On AJ -algebras of the first kind
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Abstract

We introduce a new class of algebras which extends classical A*-algebras
to the p-normed case with generalized involution. We give results concerning
the symmetry and the C*-algebra structure in such algebras.

Introduction

An A*-algebra F is an involutive Banach algebra which possesses, in addition to its
given complete norm, a second algebra norm, called the auxiliary norm, satisfying
the C*-property. The completion U of F with respect to auxiliary norm is then a
C*-algebra and F is said to be of the first kind if it is a two-sided ideal of U. For a
detailed account of the basic properties of A*-algebras and A*-algebras of the first
kind, we refer the reader to [9] and [11]. In this paper, we extend the class of A*-
algebras to the p-normed case with generalized involution. Thus, we obtain a new
class of algebras which will be called Aj-algebras. Given an Aj-algebra (E, .| p) ,

0 < p <1, with a generalized involution r — z* and an auxiliary g-norm |.[_,

1 1
0 < g <1, we prove that |.|{ is a norm and hence the completion of (E, Hg) is

a C*-algebra. We also show that an Ar-algebra of the first kind F is hermitian.
As a consequence, we obtain in this case the uniqueness of the auxiliary norm. If
moreover F has a bounded left or right approximate identity, then F is a C*-algebra.
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1 Preliminaries

A generalized involution on a complex algebra E' is a vector involution z — z* [5]
which is either an algebra involution (i.e., (zy)* = y*z*, for every x,y € E' ) or an
involutive anti-morphism (i.e., (vy)* = 2*y*, for every z,y € E). We define an A;-
algebra as being a complex p-Banach algebra (E, HHp) , 0 <p<1, endowed with a
generalized involution x —— z* on which there is defined a second algebra g-norm
|+ 0 < ¢ <1, called auxiliary g-norm, with the C*-property, that is |zz*[, = |x|z,
forall x € E. If p=1 and x —— z* is an algebra involution, we obtain the classical
A*-algebras ([11]). As in the Banach case ([9], [1]), we say that an Aj-algebra E is of
the first kind if it is a two-sided ideal of its completion with respect to the auxiliary
g-norm. Let (E, HHp) , 0 <p<1, be acomplex p-Banach algebra endowed with a
generalized involution x —— x*. An element a of E is said to be hermitian (resp.,
normal) if @ = a* (resp., a*a = aa*). We designate by H(E) (resp., N(E)) the set
of hermitian (resp., normal) elements of E. The algebra F is said to be hermitian if
the spectrum of every hermitian element is real. We denote the Ptak function, on
E, by Pg that is, for every = € E, Pg(z) = p(zz*)2, where p is the spectral radius
ie., p(z) =sup{|A|: X € Spx}.

Taking in account the fact that, in any p-Banach algebra (E, Il |l p) , we have

p(x)P = li£n||x"||p%, for all z € E, we prove, as in ([2], p.115-117), the following
result.

Proposition 1.1. Let (E, ||||p) , 0 <p <1, be a p-Banach algebra with a gen-
eralized involution x —— z*. Then F is hermitian if, and only if, pg(a) < cPg(a),
for some ¢ > 0 and every a € N(F). In this case, if x —— z* is an algebra in-
volution, we obtain that the Ptak function Pg is an algebra semi-norm such that
Pg(zx*) = Pg(x)?, for x € E. Moreover Rad(E) = {x € E: Pg(z) =0}, where
Rad(E) is the Jacobson radical of E.

Using Theorem 3.10 of [13], we prove that Theorem 4.8 of [8] extends to the
p-Banach case as follows.

Proposition 1.2. A real semi-simple p-Banach algebra, 0 < p < 1, in which
every square is quasi-invertible, is necessarily commutative.

2 Aj-algebras of the first kind

The following result shows that any Aj-algebra possesses an auxiliary norm which
satisfies the C*-property.

Theorem 2.1.Let (E, HHp) ;0 <p <1, bean Aj-algebra and ||, 0 < ¢q <1,

1 1
its auxiliary g-norm. Then |.|¢§ is a norm and the completion of (E, |.|(‘}> is a C*-

algebra.
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Proof. Since x — x* is continuous for |.| , it follows that the equality |zz*| = \x|§

A
extends to the completion E, of (E, |.|q) . In particular, we obtain |h[, = Py (h)1,
q

A
for every h € H(E,). Whence

SIS
Q=

A
pr(a)® <lald = |aa*|§ = P (a), for every a € N(E,).

|
Eq Eq

A
By Proposition 1.1, the algebra E, is hermitian. Consider first an algebra involution
x —— x*. In this case, the Ptak function is an algebra semi-norm. But

1 1
Pg(z) = p(:m:*)% = |zz*|¢" = |z|d , for every z € E.

1 AL
Whence |.|¢ is a norm in F and hence (Eq, |.\q“) is a C*-algebra. Suppose now

that x —— 2* is an involutive anti-morphism. We will show that the algebra £ is

commutative. It is sufficient to prove that the real algebra H(FE) is commutative.
A A
Since |h|, = PPS (h)4, for every h € H(E,), it follows that H(E,) is semi-simple.
q

A A

Moreover, every square in H(E,) is quasi-invertible for £, is hermitian. Thus, by
A

Proposition 1.2, the algebra H(FE,) is commutative. Whence the commutativity of

H(E).
As a consequence, we obtain the following result.

Corollary 2.2. Let (E, ||||p) , 0 <p <1, bean Aj-algebra and ||, 0 < g <1,
its auxiliary g-norm. Then

1) E is semi-simple.

2) The involution is continuous for ||.||, .

1 1
3) |al§ < cla|lf, for some ¢ > 0 and every a € E.
Proof.

1) We have |h|, = ’hQn 7" for every h € H(E) and n = 1,2,.... Since, by
q

Theorem 2.1, |.|¢ is a norm, it follows from Theorem 7 ([5], p. 22), that

1 1\ v
|h|¢ = lim (}hQn q) < p(h), for every h € H(E).
q

1
Then |a|§ = laa*|, < p(aa®)?, for every a € E. Whence |alg < Pg(a), for every
a € E. It follows from Proposition 1.1 and Theorem 2.1 that the algebra E is
semi-simple.
9 q g
2) We have |a\j < llaa*||p < |lal|f ||a*||5 , for every a € E. A simple application

of the closed graph Theorem shows that  — 2™ is continuous for |J.[|,,.
3) Let M > 0 such that [[a*[|, < M [|a]|,, for every a € E. Then

1 1 1
jald < plaa”)? < [laa* |7 < M2 [|allf , for every a € E.
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According to Theorem 2.1, we use in the sequel the notation (E, 1], H) to
declare an Ar-algebra (E A p) with an algebra involution z —— z* and an auxiliary
norm |.| satisfying |zz*| = |z|* for all € E. The completion E of E with respect
to the norm || is then a C*-algebra. By Corollary 2.2(3), [.[|, is finer than |.|.
Since every Aj-algebra (E, 111, ||) is an F-space (Fréchet space) for the metric
d(z,y) = |lx =yl , using the closed graph theorem and Theorem 2.17 of [12], we
can prove that an Aj-algebra of the first kind satisfies

1 1 1 1
laz]lp < cllallp |z| and [lzallp < cllall |2|,
A
for some ¢ > 0 and every a € E, x €E. Conversely, if E is an A-algebra and there

1 1
is a constant ¢ > 0 such that ||abl|} < c||al|f |b], for all a,b € E, then E is an
Az-algebra of the first kind.

The following example shows that an A*-algebra (E A p)of the first kind is not
necessarily an A*-algebra for a norm equivalent to .||, .

Example 2.3. For 0 < p < 1, consider

E = {(xn)n cC: i |z, |” < +oo},

n=1

o0
equipped with the pointwise operations and the p-norm given by ||z, = 21 |z, ",
n—=

where x = (x,,), € E. Then (E, HHp) is a p-Banach (not Banach) algebra. Endowed

with the algebra involution ((2,)n)" = (Tn)n, E is an A’-algebra with auxiliary norm
1 1

|.| defined by |z| = sup |z, |. Moreover, it is easily seen that |xy|; < ||z|5 |y|, for

every z,y € E. Hence, the Aj-algebra F is of the first kind.

If the algebra admits a bounded left or right approximate identity, the situation
is different as the following result shows.

Theorem 2.4. Let (E, 111, ||) , 0 <p <1, be an Aj-algebra of the first kind.

If E has a bounded left or right approximate identity (e;)ic; with respect to ||.||,
then (E,|.|) is a C*-algebra.
Proof. We will show that [.|[, and |.| are equivalent. By Theorem 2.1 and Corollary

1
2.2, it remains to show that ||a||f < ¢|a, for some ¢ > 0 and every a € E. Since E is
1

an Ar-algebra of the first kmd we have ||ba|| < c||bll} |al, for some ¢ > 0 and every

a,b € E. In particular HelaHp < cHeZHp la|, for every a € E, and so HaHp < dal,
for some ¢ > 0 and every a € E.

Remark 2.5. Theorem 2.4 shows that the unitization of an Aj -algebra of the
first kind is not in general of the same type. But we can always adjoin an iden-
tity element so as to preserve the Aj-algebra structure. In fact, Let (E, 1], ||)
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be an Aj-algebra. By lemma 4.1.13 of [11], there exists a normed algebra B and
an isometric *-isomorphism of E into B such that B has an identity element and
its norm satisfies the C*-property. The algebra B consists of all operators of the
form L, + o, x € E, a € C, where [ the identity operator of L(F) and L, the
operator defined, in F, by L,(a) = za. If E does not have an identity element,
define || L, + al||, = [lz[|, + [a|”. Then (B, HHp) is a p-Banach algebra and hence
an Aj-algebra.

By Proposition 1.1, a semi-simple p-Banach algebra endowed with a hermitian
algebra involution is an A’-algebra with auxiliary norm the Ptak function. In [7],
Gelfand and Naimark give an example of an A*-algebra which is not hermitian.
However, the following result shows that an Aj-algebra of the first kind is hermitian.

Theorem 2.6. Let (E, 1], ||) , 0 <p <1, be an Aj-algebra of the first kind.
Then E is hermitian.

1 1
Proof. There exists ¢ > 0 such that ||ab||; < c||al|} |b|, for all a,b € E. In particular,
1
for every a € E and n = 1,2, ..., we have HCLnJrlH;)%P < ¢ ||allp® |a"\% . Tending n to
infinity, we obtain pg(a) < py(a), where U is the completion of (E, |.|). On the other
hand Spy(a) C Spr(a), a € E, and hence pr(a) = py(a) for every a € E. Moreover,
the algebra (U, |.|) is hermitian for it is a C*-algebra. It follows, by Proposition
1.1, that py < Py in U. But P = Py, in E. Thus pg < Pg in E. This implies, by

Proposition 1.1, that the algebra E' is hermitian.

As a consequence, we obtain the uniqueness of the auxiliary norm in A7-algebras
of the first kind.

Corollary 2.7. An Aj-algebra E of the first kind has a unique auxiliary norm.
This norm is exactly the Ptak function.
Proof. 1f |.| is an auxiliary norm in F and U the completion of E with respect to
.|, then |.| = Py in U for (U,].|) is a C*-algebra. But Pg = By in E, by Theorem
2.6. Whence |.| = Pg in E.

Remark 2.8. Using Theorem 2.6, we can deduce Corollary 2.7 from a result of
Bhatt-Inoue-Kiirsten [3; Lemma 4.5(1)] according to which every spectral C*-semi-
norm is unique and coincides with Ptak function. In fact, Theorem 2.6 shows that
every Aj-algebra E of the first kind is a C*-spectral algebra, in the sense that there
is a C*-semi-norm [.| (in this case Ptak function) with pg(z) < |z|, for every z in

E ([4]).
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