Approximation and Leray-Schauder Type Results for Multimaps in the S-KKM class

Naseer Shahzad

Abstract

The paper presents new approximation and Leray-Schauder type results for multimaps in the class S-KKM.

1 Introduction

In 1969, Ky Fan [6] established the following result:

Let C be a nonempty, compact, convex subset of a normed space E. Then for any continuous mapping f from C to E, there exists an $x_0 \in C$ with

$$||x_0 - f(x_0)|| = \inf_{y \in C} ||f(x_0) - y||.$$

Since then, various analogues of this result have been obtained for other sets C and other types of maps; see, for instance, [2, 9, 10, 12, 18, 19]. Recently, Lin and Park [11] obtained a Fan type approximation result for α -condensing \mathfrak{A}_c^{κ} maps defined on a closed ball in a Banach space. Their results have been extended to other classes of maps by O'Regan and Shahzad [13, 14]. More recently, Shahzad [20] obtained some Fan type approximation results for a Φ -condensing closed s-KKM multimap F with an additional assumption that the composition $f \circ F$ is closed whenever fis continuous. The aim of this paper is to establish Fan type approximation result for s-KKM multimaps in the general setting. As an application, we also obtain the Leray-Schauder type result.

Bull. Belg. Math. Soc. 13 (2006), 113–121

Received by the editors January 2004.

Communicated by F. Bastin.

¹⁹⁹¹ Mathematics Subject Classification : 47H10, 54H25, 41A50.

Key words and phrases : Fixed point, S-KKM map, approximation, Leray Schauder principle.

2 Preliminaries

Let E be a Hausdorff locally convex space. For a nonempty set $Y \subseteq E$, 2^Y denotes the family of nonempty subsets of Y. If L is a lattice with a minimal element 0, a mapping $\Phi : 2^E \to L$ is called a generalized measure of noncompactness provided that the following conditions hold:

- (a). $\Phi(A) = 0$ if and only if \overline{A} is compact.
- (b). $\Phi(\overline{co}(A)) = \Phi(A)$; here $\overline{co}(A)$ denotes the closed convex hull of A.
- (c). $\Phi(A \cup B) = \max\{\Phi(A), \Phi(B)\}.$

It follows that if $A \subseteq B$, then $\Phi(A) \leq \Phi(B)$. The Kuratowskii measure and Hausdorff measure of noncompactness are examples of the generalized measure of noncompactness (see [17]).

Let C be a nonempty subset of a Hausdorff locally convex space E and F : $C \to 2^E$. Then F is called Φ -condensing provided that $\Phi(A) = 0$ for any $A \subseteq C$ with $\Phi(F(A)) \ge \Phi(A)$.

Suppose X and Y are Hausdorff topological spaces. Given a class \mathcal{X} of maps, $\mathcal{X}(X,Y)$ denotes the set of maps $F: X \to 2^Y$ belonging to \mathcal{X} , and \mathcal{X}_c the set of finite compositions of maps in \mathcal{X} . A class \mathfrak{A} of maps [15, 16] is defined by the following properties:

(i). \mathfrak{A} contains the class \mathbb{C} of single valued continuous functions;

(ii). each $F \in \mathfrak{A}_c$ is upper semicontinuous and compact valued; and

(iii). for any polytope $P, F \in \mathfrak{A}_c(P, P)$ has a fixed point, where the intermediate spaces of composites are suitably chosen for each \mathfrak{A} .

Definition 2.1. $F \in \mathfrak{A}_c^{\kappa}(X,Y)$ if for any compact subset K of X, there is a $G \in \mathfrak{A}_c(K,Y)$ with $G(x) \subseteq F(x)$ for each $x \in K$.

Definition 2.2. Let X be a convex subset of a Hausdorff topological vector space and Y a topological space. If $S, T : X \to 2^Y$ are two set-valued maps such that $T(co(A)) \subseteq S(A)$ for each finite subset A of X, then we say that S is a generalized KKM map w.r.t. T. The map $T : X \to 2^Y$ is said to have the KKM property if for any generalized KKM w.r.t. T map S, the family

$$\{\overline{S(x)} : x \in X\}$$

has the finite intersection property. We let

$$\mathrm{KKM}(X,Y) = \{T : X \to 2^Y : T \text{ has the KKM property} \}.$$

Remark 2.1. If X is a convex space, then $\mathfrak{A}_{c}^{\kappa}(X,Y) \subset \mathrm{KKM}(X,Y)$ (see [5]).

Definition 2.3. Let X be a nonempty set, Y a nonempty convex subset of a Hausdorff topological vector space and Z a topological space. If $S: X \to 2^Y$, $T: Y \to 2^Z$, $F: X \to 2^Z$ are three set-valued maps such that $T(co(S(A))) \subseteq F(A)$ for each nonempty finite subset A of X, then F is called a generalized S-KKM map w.r.t. T. If the map $T: X \to 2^Z$ is such that for any generalized S-KKM w.r.t. T map F, the family

$$\{\overline{F(x)} : x \in X\}$$

has the finite intersection property, then F is said to have the S-KKM property. The class

S-KKM
$$(X, Y, Z) = \{T : Y \to 2^Z : T \text{ has the S-KKM property} \}.$$

Remark 2.2. Note that S-KKM(X, Y, Z) = KKM(X, Z) whenever X = Y and S is the identity mapping $\mathbf{1}_X$. Also KKM(Y, Z) is a proper subset of S-KKM(X, Y, Z)for any $S: X \to 2^Y$ (see [3, 4] for examples).

Remark 2.3. Let X be a convex space, Y a convex subset of a Hausdorff locally convex space, and Z a normal space. Suppose $s : Y \to Y$ is surjective, $F \in$ s-KKM(Y, Y, Z) is closed, and $f \in \mathbb{C}(X, Y)$. Then $F \circ f \in \mathbf{1}_X - \text{KKM}(X, X, Z)$ (see [4]).

Let C be a subset of a Hausdorff topological space X. We let \overline{C} (respectively, $\partial(C)$, int(C)) denote the closure (respectively, boundary, interior) of C.

Let C be a subset of a Hausdorff topological vector space E and $x \in X$. Then the inward set $I_C(x)$ is defined by

$$I_C(x) = \{ x + r(y - x) : y \in C, r \ge 0 \}.$$

Let C be a convex subset of a Hausdorff locally convex space E with $0 \in int(C)$. The Minkowski functional p of C, defined by

$$p(x) = \inf\{r > 0 : x \in rC\},\$$

has the following properties:

(i). p is continuous on E; (ii). $p(x+y) \le p(x) + p(y), x, y \in E$; (iii). $p(\lambda x) = \lambda p(x), \lambda \ge 0, x \in E$; (iv). $0 \le p(x) < 1$ if $x \in int(C)$; (v). p(x) > 1, if $x \notin \overline{C}$; (vi). p(x) = 1, if $x \in \partial C$. For $x \in E$, let

$$d_p(x, C) = \inf\{p(x - y) : y \in C\}.$$

The following result [1] will be needed in the sequel.

Lemma 2.1. Let Ω be a closed, convex subset of a Hausdorff locally convex topological vector space E with $x_0 \in \Omega$. Suppose $s : \Omega \to \Omega$ is surjective and $F \in s - KKM(\Omega, \Omega, \Omega)$ is closed with the following property holding:

(2.1)
$$A \subseteq \Omega, \ A = \overline{co}(\{x_0\} \cup F(A))$$
 implies A is compact.

Then F has a fixed point in Ω .

3 Main Results

Theorem 3.1. Let C be a closed, convex subset of a Hausdorff locally convex space E with $0 \in C$ and U a convex open neighborhood of 0. Suppose C is a normal space, $s : \overline{U} \cap C \to \overline{U} \cap C$ is surjective and $F \in s\text{-}KKM(\overline{U} \cap C, \overline{U} \cap C, C)$ is a closed map satisfying the following condition:

 $(3.1) \qquad A \subseteq C, \ A \subseteq \overline{co}\left(\{0\} \cup F(co\left(\{0\} \cup A\right))\right) \text{ implies } \overline{A} \text{ is compact.}$

Then there exist $x_0 \in \overline{U} \cap C$ and $y_0 \in F(x_0)$ with

$$p(y_0 - x_0) = d_p(y_0, \overline{U} \cap C) = d_p(y_0, \overline{I_{\overline{U}}(x_0)} \cap C);$$

here p is the Minkowski functional of U. More precisely, either (i). F has a fixed point $x_0 \in \overline{U} \cap C$, or (ii). there exist $x_0 \in \partial_C(U)$ and $y_0 \in F(x_0)$ with

$$0 < p(y_0 - x_0) = d_p(y_0, \overline{U} \cap C) = d_p(y_0, \overline{I_{\overline{U}}(x_0)} \cap C);$$

here $\partial_C(U)$ denotes the boundary of U relative to C.

Proof: Let $r: E \to \overline{U}$ be defined by

$$r(x) = \frac{x}{\max\{1, p(x)\}} \text{ for } x \in E.$$

Since $0 \in U = int(U)$, it follows that r is continuous. Let f be the restriction of r to C. Since C is convex and $0 \in C$, $f(C) \subseteq \overline{U} \cap C$. Furthermore $f \in \mathbb{C}(C, \overline{U} \cap C)$. By Remark 2.3, $F \circ f \in \mathbf{1}_C - \mathrm{KKM}(C, C, C)$. Let $G = F \circ f$. Then G is closed. Next we claim

(3.2) if
$$A \subseteq C$$
 and $A \subseteq \overline{co}(\{0\} \cup G(A))$, then \overline{A} is compact.

To see this notice if $A \subseteq C$ and $A \subseteq \overline{co}(\{0\} \cup Ff(A))$ then since $f(A) \subseteq co(\{0\} \cup A)$ we have

$$A \subseteq \overline{co}\left(\{0\} \cup F(co\left(\{0\} \cup A\right))\right).$$

Now (3.1) implies \overline{A} is compact, so (3.2) holds. Now Lemma 2.1 guarantees that there exists $z_0 \in C$ with $z_0 \in (F \circ f)(z_0)$. If we let $x_0 = f(z_0) \in \overline{U} \cap C$ then $x_0 \in (f \circ F)(x_0)$. Thus $x_0 = f(y_0)$ for some $y_0 \in F(x_0)$. We now consider two cases: (i) $y_0 \in \overline{U} \cap C$ or (ii) $y_0 \in C \setminus \overline{U}$.

Suppose $y_0 \in \overline{U} \cap C$. Then $x_0 = f(y_0) = y_0$. As a result

$$p(y_0 - x_0) = 0 = d_p(y_0, \overline{U} \cap C)$$

and x_0 is a fixed point of F. On the other hand, if $y_0 \in C \setminus \overline{U}$, then

$$x_0 = f(y_0) = \frac{y_0}{p(y_0)}$$
.

Now, for any $x \in \overline{U} \cap C$,

$$p(y_0 - x_0) = p\left(y_0 - \frac{y_0}{p(y_0)}\right) = \left(\frac{p(y_0) - 1}{p(y_0)}\right)p(y_0)$$

= $p(y_0) - 1 \le p(y_0) - p(x) = p((y_0 - x) + x) - p(x)$
 $\le p(y_0 - x).$

Thus

$$p(y_0 - x_0) = \inf \{ p(y_0 - z) : z \in \overline{U} \cap C \} = d_p(y_0, \overline{U} \cap C) .$$

Also $p(y_0 - x_0) > 0$ since $p(y_0 - x_0) = p(y_0) - 1$. Let $z \in I_{\overline{U}}(x_0) \cap C \setminus (\overline{U} \cap C)$. Then there exists $y \in \overline{U}$ and $c \ge 1$ with $z = x_0 + c(y - x_0)$. Assume that

$$p(y_0 - z) < p(y_0 - x_0).$$

Since C is convex, $\frac{1}{c}z + (1 - \frac{1}{c})x_0 \in C$. Since $\frac{1}{c}z + (1 - \frac{1}{c})x_0 = y \in \overline{U}$, we have

$$p(y_0 - y) = p[\frac{1}{c}(y_0 - z) + (1 - \frac{1}{c})(y_0 - x_0)]$$

$$\leq \frac{1}{c}p(y_0 - z) + (1 - \frac{1}{c})p(y_0 - x_0)$$

$$< p(y_0 - x_0).$$

This contradicts the choice of y_0 . Therefore,

$$p(y_0 - x_0) \le p(y_0 - z)$$
 for all $z \in I_{\overline{U}}(x_0) \cap C$.

The continuity of p gives that

$$p(y_0 - x_0) \le p(y_0 - z)$$
 for all $z \in \overline{I_{\overline{U}}(x_0)} \cap C$.

Consequently

$$0 < p(y_0 - x_0) = d_p(y_0, \overline{U} \cap C) = d_p(y_0, \overline{I_{\overline{U}}(x_0)} \cap C).$$

If $x_0 \in U$, then $\overline{I_{\overline{U}}(x_0)} = E$. This implies that $d_p(y_0, \overline{I_{\overline{U}}(x_0)} \cap C) = 0$. Hence $x_0 \in \partial_C(U)$.

Remark 3.1. Every Φ -condensing mapping F on C satisfies (3.1). To see this, let $A \subseteq C$ and $A \subseteq \overline{co}(\{0\} \cup F(co(\{0\} \cup A)))$. Then $\Phi(co(\{0\} \cup A)) = \Phi(A) \leq \Phi(F(co(\{0\} \cup A)))$. Since F is Φ -condensing, $\overline{co}(\{0\} \cup A)$ is compact. Consequently, \overline{A} is compact.

Corollary 3.2. Let E be a normed space. Suppose $s : B_R \to B_R$ is surjective and $F \in s\text{-}KKM(B_R, B_R, E)$ is a closed map satisfying

$$(3.3) A \subseteq B_R, \ A \subseteq \overline{co} \left(\{0\} \cup F(co \left(\{0\} \cup A\right)) \right) \text{ implies } \overline{A} \text{ is compact.}$$

Then there exist $x_0 \in B_R$ and $y_0 \in F(x_0)$ with

$$||y_0 - x_0|| = d(y_0, B_R) = d(y_0, \overline{I_{B_R}(x_0)}).$$

More precisely, either (i). F has a fixed point $x_0 \in B_R$, or (ii). there exist $x_0 \in \partial(B_R)$ and $y_0 \in F(x_0)$ with

$$0 < ||y_0 - x_0|| = d(y_0, B_R) = d(y_0, \overline{I_{B_R}(x_0)}).$$

Proof: Since $p(x) = \frac{||x||}{R}$ is the Minkowski functional on B_R , the result follows from Theorem 3.1.

Remark 3.2. Clearly every Φ -condensing mapping F on B_R satisfies (3.3). Thus Corollary 3.2 contains Corollary 3.4 of Shahzad [20]. It also extends Theorem 1 of Lin and Park [11] to the class s-KKM.

As an application of our approximation result, we have the following result.

Theorem 3.3. Let *C* be a closed, convex subset of a Hausdorff locally convex space *E* with $0 \in C$ and *U* a convex open neighborhood of 0. Suppose *C* is a normal space, $s : \overline{U} \cap C \to \overline{U} \cap C$ is surjective and $F \in s$ -KKM($\overline{U} \cap C, \overline{U} \cap C, C$) is a closed map satisfying (3.1). If *F* satisfies any one of the following conditions for any $x \in \partial_C(U) \setminus F(x)$: (i). For each $y \in F(x)$, p(y-z) < p(y-x) for some $z \in \overline{I_U(x)} \cap C$; (ii). For each $y \in F(x)$, there exists λ with $|\lambda| < 1$ such that $\lambda x + (1 - \lambda)y \in$ $\overline{I_U(x)} \cap C$; (iii). $F(x) \subseteq \overline{I_U(x)} \cap C$; (iv). $F(x) \cap \{\lambda x : \lambda > 1\} = \emptyset$; (v). For each $y \in F(x)$, there exists $\alpha \in (1, \infty)$ such that $p^{\alpha}(y) - 1 \le p^{\alpha}(y-x)$; (vi). For each $y \in F(x)$, there exists $\beta \in (0, 1)$ such that $p^{\beta}(y) - 1 \ge p^{\beta}(y-x)$,

then F has a fixed point.

Proof: Theorem 3.1 guarantees that either (1). F has a fixed point in $\overline{U} \cap C$ or

(2). there exists $x_0 \in \partial_C(U)$ and $y_0 \in F(x_0)$ with $x_0 = f(y_0)$ such that

 $0 < p(y_0) - 1 = p(y_0 - x_0) = d_p(y_0, \overline{U} \cap C) = d_p(y_0, \overline{I_{\overline{U}}(x_0)} \cap C),$

where p is the Minkowski functional of U and f is the restriction of the continuous retraction r to C.

Suppose F satisfies condition (i). Assume (2) holds (with x_0 and y_0 as described above) and $x_0 \notin F(x_0)$. Then condition (i) implies that $p(y_0 - z) < p(y_0 - x_0)$ for some $z \in \overline{I_U(x_0)} \cap C$. This contradicts the choice of x_0 . Hence F has a fixed point in $\overline{U} \cap C$.

Suppose F satisfies condition (ii). Assume (2) holds (with x_0 and y_0 as described above) and $x_0 \notin F(x_0)$. Then, by condition (ii), there exists λ with $|\lambda| < 1$ such that $\lambda x_0 + (1 - \lambda)y_0 \in \overline{I_{\overline{U}}(x_0)} \cap C$. Therefore

$$p(y_0 - x_0) \leq p(y_0 - (\lambda x_0 + (1 - \lambda)y_0)) = p(\lambda(y_0 - x_0))$$

= $|\lambda|p(y_0 - x_0) < p(y_0 - x_0).$

This is impossible. Hence F has a fixed point in $\overline{U} \cap C$.

The proof for condition (iii) is clear.

Suppose F satisfies condition (iv). Assume (2) holds (with x_0 and y_0 as described above) and $x_0 \notin F(x_0)$. Then, by condition (iv), $\lambda x_0 \neq y_0$ for each $\lambda > 1$. But we have $x_0 = f(y_0) = \frac{y_0}{p(y_0)}$ and so $y_0 = \lambda_0 x_0$ with $\lambda_0 = p(y_0) > 1$. Hence F has a fixed point in $\overline{U} \cap C$.

Suppose F satisfies condition (v). Assume (2) holds (with x_0 and y_0 as described above) and $x_0 \notin F(x_0)$. Then, by condition (v), $p(y_0 - x_0) \neq p(y_0) - 1$. But $p(y_0 - x_0) = p(y_0) - 1$. Hence F has a fixed point in $\overline{U} \cap C$. Suppose F satisfies condition (vi). Assume (2) holds (with x_0 and y_0 as described above) and $x_0 \notin F(x_0)$. Then, by condition (vi), there exists $\alpha \in (1, \infty)$ with $p^{\alpha}(y_0) - 1 \leq p^{\alpha}(y_0 - x_0)$. Let $\mu_0 = \frac{1}{p(y_0)}$. Then $\mu_0 \in (0, 1)$ and

$$\frac{(p(y_0) - 1)^{\alpha}}{p^{\alpha}(y_0)} < 1 - \mu_0^{\alpha}$$

$$\leq \frac{p^{\alpha}(y_0) - 1}{p^{\alpha}(y_0)}$$

$$\leq \frac{p^{\alpha}(y_0 - x_0)}{p^{\alpha}(y_0)}$$

Thus $p(y_0 - x_0) > p(y_0) - 1$. But $p(y_0 - x_0) = p(y_0) - 1$. Hence F has a fixed point in $\overline{U} \cap C$.

Finally suppose F satisfies condition (vii). Then, as above (see the proof of (vi)), it can be verified that F has a fixed point in $\overline{U} \cap C$.

Remark 3.3. We have obtained a Leray-Schauder type result (see Theorem 3.3(iv)) as an application of Theorem 3.1.

Corollary 3.4. Let *E* be a normed space. Suppose $s : B_R \to B_R$ is surjective and $F \in s$ -KKM(B_R, B_R, E) is a closed map satisfying (3.3). If *F* satisfies any one of the following conditions for any $x \in \partial(B_R) \setminus F(x)$: (i). For each $y \in F(x) ||y - z|| < ||y - x||$ for some $z \in \overline{I_{B_R}(x)}$; (ii). For each $y \in F(x)$, there exists λ with $|\lambda| < 1$ such that $\lambda x + (1 - \lambda)y \in \overline{I_{B_R}(x)}$; (iii). $F(x) \subseteq \overline{I_{B_R}(x)}$; (iv). $F(x) \cap \{\lambda x : \lambda > 1\} = \emptyset$; (v). For each $y \in F(x)$, there exists $\alpha \in (1, \infty)$ such that $||y||^{\alpha} - R \leq ||y - x||^{\alpha}$; (vi). For each $y \in F(x)$, there exists $\beta \in (0, 1)$ such that $||y||^{\beta} - R \geq ||y - x||^{\beta}$, then *F* has a fixed point.

Remark 3.4. Corollary 3.4 extends Theorem 2 of Lin and Park [11] and Corollary 3.10 of Shahzad [20].

Remark 3.5. Let C be a nonempty subset of a Hausdorff locally convex space Eand $c \geq 1$. A mapping $F: C \to 2^E$ is called pseudocondensing in the sense of Hahn [7] (see also [8]) provided that if A is any subset of C such that $\Phi(A) \leq c\Phi(F(A))$, then A is relatively compact in C; here Φ is the c-measure of noncompactness [7]. We note that every pseudocondensing map satisfies conditions (3.1) and (3.3).

Acknowledgement. The author is grateful to the referee for his suggestions.

References

- R. P. Agarwal and D. O'Regan, Fixed point theorems for S-KKM maps, Applied Math. Letters, 16(2003), 1257–1264.
- [2] A. Carbone and G. Conti, Multivalued maps and existence of best approximations, Jour. Approx. Theory, 64(1991), 203–208.
- [3] T. H. Chang, Y. Y. Huang and J. C. Jeng, Fixed point theorems for multifunctions in S-KKM class, Nonlinear Anal., 44(2001), 1007–1017.
- [4] T. H. Chang, Y. Y. Huang, J. C. Jeng and K. H. Kuo, On S-KKM property and related topics, *Jour. Math. Anal. Appl.*, 229(1999), 212–227.
- [5] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, Jour. Math. Anal. Appl., 203(1996), 224–235.
- [6] Ky Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112(1969), 234–240.
- [7] S. Hahn, A fixed point theorem for multivalued condensing mappings in general topological vector spaces, Univ. u Novom Sadu Zb. Rad. Prirod. -Mat. Fak. Ser. Mat. 15(1985), 97-106.
- [8] I. S. Kim, K. Kim and S. Park, Leray-Schauder alternatives for approximable maps in topological vector spaces, *Math. Comput. Modelling* 35(2002), 385-391.
- [9] W. B. Kong and X. P. Ding, Approximation theorem and fixed point theorems for multivalued condensing mappings in wedges, *Jour. Math. Anal. Appl.*, 167(1992), 468–481.
- [10] T. C. Lin, A note on a theorem of Ky Fan, Canad. Math. Bull., 22(1979), 513–515.
- [11] T. C. Lin and S. Park, Approximation and fixed point theorems for condensing composites of multifunctions, Jour. Math. Anal. Appl., 223(1998), 1–8.
- [12] L. S. Liu, Approximation theorems and fixed point theorems for various classes of 1-set-contractive mappings in Banach spaces, Acta Math. Sinica, 17(2001), 103–112.
- [13] D. O'Regan and N. Shahzad, Approximation and fixed point theorems for countable condensing composite maps, Bull. Austral. Math. Soc., 68(2003), 161–168.
- [14] D. O'Regan and N. Shahzad, Random and deterministic fixed point and approximation results for countably 1-set-contractive multimaps, *Applicable Anal.*, 82(2003), 1055–1084.
- [15] S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam Jour. Math., 27(1999), 187–222.

- [16] S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci. Seoul Nat. Univ., 18(1993), 1–21.
- [17] W. V. Petryshyn and P. M. Fitzpatrick, Fixed point theorems for multivalued noncompact inward maps, Jour. Math. Anal. Appl., 46(1974), 756-767.
- [18] S. Reich, Approximate selections, best approximations, fixed points and invariant sets, Jour. Math. Anal. Appl., 62(1978), 104-113.
- [19] V. M. Sehgal and S. P. Singh, A generalization to multifunctions of Fan's best approximation theorem, Proc. Amer. Math. Soc., 102(1988), 534-537.
- [20] N. Shahzad, Fixed point and approximation results for multimaps in S-KKM class, Nonlinear Anal., 56(2004), 905–918.

Department of Mathematics, King Abdul Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia. email : nshahzad@kau.edu.sa.