D for some H ∈ R and D > 0. They
showed that for sufficient large n0 depending on Y , a surjective homeomorphism
Φi : π1(Mi) → π̄1(Y ), for i ≥ n0 can be found. Technical Lemma 3.1 considers
Gromov-Hausdorff convergence to LGC(ρ)-space to obtain a similar result.

The proof of Technical Lemma 3.1 was divided into two parts as follows. The
first part reveals the existence of the map f satisfying (3.1.3).

Proof of (3.1.3). The construction of such a Hausdorff approximation f depends
heavily on the assumption that injq(N) ≥ µ0. A function ρ : [0, r) → [0,∞) is said
to be a contractibility function provided:(i) ρ(0) = 0, (ii) ρ(ε) ≥ ε, (iii) ρ(ε) → 0 as
ε → 0, (iv) ρ is non-decreasing. Then, a metric space X is said to be an LGC(ρ)-
space with a contractibility function ρ if for every ε ∈ [0, r] and x ∈ X, the ball
Bx(ε) is contractible inside Bx(ρ(ε)). Since injq(N) > µ0 > 0, then (N, q) is an
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LGC(ρ)-space with contractibility function ρ(s) = s defined in [0, µ0/2].
Choose ε be such that 8(n + 3)2ε < µ0. Since dGH((M, p), (N, q)) < ε, a metric

d is fixed on the disjoint union space M q N such that d((M, p), (N, q)) < ε. For
each x ∈ M , a map h : M → N can be found such that h(x) is a point in N with
d(h(x), x) < ε. Thus, the triangle inequality shows that h is 4ε-continuous (cf. [7]).
Hence, [Main obstruction result 3 in [7]] indicates a continuous map f : M → N
with d(h(x), f(x)) ≤ (n + 2)ε for all x ∈ M . Take τ(ε) = 4(n + 3)ε. Clearly,
f : M → N is an τ(ε)-Hausdorff approximation with limε→0 τ(ε) = 0. Moreover,
[Corollary 4.6 in [7]] and [10] show that the induced map f∗ : π1(M, p) → π1(N, q)
is surjective, and hence (3.1.3) is established. �

The proof of (3.1.4) is similarly to Fukaya and Yamaguchi’s proof in [Theorem
7.1 in [3]]. The following proof indicates how the original process can work under
the proposed settings. For brevity, we say that a group has property (*) if it
containes a subgroup satisfying (i) and (ii) in (3.1.4).

Proof of (3.1.4). This proof is achieved by induction on dimN and by contradiction.
When dimN = n, by [Theorem A1.12 in [2]], a value of ε can be chosen that is
small enough such to form a diffeomorphism from (Mn, p) to (Nn, q), which is taken
as f . Since π1(V ) is trivial, Γ is also trivial, and the theorem holds. Now suppose
that (3.1.4) holds for k < dimN < n with fixed k but not for dimN = k. Then,
for sequences εi → 0 and wi → ∞ as i → ∞, sequences (Mn

i , pi) and (Nk
i , qi) exist

satisfying (3.1.1) and (3.1.2), but no map (Mi, pi) → (Ni, qi) satisfies (3.1.4) for ε = εi
and w = wi simultaneously. Notable, a continuous τ(εi)-Hausdorff approximation
map fi : Mi → Ni with fi(pi) = qi always exists for sufficiently large i.

Define Vi = Bqi
(µ0

2
), Ui = f−1

i (Vi) and Γi = π1(Ui) as above. To utilize the
induction hypothesis, the metrics need to be blowed-up by the technique shown in
[3]. However, since fi in this case is only a continuous map, the metrics can be

scaled as follows. Since dim(Mn
i ) > dim(Nk

i ), there exists q′i ∈ Bqi
( τ(εi)

10
) such that

diam(f−1
i (q′i)) > 0. Let p′i ∈ f−1

i (q′i). Then it can be shown that

dH((Mn
i , p

′
i), (N

k
i , q

′
i)) < 2τ(εi).

Indeed, since dH((Mn
i , pi), (N

k
i , qi)) < ε, there exist εi-pointed Hausdorff approx-

imations hi and h̃i such that the map fi is induced by hi as in the proof of (3.1.3)
with hi(pi) = qi, h̃i(qi) = pi, hi(Bpi

( 1
εi
)) ⊆ Bqi

( 1
εi

+ εi) and h̃i(Bqi
( 1

εi
)) ⊆ Bpi

( 1
εi

+ εi).

Moreover, d(pi, p
′
i) <

6
5
τ(εi) since fi is a τ(εi)-Hausdorff approximation. Notably,

εi <
τ(ε)
10

and for x ∈ Bp′
i
( 1

2τ(εi)
) we have

d(hi(x), q
′
i) ≤ d(hi(x), hi(pi)) + d(qi, q

′
i)

< d(x, pi) + 2εi + d(qi, q
′
i)

≤ d(x, pi) + d(pi, p
′
i) + d(qi, q

′
i) + 2εi

<
1

2τ(εi)
+ 2τ(εi)

Thus hi(Bp′
i
( 1

2τ(εi)
)) ⊆ Bq′

i
( 1

2τ(εi)
+ 2τ(εi)). Similarly, h̃i(Bq′

i
( 1

2τ(εi)
)) ⊆ Bp′

i
( 1

2τ(εi)
+

2τ(εi)) and then dH((Mn
i , p

′
i), (N

k
i , q

′
i)) < 2τ(εi) can be demonstrated. Therefore, for
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brevity, the map fi : Mn
i → Nk

i with fi(pi) = qi is assumed to satisfy the condition
as in (3.1.3)and diam(f−1

i (qi)) > 0 for large enough i.
For each i, set δi to a positive number such that

δi = (
1

10
sup{d(x, y)|x, y ∈ f−1

i (qi)})2 ≤ 1

4
(τ(εi))

2,

then δi → 0 as i → ∞. Blow-up the original metrics gMi
and gNi

of Mi and Ni

respectively by

gi =
1

δi
gMi

and hi =
1

δi
gNi

.

Then, by taking a subsequence if necessary,

dH((Vi, hi), qi), ((R
k, can), 0) < 2

√
δi ≤ τ(εi)

since RicNi
≥ −(n− 1) and injqi

(Ni) > µ0. Assume that ((Ui, gi), pi) converges to a
pointed metric space (X, x0). Moreover, we have that the sequence {fi} is an almost
equicontinuous family and is convergent.

Sublemma 3.3. fi converges to a continuous map f : X → Rk with
(3.3.1) For every x, y ∈ Rk, d(f−1(x), f−1(y)) = d(x, y).
(3.3.2) For every x′ ∈ f−1(x) there exists a point y′ ∈ f−1(y) such that d(x′, y′) =
d(x, y).
(3.3.3) f(x0) = 0.

Proof of Sublemma 3.3. Assume that τ(εi) decreases monotonically to 0. Fix i0 and
select ηi0 = 3

2
τ(εi0). Then, given η > ηi0 , d(fi(xi), fi(yi)) < η for all xi, yi ∈ Ui holds

provided d(xi, yi) <
1
2
τ(εi) and i ≥ i0. Take a dense subset Ai = {ai

1, a
i
2, . . .} ⊂ Ui for

each i and let ai
j → aj ∈ X as i→∞. Then, the set A = {aj}∞j=1 ⊂ X is dense in X.

Since ((Vi, hi), qi) converges to ((Rk, can), 0), by using the diagonal process, {fi(a
i
j)}

converges for each fixed j. Define the map f : A → Rk by f(aj) ≡ limi→∞ fi(a
i
j).

Then, for given ξ > 0, choose i0 large enough such that, for i > i0, 10τ(εi0) < ξ.
Now, for x ∈ X, it can be assumed that aj → x as j →∞ and d(aj, am) < 1

10
τ(εi0)

for j, m ≥ j0, where j0 depends on i0 and j0 →∞ as i0 →∞. Then

d(f(aj), f(am)) ≤ d(fi(a
i
j), fi(a

i
m)) + 4τ(εi) < 2ηi0 + 4τ(εi) < ξ.

Therefore, {f(aj)} is a Cauchy sequence in Rk and hence f : X → Rk defined by
f(x) ≡ limj→∞ f(aj) is well-defined and continuous. Clearly f satisfies equations
(3.3.1)-(3.3.3). �

From Theorem 2.4 and (3.3.1)-(3.3.3), [Lemma 7.4 and 7.5 in [3]] is applied to
show that X is isometric to a product Rk×Z, where Z is compact and not a single
point, and that the map f : Rk × Z → Rk is the projection.

Let Bk(r0) denote the metric r0-ball in Rk around the origin. Denote Ui(r0) ≡
f−1

i (Bqi
(r0)), where Bqi

(r0) ⊆ (Ni, hi), then

(3.4) lim
i→∞

Ui(r0) = Bk(r0)× Z.
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Let d0 be the distance of Bk(r0)×Z. Corollary 2.6 gives the sequences yj ∈ Bk(r0)×
Z and rj →∞ as j →∞ such that

(3.5) lim
j→∞

((Bk(r0)× Z, rjd0), yj) = ((Rm, can), 0))

, where m > k since Z is not one point. Combining (3.4) and (3.5) shows that for
given ε > 0, i0, j0 and p̂i ∈ Ui(r0) exist such that for i ≥ i0,

(3.6) dH((Ui(r0), rj0gi), p̂i), ((R
m, can), 0)) < ε.

Therefore, induction hypothesis gives, for sufficiently large i, a map Φi : (Ui(r0), rj0gi), p̂i) →
((Rm, can), 0) such that Φi is a τ(ε)-Hausdorff approximation, and the fundamental
group π1(Φ

−1
i (Bm(µ0

2
))) satisfying property (*) for w = wn,m.

Let Γi(p̂i, µ0) = Im[i∗ : π1(Φ
−1
i (Bm(µ0

2
))) → π1(Ui)] be the image of the induced

map i∗ of the inclusion map i : Φ−1
i (Bm(µ0

2
)) → Ui. Then Γi(p̂i, µ0) naturally has

the property (*).
Let (Ũi, g̃i, p̃i) be the universal Riemannian covering space of (Ui, gi, pi) with

covering map Πi : (Ũi, g̃i, p̃i) → (Ui, gi, pi). Then, Γi = π1(Ui, pi) is the deck trans-
formation group. By taking a subsequence if necessary, a triple (W,G, p̃∞) ∈ Meq

can be assumed such that

(3.7) lim
i→∞

(Ũi,Γi, p̃i) = (W,G, p̃∞),

(3.8) Πi converges to a map Π∞ : W → Rk × Z.

Since Π∞ also fulfills (3.3.1) and (3.3.2), Theorem 2.4 and Corollary 2.5 imply that
W is isometric to Rk ×W ′ and W ′ is isometric to (R` × Y ), where Y is a compact
metric space.

Let Ũi(r0) = Π−1
i (Ui(r0)). Then

(3.9) lim
i→∞

(Ũi(r0),Γi, p̃i) = (Bk(r0)×R` × Y,G, p̃∞)

Applying Theorem 2.8 gives, for each ε > 0, a normal subgroup Gε of G such that
(2.8.1)-(2.8.3) hold. Therefore, Theorem 2.3 gives a sequence of normal subgroups
Γi,ε of Γi with

(3.10) lim
i→∞

(Ũi(r0),Γi,ε, p̃i) = (Bk(r0)×R` × Y,Gε, p̃∞), and

(3.11) Γi/Γi,ε
∼= G/Gε

for each sufficiently large i.
Now we investigate the relationship between Γi,ε and Γi(x, ε) for some ε > 0.

Sublemma 3.12. For every x ∈ Ui(r0), Γi,ε ⊂ Γi(x, 3ε) for sufficiently large i.

Proof of Sublemma 3.12. Let τi be the equivarient pointed Hausdorff distance be-
tween (Ũi(r0),Γi,ε, p̃i) and (Bk(r0) ×R` × Y,Gε, q). To prove this lemma, we shall
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show that, for sufficiently large i, each element γ ∈ Γi,ε can be generated by geodesic
loops of length less than Cτi + ε at x, where C = C(G, ε) > 0.

As in Definition 2.1, let ϕi : (Ũi(r0),Γi,ε, p̃i) → (Bk(r0) × R` × Y,Gε, q) be a
τi-Hausdorff approximation, and let λi : Γi,ε(

1
τi

) → Gε(
1
τi

), λ′i : Gε(
1
τi

) → Γi,ε(
1
τi

)

be the corresponding maps. A point x̃ ∈ M̃i over x can be taken such that d(x̃, p̃i)
is uniformly bounded, say 2r0. Condition (2.3.8) implies that the length of γ is
uniformly bounded by a constant. Hence, it can be assumed that γ̄ = λi(γ) for each
sufficiently large i. By (2.8.3), there are γ̄1, . . . , γ̄s ∈ Gε such that

(3.12.1) γ̄ = γ̄sγ̄s−1 . . . γ̄1,

(3.12.2) d(γ̄j γ̄j−1 . . . γ̄1(ϕ(x̃)), γ̄j−1 . . . γ̄1(ϕ(x̃)) < ε, for 1 ≤ j ≤ s.

For each j, write γj = λ′i(γ̄j). Then, γ has the expression γ = γs . . . γ1(γs . . . γ1)
−1γ.

and therefore,

(3.12.3) d(γjγj−1 . . . γ1(x̃), γj−1 . . . γ1(x̃)) < 2(j + 1)τi + ε

(3.12.4) d(γ(x̃), γs . . . γ1(x̃) < 2(s+ 1)τi.

Notably, s depends on G, ε and µ0. Thus, the sublemma holds. �

Up to now, we know that Γi,µ0 has a subgroup Hi,µ0 with the property (*). Then,
the argument in [[3], p.288 and p.289] can be used to conclude that π1(Ui) has a
subgroup H with property (*) for i large enough, which contradicts the previous
assumption. Hence, for dimN = k, εn,k(µ0), wn,k and a map fi : Mi

n → Ni
k exist

such that (3.1.3) and (3.1.4) hold under the assumption of (3.1.1) and (3.1.2). Thus,
by induction, the proof of the Technical Lemma 3.1 is finished. �

4 A weak Margulis’s Lemma

This section presents a proof of Theorem B. First, by Technical lemma 3.1, the
following lemma is presented.

Lemma 4.1. For given integer n and k with n ≥ k there exist δn,k, In,k and wn,k

depending only on n and k satisfying the following: Let (Mn
i , pi) be a sequence of

complete pointed Riemannian n-manifold with RicMn
i
≥ −(n− 1). Suppose (Mn

i , pi)
converges to a metric space (X, p∞) of dimension k in the pointed Hausdorff con-
vergence. Then there exist p′i ∈ Bpi

(1/2) such that, for δ < δn,k and i ≥ In,k, the
image of the inclusion homomorphism

Γ′ = Im[π1(Bp′
i
(δ)) → π1(Bpi

(1))]

admits a subgroup Λ′ ⊂ Γ′ with
(4.1.1) [Γ′ : Λ′] < wn,k;
(4.1.2) Λ′ is solvable with length of polycyclicity≤ n− k.
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Proof of Lemma 4.1. The lemma can be proven by contradiction. Assume that there
exit δi → 0, wi → ∞ and Mi with RicMi

≥ −(n − 1) satisfying the following: For
each p′i ∈ Bpi

(1/2) and each I > 0, there exists an i ≥ I such that

Γ′i = Im[π1(Bp′
i
(δi)) → π1(Bpi

(1))]

never admits a subgroup with properties (4.1.1) and (4.1.2) in Lemma 4.1 for w = wi.
By Corollary 2.6, there are sequences q′i ∈ Bpi

(1/2) and ri → ∞ such that
limi→∞((Mi, rigi), q

′
i) = (Rm, can, 0), where m ≥ k = dim(X). The sequence ri

can be selected such that riδi → 0 as i → ∞. From Technical lemma 3.1, there
exist an i0 large enough and a Hausdorff approximation fi0 : (Mn

i0
, q′i0) → (Rk, 0)

with fi0(q
′
i0
) = 0 so that the fundamental group Γ′′i0 = π1(f

−1
i0 (Bk(10))) admits a

subgroup Λ′′i0 ⊂ Γ′′i0 satisfying properties (4.1.1) and (4.1.2) of Lemma 4.1 for wn,k

independent of i. By riδi → 0,

Γ′i0 ⊂ Im[Γ′′i0 → π1(Mi0)].

Then, Γ′i0 admits a subgroup Λ′i0 satisfying properties (4.1.1) and (4.1.2) of Lemma
4.1 creating a contradiction. �

Proof of Theorem B. Now, a proof of Theorem B is presented. Given a divergent
sequence ri →∞, there exists a metric space (X, p∞) of dimension k ≤ n such that
((Mn, rigM), p) converges to (X, p∞). By Lemma 4.1, choose δn = min0≤k≤n δn,k and
wn = max0≤k≤nwn,k, and then Theorem B holds. �

Remark 4.2. Consider a compact Riemannian n-manifold Mn with RicMn ≥ 0.
Scaling the metric of M so that diam(M) ≤ δn

2
still leaves RicM ≥ 0, thus showing

the fundamental group π1(M) of M admits a subgroup H such that
(4.2.1) H is solvable with length of polycyclicity ≤ n;
(4.2.2) [H : π1(M)] < wn.
In the next section, this result is applied to present a proof of Theorem A.

5 Proof of Theorem A

The proof of Theorem A followa similar methods to the proofs in [Corollary 7.20 in
[3], p.289] and [Corollary 0.11 in [3], p.290 and p.291] respectively. However, the
results are extended to manifolds with positive Ricci curvature.

Proof of part (a) in Theorem A. Let Mn be a compact Riemannian n-manifold with
Ric ≥ 0. By Remark 4.2 (weak Margulis’s lemma), the fundamental group π1(M)
of M admits a subgroup H satisfying (4.2.1) and (4.2.2) and then b1(M,Zp) ≤ n for
all prime p ≥ wn ≡ pn. This proof shows by contradiction that b1(M,Zp) ≤ n− 1,
as long as Ric > 0.

This proof uses the notations as the proof of Technical Lemma 3.1. Con-
sider a compact Riemannian n-manifold (M, gM) with positive Ricci curvature and
b1(M,ZP ) = n. SinceM is compact, the metric gM can be scaled such that diam(M)
is small enough. So, M can be assumed to be Hausdorff close to a point. Define gi as
in the proof of (3.1.4). Then, for each i, Ui = (M, gi), and hence Z = limi→∞ Ui is in
fact a compact n-manifold (cf. (3.4)). Equations (3.7), (3.8) and (3.9) indicate that



452 W.-H. Chen – J.-Y. Wu

the universal Riemannian covering Ũi = M̃i, Γi = π1(M), and therefore (M̃i, π1(M)
converges to (R` × Y,G). Hence, (R` × Y )/G = Z.

Notably, R`/φ(G) is compact, and the projection φ : G → Isom(R`) is defined
as in Theorem 2.8. Moreover, since b1(M,ZP ) = n, the estimation of the length of
polycyclicity in [[3], p.288-289] gives the following equality for Hausdorff dimensions:

dim
R`

φ(G)
= dimZ.

Then, the generalized Bieberbach’s theorem [Corollary 4.2 in [3], p.273], reveals a
finite-index normal subgroup G

′
of φ(G) such that R`/G

′
is a flat s-torus T s for

some s > 0. Futhermore, Theorem 2.3 gives a finite-index normal subgroup Γ̂i

of Γi = π1(M) converging to φ−1(G
′
). Thus, the compact manifold M̂i ≡ M̃i/Γ̂i

converges to T s. Additionally, RicM̂i
> 0 and M̂i is a covering space of M . Then,

π1(M̂i) is a subgroup of π1(Mi). Using (3.1.3), a surjection between π1(M̂i) and
π1(T

s) is found for i large enough. Thus, π1(M̂i) has infinite order and contradicts
to the fact that π1(M) is finite. Hence, b1(M,Zp) ≤ n−1 for all prime p ≥ wn ≡ pn.�

Proof of part (b) in Theorem A. Part (b) is also proven by contradiction. Consider
a sequence of Riemannian manifolds Mi with RicMi

> 0, and universal Riemannian
covering M̃i with,

lim
i→∞

diam(M̃i)

diam(Mi)
= ∞.

Scaling the metric gives diam(M̃i) = 1 for all i yielding a sequence εi with limi→∞ εi =
0 such that diam(Mi) < εi. Notably, for each i, π1(Mi) admits a subgroup Hi which
satisfies (4.2.1) and (4.2.2).

Define H0
i = Hi, H

j
i = [Hj−1

i , Hj−1
i ], the commutator of Hj−1

i , and then Hn
i = 0.

Choose p̃i ∈ Π−1
i (pi). Since diam(M̃i/H

j
i ) ≤ 1 for all i and j, Corollary 2.5 implies

a triple (X,Gj, x0) such that

lim
i→∞

(M̃i, H
j
i , p̃i) = (X,Gj, x0)

for each 0 ≤ j ≤ n. Note that G0 acts on X transitively. Take a number j0 such
that X/Gj0−1 is a point and X/Gj0 is not a point.

Put
M̄i = M̃i/H

j0
i , Λi = Hj0

i /H
j0−1
i .

Let p̄i ∈ M̄i be the point corresponding to p̃i. By applying Corollary 2.6 and
repeating the blow-up arguments (at most finite times), (M̄i, p̄i) can be assumed to
converge to (R`, 0) for some ` > 0. Let Λ be the group such that limi→∞(M̄i,Λi, p̄i) =
(R`,Λ, 0). Then, the abelian group Λ acts on R` transitively ,and Λ is indeed the
vector group R`.

Now, the pseudogroup technique is applied as in [11]. Let

Λ′i = {γ ∈ Λi | d(γ(p̄i), p̄i) < 10`}.

Consider B`(10`) ⊂ R` and Λ′i to be the pseudogroups of isometric embeddings of
B`(10`) to B`(20`) and Bp̄i

(10`) to Bp̄i
(20`) in M̄i, respectively. Consider the lattice

E∞ = B`(10`) ∩Z`
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and take γ1i
, . . . , γ`i

∈ Λ′i such that γji
converges to ej ∈ E∞, where e1, . . . , e`

denote the canonical basis of Z`. Let Ei be the pseudogroup of Λ′i generated by
γ1i
, . . . , γ`i

. Since Ei is abelian, (Bp̄i
(10`), Ei) converges to (B`(10`), E∞). Hence,

M̂i ≡ Bp̄i
(10`)/Ei converges to the flat torus T ` = B`(10`)/E∞ with respect to the

Hausdorff distance. As in the proof of part (a), RicM̂i
> 0 and M̂i is also a covering

of Mi. Again as in (3.1.3), a surjection from π1(M̂i) to π1(T
`) is obtained for i

large enough, and group π1(M̂i) thus has infinite order. Therefore, π1(Mi) also has
infinite order, giving a contradiction. Hence, the proof is complete. �

References

[1] J. Cheeger and T. Colding, Lower curvature bounds on Ricci curvature and
almost rigidity of warped products, Ann. of Math. 144 (1996), 189-237.

[2] J. Cheeger and T. Colding, On the structures of spaces with Ricci curvature
bounded below; I, J. Diff. Geom. 46 (1997), 406-480.

[3] K. Fukaya and T. Yamaguchi, The fundamental groups of almost nonnegatively
curved manifolds, Ann. of Math. 136 (1992), 253-333.

[4] K. Fukaya and T. Yamaguchi, Isometry groups of singular spaces, Math. Z. 216
(1994), 31-44.

[5] M. Gromov, Synthetic geometry in Riemannian manifolds, In Proc. of Interna-
tional Congress of Mathematicians, Helsinki, (1978), 415-419.

[6] R. Hamilton, Three manifold with positive Ricci curvature, J. Diff. Geom. 17
(1982), 255-306.

[7] P. Petersen, Gromov-Hausdorff convergence of metric spaces. In S.-T. Yau and
R. Green (eds.), Differential Geometry, Proc. Symp. Pure Math., Vol. 54, Part
3, AMS, Providence, RI, (1993), 489-504.

[8] P. Petersen, Comparison Geometry Problem List. In M. Lovric, M. Min-Oo and
M. Y.-K. Wang(eds.), Riemannian Geometry, Fields Institute Monographs, Vol.
4, Lecture Series 4, AMS, (1996), 87-109.

[9] C. Sormani and G. Wei, Hausdorff convergence and universal covers, Trans.
AMS, 353 (2001), 3585-3602.

[10] J.-Y. Wu, An obstruction to fundamental groups of positively Ricci curved man-
ifolds, Ann. of Global Analysis and Geometry Vol.16, (1998), 371-382.

[11] T. Yamaguchi, Collapsing and pinching under a lower curvature bound, Ann.
of Math. 133 (1991), 317-357.

Department of Mathematics, Tunghai University
Taichung 40704, Taiwan.
E-mail : whchen@thu.edu.tw

Department of Mathematics, National Chung Cheng University
Chai-Yi 621, Taiwan.
E-mail : jywu@math.ccu.edu.tw


