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Abstract

We consider a Rayleigh beam equation with two dynamical boundary con-

trols. First, by a multiplier method, we show that the smooth solution has

a polynomial energy decay rate. Next, using a spectrum method, we justify

that the polynomial energy decay rate is optimal.

1 Introduction and main result

In this paper, we consider the equation of Rayleigh beam, which is clamped at
one end and subjected to dynamical boundary controls at the other end :





ytt − γyxxtt + yxxxx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = 0, t > 0,
yxx(1, t) + η(t) = 0, t > 0,
yxxx(1, t) − γyxtt(1, t) = ξ(t), t > 0

(1.1)

where γ > 0 is a physical constant, η, ξ designate respectively the boundary feedback
controls.

In the case of static feedbacks: η(t) = yxt(1, t), ξ(t) = yt(1, t) the stabilization
of the system (1.1) was well studied by Rao in [14]. In this work, we propose a
dynamical boundary force control ξ(t) and a dynamical boundary moment control
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η(t) applied at the right end of the beam. The dynamical controls η(t) and ξ(t) are
given by the following integral system :

{
ηt(t) − yxt(1, t) + η(t) = 0,
ξt(t) − yt(1, t) + ξ(t) = 0.

(1.2)

The concept of dynamical controls has been introduced by the automaticians in the
finite dimensional case (see Francis [4]). In the infinite dimensional case, the concept
of dynamical controls is considered as indirect damping mechanisms proposed by
Russell [19].

Let y be a smooth solution of the system (1.1)-(1.2). We define the associated
energy E(t) by the following formula :

E(t) =
1

2

{∫ 1

0
(y2

t + γy2
xt + y2

xx )dx + η2 + ξ2

}
. (1.3)

By a direct computation we have :

dE(t)

dt
= −η2(t) − ξ2(t) ≤ 0, ∀ t ≥ 0. (1.4)

Then the system (1.1)-(1.2) is dissipative in the sense that the energy E(t) is a
nonincreasing function of the time variable t.

Now, let

V = {y ∈ H1(0, 1) : y(0) = 0}, ‖ y ‖2
V =

∫ 1

0
(y2 + γy2

x)dx,

W = {y ∈ H2(0, 1) : y(0) = yx(0) = 0}, ‖ y ‖2
W =

∫ 1

0
y2

xxdx.

We define the energy space

H = W × V × R × R

endowed with the usual inner product. Let y be a smooth solution of the system
(1.1)-(1.2). We multiply the equation (1.1) by a function φ ∈ W and integrate by
parts : ∫ 1

0
(yttφ + γyxttφx)dx +

∫ 1

0
yxxφxxdx + ξφ(1) + ηφx(1) = 0. (1.5)

Now we define the linear operators A ∈ L(W ; W ′), B ∈ L(R; V ′), C ∈ L(V, V ′) and
D ∈ L(R; W ′) by the following way:

< Ay, φ >W ′×W = (y, φ)W , < Dη, φ >W ′×W = ηφx(1), ∀ y, φ ∈ W, η ∈ R,

< Cy, φ >V ′×V = (y, φ)V , < Bξ, φ >V ′×V = ξφ(1), ∀ y, φ ∈ V, ξ ∈ R.

Then we can formulate the variational equation (1.5) as :

Cytt + Ay + Dη + Bξ = 0, in W ′.

Assume that Ay + Dη ∈ V ′, then we obtain that :

ytt + C−1(Ay + Dη + Bξ) = 0, in V.
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We next introduce the linear bounded operator B in H and the linear unbounded
operator A as follows :

Bu =




0
0
η
ξ




T

, Au =




−z
C−1(Ay + Dη + Bξ)

−zx(1)
−z(1)




T

,

D(A) =

{
(y, z, η, ξ) ∈ H : z ∈ W and Ay + Dη ∈ V ′

}
.

Setting u = (y, yt, η, ξ), we rewrite (1.1)-(1.2) as a first-order system :

ut + (A + B)u = 0, u(0) = u0 ∈ H. (1.6)

It is easy to prove that A is maximal monotone operator and B is monotone operator.
Then A + B generates a C0 semigroup SA+B(t) of contractions on the energy space
H (see Brezis [2]). Moreover, since A is skew adjoint and B is compact, then using
the compact perturbation theory of Russell [18] the system (1.1)-(1.2) is not be
uniformly stable (see Rao[14]). Moreover, using the decomposition theory of Sz-
Nagy-Foias and Foguel we can prove that the energy E(t) decreases asymptotically
to zero (see Benchimol [1]) for all u0 ∈ H.

In this paper, we will prove that for any u0 ∈ D(A) the energy of the system
(1.1)-(1.2) has a polynomial decay rate :

E(t) ≤ E(0)
2M

M + t
, ∀ t ≥ 0 (1.7)

where M > 0, depending on u0 ∈ D(A). To this end, we employ a nonlinear
technique (see Rao [15]). Moreover we prove that the polynomial energy decay rate
(1.7) is optimal in the sense that for any ε > 0 there exists uε

0 ∈ D(A) such that the
associated energy satisfies the estimate :

Eε(t) ≥ Cε

t1+ε
, t → +∞.

Our approach is based on the theory of Riesz basis and earlier results of Littman
and Markus [11] on the hybrid system.

To our knowledge, the estimate (1.7) and the optimality are new. In fact, there
were several works on the energy decay rate for smooth solutions of the wave equation
[9], [10]. In [10] Lebeau and Robbiano considered the boundary stabilization for a
wave equation. In particular, it was shown that the energy has a decay rate just

like
1

(ln t)2−δ
, δ > 0 for any u0 ∈ D(A). Moreover, in [12] Morgül considered

the Euler-Bernoulli equation with two dynamical boundary controls : the dynamic
boundary moment control η(t)+d1yxt(1, t) and the dynamic boundary force control
ξ(t) + d2yt(1, t) where d1 > 0 and d2 ≥ 0. The stability of system (1.1)-(1.2) was an
open problem in the case d1 = d2 = 0.

Unlike the spectrum method, the multiplier method does not necessitate any
knowledge of the spectrum of the system. It is simple and can be adapted to the
study of other problems in any spatial dimension (see Rao-Wehbe [16]). Because the
essential difficulty intervening in the determination of the spectrum of the system,
the spectrum method is obviously limited to one-dimensional problems.
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2 Polynomial energy decay rate

In this section, using a multiplier method we establish the polynomial energy decay
rate for the smooth solution of the system (1.1)-(1.2).

Theorem 2.1. For any u0 ∈ D(A), let

M = (γ + 1)
‖ u0 ‖2

D(A)

‖ u0 ‖2
H

+ 9γ + 17.

Then the following polynomial energy decay rate holds

E(t) ≤ E(0)
2M

M + t
, ∀ t ≥ 0 (2.1)

for the solution u of the system (1.6).

The idea of the proof is based on an earlier work of Rao [15]. We proceed in
several steps. We first recall the following result

Lemma 2.1. (i) Let u = (y, z, η, ξ) ∈ D(A). Then we have

y ∈ H3(0, 1) ∩ W, z ∈ W such that yxx(1) + η = 0. (2.2)

Moreover, the resolvent (I +A)−1 is compact in H. In particular, A is skew adjoint.

(ii) Let u = (y, z, η, ξ) ∈ D

(
(A + B)2

)
. Then we have

y ∈ H4(0, 1) ∩ W, z ∈ H3(0, 1) ∩ W such that

yxx(1) + η = 0 and yxxx(1) − γvx(1) − ξ = 0 (2.3)

where v = C−1(Ay + Dη + Bξ) ∈ V .

The proof is the same as in Rao [14]. We omit the details here.

Lemma 2.2. Assume that u0 ∈ D

(
(A + B)2

)
. Let 0 ≤ S ≤ T < +∞. Then the

solution u of the problem (1.6) satisfies :

1

2

∫ T

S

∫ 1

0
(y2

t − γy2
xt +

11

4
y2

xx)E(t)dxdt ≤ M0E(S)E(0) (2.4)

where M0 is given by :

M0 = (γ + 1)
‖ u0 ‖2

D(A)

‖ u0 ‖2
H

+ 7γ + 8.
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Proof. Assume that u0 ∈ D(A + B), then using (i) Lemma 2.1 we have y ∈
H3(0, 1) and yxx(1, t) = −η(t) ∈ L2(S; T ). Multiplying equation (1.1)-(1.2) by
xyxE(t) and integrating by parts we obtain that :

1

2

∫ T

S

∫ 1

0

(
y2

t − γy2
xt + 3y2

xx

)
E(t)dxdt = −

[∫ 1

0
ytxyxE(t)dx

]T

S

+

∫ T

S

∫ 1

0
ytxyxEt(t)dxdt − γ

[∫ 1

0
yxtyxE(t)dx +

∫ 1

0
yxtxyxxE(t)dx

]T

S

+ γ
∫ T

S

∫ 1

0
yxtyxEt(t)dxdt + γ

∫ T

S

∫ 1

0
yxtxyxxEt(t)dxdt+

1

2

∫ T

S

(
y2

t (1, t) + γy2
xt(1, t) + y2

xx(1, t)

)
E(t)dt −

∫ T

S

(
η + ξ

)
yx(1, t)E(t)dt. (2.5)

Using poincaré’s inequality, we have :

∫ 1

0
ytxyxdx ≤ E(t), ∀t ≥ 0.

This implies that

−
[∫ 1

0
ytxyxE(t)dx

]T

S

+
∫ T

S

∫ 1

0
ytxyxEt(t)dxdt ≤ 3E(S)E(0), ∀T ≥ S ≥ 0.

Similarly we obtain that

−γ

[∫ 1

0
yxtyxE(t)dx

]T

S

+γ
∫ T

S

∫ 1

0
yxtyxEt(t)dxdt ≤ 3γE(S)E(0), ∀T ≥ S ≥ 0,

−γ

[∫ 1

0
yxtxyxxE(t)dx

]T

S

+γ
∫ T

S

∫ 1

0
yxtxyxxEt(t)dxdt ≤ 3γE(S)E(0), ∀T ≥ S ≥ 0.

Then using (2.5) we deduce that :

1

2

∫ T

S

∫ 1

0

(
y2

t − γy2
xt + 3y2

xx

)
E(t)dxdt ≤ 3(2γ + 1)E(0)E(S)

+
1

2
E(S)

∫ T

S

(
y2

t (1, t) + γy2
xt(1, t) + y2

xx(1, t)

)
dt − E(S)

∫ T

S
(η + ξ)yx(1, t)dt. (2.6)

On the other hand, from (1.4) we deduce that :

∫ T

S

(
ξ2(t) + η2(t)

)
dt = −

∫ T

S
E ′(t)dt ≤ E(S). (2.7)

Now assume that u0 ∈ D

(
(A + B)2

)
then differentiating the system (1.6) with

respect to the variable t gives :

∫ T

S

(
ξ2
t (t) + η2

t (t)

)
dt ≤ E1(S)
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where the energy of high order E1(t) is defined by :

E1(t) =
1

2
‖ SA+B(t)(A + B)u0 ‖2

H=
1

2
‖ u′(t) ‖2

H, ∀t ≥ 0.

Then we deduce that :

∫ T

S

(
y2

t (1, t) + γy2
xt(1, t) + y2

xx(1, t)

)
dt =

∫ T

S

[(
ξt(t) + ξ(t)

)2

+ γ

(
ηt(t) + η(t)

)2

+ η2(t)

]
dt

≤ 2(γ + 1)

(
E1(0)

E(0)
+ 1

)
E(0). (2.8)

Choosing ε > 0 then we have :

−
∫ T

S
(η + ξ)yx(1, t)E(t)dt ≤ 1

ε

∫ T

S
(η2 + ξ2)E(t)dt +

ε

2

∫ T

S
y2

x(1, t)E(t)dt

≤ 1

ε
E(0)E(S) +

ε

2

∫ T

S

∫ 1

0
y2

xxE(t)dxdt. (2.9)

Let ε =
1

4
. Use (2.8) and (2.9) in (2.6) gives (2.4). The proof is thus complete.

Lemma 2.3. Assume that u0 ∈ D(A + B). Let 0 ≤ S ≤ T < +∞. Then the
solution u of the problem (1.6) satisfies :

∫ T

S

∫ 1

0
(y2

t + γy2
xt −

9

8
y2

xx)E(t)dxdt ≤ (3γ + 7)E(S)E(0). (2.10)

Proof. Since u0 ∈ D(A + B), then using (i) Lemma 2.1 we have y ∈ H3(0, 1)
and yxx(1, t) = −η(t) ∈ L2(S; T ). Multiplying the equation (1.1)-(1.2) by yE(t) and
integrating by parts we obtain that :

∫ T

S

∫ 1

0

(
y2

t + γy2
xt − y2

xx

)
E(t)dxdt =

[∫ 1

0
ytyE(t)dx + γ

∫ 1

0
yxtyxE(t)dx

]T

S

−
∫ T

S

∫ 1

0
ytyEt(t)dxdt − γ

∫ T

S

∫ 1

0
yxtyxEt(t)dxdt+

∫ T

S

(
η(t)yx(1, t) + ξ(t)y(1, t)

)
E(t)dt. (2.11)

Using poincarré’s inequality, we have :

−
[∫ 1

0
ytyE(t)dx

]T

S

+
∫ T

S

∫ 1

0
ytyEt(t)dxdt ≤ 3E(S)E(0), ∀T ≥ S ≥ 0,

and

−γ

[∫ 1

0
yxtyxE(t)dx

]T

S

+γ
∫ T

S

∫ 1

0
yxtyxEt(t)dxdt ≤ 3γE(S)E(0), ∀T ≥ S ≥ 0.
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This implies that

∫ T

S

∫ 1

0

(
y2

t + γy2
xt − y2

xx

)
E(t)dxdt ≤ 3(γ + 1)E(0)E(S)+

∫ T

S

(
ηyx(1, t) + ξ(t)y(1, t)

)
E(t)dt. (2.12)

Now, choosing ε > 0. Then we have

∫ T

S

(
ηyx(1, t) + ξ(t)y(1, t)

)
E(t)dt ≤

1

2ε

∫ T

S

(
η2 + ξ2

)
E(t)dt + ε

∫ T

S

∫ 1

0
y2

xxE(t)dxdt. (2.13)

Let ε =
1

8
. Use (2.7) and (2.13) in (2.12) gives (2.10).

Proof of the theorem 2.1 Assume that u0 ∈ D

(
(A + B)2

)
. Using (2.4), (2.7) and

(2.10) we obtain that

∫ T

S
E2(t)dt ≤ ME(0)E(S), ∀0 ≤ S ≤ T < +∞

where we have put :

M = (γ + 1)
‖ u0 ‖2

D(A)

‖ u0 ‖2
H

+ 10γ + 16.

Thanks to a classic result of Haraux (see [6]) we deduce that :

E(t) ≤ E(0)
2M

M + t
, ∀ t ≥ 0. (2.14)

Now, let u0 ∈ D(A + B), by density (see Pazy [13]) there exists a sequence un
0 ∈

D

(
(A+ B)2

)
such that un

0 → u0 for the graph norm in D(A+ B). Then we have :

En(t) =
1

2
‖ SA+B(t)un

0 ‖2≤ 1

2
‖ un

0 ‖2 2Mn

Mn + t
, ∀ t ≥ 0

where

Mn = (γ + 1)
‖ un

0 ‖2
D(A)

‖ un
0 ‖2

H

+ 10γ + 16.

Since un
0 → u0 in D(A + B) we get : Mn → M and SA+B(t)un

0 → SA+B(t)u0 in H.
Therefor we get

E(t) =
1

2
‖ SA+B(t)u0 ‖2

H≤
1

2
‖ u0 ‖2

H

2M

M + t
, ∀ t ≥ 0.

Then we prove (2.14) for any u0 ∈ D(A).
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3 Optimal energy decay rate

Let u0 ∈ D(A), we define the energy decay rate ω by :

ω(u0) = sup

{
α ∈ R : E(t) =

1

2
‖ SA+B(t)u0 ‖2

H≤
C

tα

}
.

From Theorem 2.1, we have ω(u0) ≥ 1 for any u0 ∈ D(A). In the following, we
will prove that this upper-bound is optimal in the sense that for any ε > 0 there
exists uε

0 ∈ D(A) such that ω(uε
0) = 1 + ε. We first recall the following result (see

Littman-Markus [11]) :

Lemma 3.1. Consider a C0-semigroup SA(t) acting on a real or complex Hilbert
space H, with infinitesimal generator A. Assume that :
(i) The eigenvalues λn of the operator A has the following form λn = −σn + iτn such
that

σn >
a

nδ
, a > 0, δ > 0.

(ii) The system of root vectors {Φn}n≥1 associated to the eigenvalues λn form a Riesz
basis in H.
(iii) Let u0 ∈ H such that

u0 =
∑

n≥1

anΦn, | an | ≤ b

nq
, b > 0, q >

1

2
.

Then there exists a constant C > 0 depending on u0 such that

‖ SA(t)u0 ‖H ≤ C

t(q−1/2)/δ
, ∀t > 0.

Remark 3.1. In fact, the Lemma is proved by mean of Riesz basis property. More-
over the corresponding series is evaluated by an equivalent improper integral. So if
we assume that

σn ∼ a

nδ
and an ∼ b

nq
.

Then we have

‖ SA(t)u0 ‖H ∼ C

t(q−1/2)/δ
, ∀t > 0.

Now we define the function logarithm by :

ln(z) = ln |z| + i arg(z), where
π

4
< arg(z) <

π

4
+ 2π. (3.1)

Let λ ∈ C be an eigenvalue of A + B and Φ = (y, z, η, ξ) the corresponding eigen-
vector. Then we have

(A + B)Φ = λΦ.
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This gives that




yxxxx − γλ2yxx + λ2y = 0, 0 < x < 1 ,
y(0) = yx(0) = 0,

yxx(1) +
λ

λ − 1
yx(1) = 0,

yxxx(1) − γλ2yx(1) − λ

λ − 1
y(1) = 0.

(3.2)

Since A is skew adjoint and B is compact, using Lemma 10.1 in Gohberg and Krein
[5], for any ε > 0, there exists rε > 0 such that the spectrum of the operator A+ B
is contained in the union of the disc |λ| ≤ rε and the two sectors :

π

2
− ε < arg(λ) <

π

2
+ ε,

3π

2
− ε < arg(λ) <

3π

2
+ ε.

On the other hand, the eigenvalues of A + B are in conjugate pairs. Then we only
the spectrum in the sector D0 :

|λ| >> 1, and
π

2
− ε < arg(λ) <

π

2
+ ε. (3.3)

Next for all λ ∈ D0, we define two holomorphic functions θ(λ) and ω(λ) by :

θ(λ) =

√
γλ2 +

√
γ2λ4 − 4λ2

2
, ω(λ) =

√
γλ2 −

√
γ2λ4 − 4λ2

2
. (3.4)

Then, we find that a general solution y of (3.2) is given by

y(x) = C1

(
ω sinh(θx) − θ sinh(ωx)

)
+ C2ω

(
cosh(θx) − cosh(ωx)

)
(3.5)

where C1 and C2 are complex constants. Notice that λ = 0 is not be an eigenvalue
of A + B. Hence by writing the bounded conditions at x = 1 in (3.2) in matrix
form and taking the determinant of the coefficient matrix, We deduce that λ is an
eigenvalue of A + B if and only if λ is zero of the function :

f(λ) = P2e
2θ + P1e

θ + P0, (3.6)

where P0, P1 and P2 are given by :

P0(λ) =

(
− γωθ +

ω
√

γ2λ4 − 4λ2

λ(λ − 1)
+

ωθ
√

γ2λ4 − 4λ2

λ2(λ − 1)2
− γωθ2

λ(λ − 1)

)
sinh(ω)+

(
− γλ2 + 2 +

2

(λ − 1)2
− (ω2 − λ2)θ

√
γ2λ4 − 4λ2

λ3(λ − 1)

)
cosh(ω), (3.7)

P1(λ) = 2

(
2 − 1 − cosh(2ω)

(λ − 1)2
− ω sinh(2ω)

λ(λ − 1)

)
, (3.8)

P2(λ) =

(
γωθ +

ω
√

γ2λ4 − 4λ2

λ(λ − 1)
+

ωθ
√

γ2λ4 − 4λ2

λ2(λ − 1)2
+

γωθ2

λ(λ − 1)

)
sinh(ω)+

(
− γλ2 + 2 +

2

(λ − 1)2
+

(ω2 − λ2)θ
√

γ2λ4 − 4λ2

λ3(λ − 1)

)
cosh(ω). (3.9)
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3.1 In what follows we analyze the spectrum of A + B

In this subsection we give a good asymptotic expansion of the eigenvalues of A+B.

Theorem 3.1. Let a =
√

γ tanh(
1√
γ

) − γ +
1

2γ
and b =

1

2γ2
tanh(

1√
γ

) + γ. Then

we have the following asymptotic expansion of the eigenvalues of A + B

√
γλn = i

(
nπ+

π

2
− a

nπ
+

a

2n2π
+2(−1)n cosh−1(

1√
γ

)
1

n2π2

)
+

b
√

γ

n2π2
+O

(
1

n3

)
(3.10)

for sufficiently large n ∈ N.

Proof. If λ is an eigenvalue of A + B, then λ is a root of f(λ) = 0. Then using
(3.6) we have

eθ = − P1

2P2

± ∆1/2

2P2

where ∆ is given by :
∆ = P 2

1 − 4P2P0.

By using asymptotic analysis, (3.4) can be given as :

θ(λ) =
√

γλ

(
1 − 1

2γ2λ2
− 5

8γ4λ4
+ O

(
1

λ6

))
, (3.11)

ω(λ) =
1√
γ

(
1 +

1

2γ2λ2
+ O

(
1

λ4

))
. (3.12)

Then using (3.7), (3.8) and (3.9) we obtain that :

P0 = λ2

[
− γ cosh(

1√
γ

) +

(
− γ sinh(

1√
γ

) + γ3/2 cosh(
1√
γ

)

)
1

λ

+

(
(γ3/2 +

√
γ +

1

2γ3/2
) sinh(

1√
γ

) + (2 + γ3/2) cosh(
1√
γ

)

)
1

λ2
+ O

(
1

λ3

)]
, (3.13)

P1 = 4 − 2

(
1 + cosh(

2√
γ

) +
1√
γ

sinh(
2√
γ

)

)
1

λ2
+ O

(
1

λ3

))
, (3.14)

and

P2 = λ2

[
− γ cosh(

1√
γ

) +

(
γ sinh(

1√
γ

) − γ3/2 cosh(
1√
γ

)

)
1

λ

+

(
(γ3/2 +

√
γ − 1

2γ3/2
) sinh(

1√
γ

) + (2 − γ3/2) cosh(
1√
γ

)

)
1

λ2
+ O

(
1

λ3

)]
. (3.15)

It follows from (3.13)-(3.15) that

eθ =
−P1

2P2
± ∆1/2

2P2
= ±i

(
1 +

a1

a0λ
+

a2a0 + a2
1 − a4a0 ± 4ia0

2a2
0λ

2
+ O

(
1

λ3

))
, (3.16)

where ai are given by :

a0 = −γ cosh(
1√
γ

),
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a1 = −γ sinh(
1√
γ

) + γ3/2 cosh(
1√
γ

),

a2 = (γ3/2 +
√

γ +
1

2γ3/2
) sinh(

1
√

γ
) + (2 + γ3/2) cosh(

1
√

γ
),

a3 = 1 + cosh(
2√
γ

) +
1√
γ

sinh(
2√
γ

),

and

a4 = (γ3/2 +
√

γ − 1

2γ3/2
) sinh(

1√
γ

) + (2 − γ3/2) cosh(
1√
γ

).

Since |λn| goes to infinity then, using (3.16), we obtain the first asymptotic expansion
:

θ2n = 2inπ + i
π

2
+

a1

a0λ2n

+
a2 − a4 + 4i

2a0λ
2
2n

+ O

(
1

λ3
2n

)
, (3.17)

θ2n+1 = i(2n + 1)π + i
π

2
+

a1

a0λ2n+1
+

a2 − a4 − 4i

2a0λ2
2n+1

+ O

(
1

λ3
2n+1

)
(3.18)

for sufficiently large n ∈ N. Inserting (3.11) into (3.17) and (3.18), we obtain that :

√
γλ2n = 2inπ + i

π

2
+

(
a1

a0
+

1

2γ3/2

)
1

λ2n
+

a2 − a4 + 4i

2a0λ2
2n

+ O

(
1

λ3
2n

)
, (3.19)

√
γλ2n+1 = i(2n + 1)π + i

π

2
+

(
a1

a0
+

1

2γ3/2

)
1

λ2n+1
+

a2 − a4 − 4i

2a0λ2
2n+1

+ O

(
1

λ3
2n+1

)

for sufficiently large n ∈ N. Then we deduce that

√
γλ2n = 2inπ + i

π

2
+ O

(
1

n

)
.

This implies
1

√
γλ2n

=
1

2inπ
− 1

8in2π
+ O

(
1

n3

)
, (3.20)

1√
γλ2

2n

= −
√

γ

4n2π2
+ O

(
1

n3

)
(3.21)

for sufficiently large n ∈ N.
Finally inserting (3.20) and (3.21) into (3.19) we obtain (3.10) for sufficiently

large n ∈ 2N. The same analysis can be done for all λ2n+1. The proof is thus
complete.

3.2 System of root vectors

We first recall the following result (see Rao [17]).

Lemma 3.2. Let {Φ̃n}+∞
−∞ be a Riesz basis in a Hilbert space X, and let {Φn}|n|≥N

be a ω − linearly independent system. Assume that
∑

|n|≥N

‖ Φn − Φ̃n ‖2
X< +∞.

Then {Φn}|n|≥N is a Riesz basis in the subspace X0 spanned by itself in X.
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Lemma 3.3. The system of root vectors of A + B is complete in the energy space
H.

Proof. Since the operator iA is selfadjoint with compact resolvent, then the
spectrum of A consists entirely of isolated eigenvalues with finite multiplicities (see
Brezis [2]). On the other hand, since B is a finite-dimensional and nonselfadjoint
operator, then the s-numbers of B are given by (see Gohberg and Krein [5]):

s1(B) = 1, s2(B) = 1, sj(B) = 0, ∀j ≥ 2.

We deduce that
∞∑

j=1

sj(B) = 2 < ∞.

It follows that the order of the compact operator B is one. From Theorem 10.1 in
Gohberg and Krein [5], we conclude that the system of root vectors of i(A + B) is
complete in the energy space H. The proof is thus complete.

Now, let λn ∈ C be an eigenvalue of A + B. We will numerate the eigenvalues
λn of high frequencies (|n| ≥ N) following the asymptotic form (3.6). We denote by
µl, 1 ≤ l ≤ L, the eigenvalues of low frequencies with algebraic multiplicity ml ≥ 1.
Let

K =
L∑

l=1

ml

the total number of eigenvalues corresponding to the low frequency. Accordinly, we
denote by Φn the eigenvector associated to the eigenvalue λn of high frequency, and
by Ψk, 1 ≤ k ≤ K the eigenvector associated to the eigenvalue µk of low frequency.
Thus we obtain a system of root vectors of A + B :

{Φn; |n| ≥ N}
⋃
{Ψk; 1 ≤ 1 ≤ K} (3.22)

Φn =




yn(x)
−λnyn(x)
−ynxx(1)
λn

λn−1
yn(1)


 , |n| ≥ N

where the function yn(x) is given by :

yn(x) = Cn
1

(
ωn sinh(θnx)−θn sinh(ωnx)

)
+Cn

2 ωn

(
cosh(θnx)−cosh(ωnx)

)
. (3.23)

Using the boundary conditions in (3.2) we obtain that

Cn
1 = −νnCn

2

where νn is given by :

νn =

θ2
n cosh(θn) − ω2

n cosh(ωn) + λn(λn − 1)−1

(
θn sinh(θn) − ωn sinh(ωn)

)

θ2
n sinh(θn) + θnωn sinh(ωn) + λn(λn − 1)−1θn

(
cosh(θn) − cosh(ωn)

) .
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On the other hand, using (3.10), (3.11) and (3.12) we deduce that

√
γλn = inπ + i

π

2
+O

(
1

n

)
, θn = inπ + i

π

2
+O

(
1

n

)
, ωn =

1√
γ

+O

(
1

n2

)
. (3.24)

This implies

sinh(θn) = i(−1)n + O

(
1

n2

)
, cosh(θn) = O

(
1

n

)
,

sinh(ωn) = sinh

(
1√
γ

)
+ O

(
1

n2

)
, cosh(ωn) = cosh

(
1

γ

)
+ O

(
1

n2

)
.

As consequence we have

νn = O

(
1

n

)
. (3.25)

Theorem 3.2. The system of root vectors (3.22) of A + B is a Riesz basis in the
energy space H.

Proof. Let
√

γλ̃n = i(nπ +
π

2
). We will defined the following function :

ỹn(x) =
1

γλ̃2
n

cos(nπ +
π

2
)x.

Taking Cn
2 =

1√
γλ2

n

and inseting (3.24) and (3.25) in (3.23) then we have

yn(x) = ỹn(x) + O

(
1

n2

)
, ynxx(x) = ỹnxx(x) + O

(
1

n

)
, |n| ≥ N. (3.26)

As consequence we have

Φn = Φ̃n + O

(
1

n

)
, |n| ≥ N

where Φ̃n is given by

Φ̃n =




ỹn(x)

−λ̃ỹn(x)
1

n
1

n




. (3.27)

It easy to see that the system (3.27) is a Riesz basis in the energy space H.
On the other hand, we have

‖ Φn − Φ̃n ‖2
H=

∫ 1

0
|ynxx(x) − ỹnxx(x)|2 dx +

∫ 1

0

∣∣∣λnyn(x) − λ̃nỹn(x)
∣∣∣
2
dx

+γ
∫ 1

0

∣∣∣λnynx(x) − λ̃nỹnx(x)
∣∣∣
2
dx +

∣∣∣∣∣
λn

λn − 1
ynx(1) − 1

n

∣∣∣∣∣

2

+

∣∣∣∣∣
λn

λn − 1
yn(1) − 1

n

∣∣∣∣∣

2

.

(3.28)
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Inserting (3.26) into (3.28) we obtain that

∑

|n|≥N

‖ Φn − Φ̃n ‖2< +∞.

On the other hand, we know that the system (3.22) is ω-linearly independent (see
Lemma A.6 in [3]), then applying Lemma 3.2 we conclude that the system (3.24) is
Riesz basis in the subspace spanned by itself in H, therefore in the whole space H,
since it is complete in H (Lemma 3.3). This achieves the proof.

Theorem 3.3. The polynomial energy decay rate (2.1) is optimal:

inf
u0∈D(A)

ω(u0) = 1.

Proof. Let n ∈ Z∗ by |n| ≥ N everywhere. Now let ε > 0, we define uε
0 by

uε
0 =

∑

n∈Z

1

n3/2+ε
Φn.

Then we have

(A + B)uε
0 =

∑

n∈Z

λn

n3/2+ε
Φn.

Using Theorem 3.1 we deduce that

∣∣∣∣∣
λn

n3/2+ε

∣∣∣∣∣ ∼
1

n1/2+ε
. Since (Φn)n∈Z is a Riesz basis

in H, then we have :

‖ (A + B)uε
0 ‖2

H∼
∑

n∈Z

∣∣∣∣∣
λn

n3/2+ε

∣∣∣∣∣

2

∼
∑

n∈Z

C

n1+2ε
< ∞.

This implies that uε
0 ∈ D(A). Finally, thanks to Lemma 3.1 and Remark 3.1 (with

q = 3/2 + ε and δ = 2) we deduce that

Eε(t) =
1

2
‖ SA+B(t)uε

0 ‖2
H∼

Cε

t1+ε
, ∀t > 0

where Cε is a constant depending on uε
0. It follows that:

ω(uε
0) = 1 + ε.

On the other hand, from Theorem 2.1 we deduce that

ω(u0) ≥ 1, ∀u0 ∈ D(A).

Then we deduce that

1 ≤ inf
u0∈D(A)

ω(u0) ≤ 1 + ε.

Since ε can be arbitrarily small, we obtain the result. This achieves the proof.
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