New geometric presentations for Aut $G_{2}(3)$ and $G_{2}(3)$

Corneliu Hoffman*

Sergey Shpectorov ${ }^{\dagger}$

1 Introduction

The purpose of this article is to provide new presentations for the groups $G_{2}(3)$ and Aut $G_{2}(3)$. These presentations come from the amalgam of maximal parabolic subgroups arising in the action of Aut $G_{2}(3)$ on a certain geometry.

The members of this amalgam are the well-known subgroups of $\hat{G}=$ Aut $G_{2}(3)$ (cf. [ATL]): $\hat{L}=2^{3} \cdot L_{3}(2): 2, \hat{N}=2^{1+4} \cdot\left(S_{3} \times S_{3}\right)$, and $M=G_{2}(2)$. Notice that M is fully contained in $G=O^{2}(\hat{G}) \cong G_{2}(3)$, while \hat{L} and \hat{N} are not. This explains our hat notation. According to this notation we set $L=\hat{L} \cap G \cong 2^{3} \cdot L_{3}(2)$ and $N=\hat{N} \cap G \cong 2^{1+4} .(3 \times 3) .2$.

We choose the subgroups \hat{L} and M so that $D=\hat{L} \cap M$ is a maximal parabolic subgroup in M. Then D has a unique normal subgroup 2^{2} (contained in $\left.O_{2}(L) \cong 2^{3}\right)$. Let z be an involution from that normal subgroup. We choose $\hat{N}=C_{\hat{G}}(z)$. This uniquely specifies the amalgam $\hat{\mathcal{A}}=\hat{L} \cup \hat{N} \cup M$. Let $e \in O_{2}(\hat{L}) \backslash O_{2}(L)$ and set $K=M^{e}$. Let $\mathcal{B}=L \cup N \cup M \cup K$. Clearly, $\hat{G}=\langle\hat{\mathcal{A}}\rangle$ and $G=\langle\mathcal{B}\rangle$.
Theorem 1. $\hat{G}=\operatorname{Aut} G_{2}(3)$ is the universal completion of the amalgam $\hat{\mathcal{A}}$.
As a corollary of this theorem we get our second main result.
Theorem 2. $G=G_{2}(3)$ is the universal completion of the amalgam \mathcal{B}.
As we have already mentioned, the amalgam $\hat{\mathcal{A}}$ is the amalgam of maximal parabolics with respect to the action of \hat{G} on a certain geometry $\hat{\Gamma}$. In this sense, Theorem 1 is equivalent, via Tits' Lemma [T] (also cf. [IS], Theorem 1.4.5), to the simple connectedness of the geometry $\hat{\Gamma}$.

[^0]Our interest in presentations for the groups Aut $G_{2}(3)$ and $G_{2}(3)$ comes from the need to find, in a computer-free way, a presentation for a larger group, the sporadic Thompson group $T h$. In a forthcoming paper we will establish that $T h$ acts on a similar simply connected geometry Λ. In fact, Aut $G_{2}(3)$ arises in $T h$ in the normalizer of a suitable subgroup X of order three. Furthermore, our geometry $\hat{\Gamma}$ is just the fixed subgeometry for the action of X in Λ.

The structure of the paper is as follows. In Sections 2 and 3 we specify the amalgam $\hat{\mathcal{A}}$ abstractly in terms of certain conditions (G1)-(G4), and we prove the uniqueness of such an amalgam. In Section 4 we switch from an arbitrary completion \hat{G} of $\hat{\mathcal{A}}$ to its universal completion and define the geometry $\hat{\Gamma}$ as the coset geometry. Finally, in Section 5 we determine the exact number of points in $\hat{\Gamma}$, which gives us that the order of the universal completion \hat{G} coincides with the order of Aut $G_{2}(3)$. In view of the uniqueness of $\hat{\mathcal{A}}$, the group $\operatorname{Aut} G_{2}(3)$ is a factor group of \hat{G}, and hence Theorem 1 follows.

Our notation for groups follows that of [ATL]. The definitions, terminology and basic facts concerning geometries can be found, for example, in [IS]. Our result in Theorem 2 can be approached differently in terms of intransitive geometries (see [GVM]). We thank R. Gramlich for pointing this out.

2 Set-up and basic properties

We let \hat{G} be a group generated by its subgroups \hat{L} and M so that the following hold:
(G1) \hat{L} has an index two subgroup L such that $L \cong 2^{3} . L_{3}(2)$; M has structure $U_{3}(3) .2$.
(G2) $D=\hat{L} \cap M$ is contained in L, it is the full preimage in L of a maximal parabolic from $L / O_{2}(L)$.

We first list some basic properties that follow from (G1) and (G2). Let $E=$ $O_{2}(L)$.

Lemma 2.1. The following hold:
(1) The action of L on E is nontrivial and L is a nonsplit extension of E by $L_{3}(2)$; also, $O_{2}(\hat{L}) \cong 2^{4}$.
(2) D has a normal subgroup of order 4 in E and has a trivial center.
(3) $M \cong G_{2}(2)$.

Proof: By (G2) we have that 2^{6} divides $|D|$, which means that D contains a maximal parabolic subgroup (for characteristic two) from $O^{2}(M) \cong U_{3}(3) \cong G_{2}(2)^{\prime}$. Hence, comparing with [ATL], we see that D cannot have 2^{3} in the center. This means that the action of L on E is nontrivial, hence E is the natural module for $\bar{L}=L / E \cong$ $L_{3}(2)$. Since the outer automorphism of $L_{3}(2)$ interchanges the natural and the dual natural modules, $O_{2}(\hat{L})$ has order 2^{4}, and it can only be elementary abelian.

Now looking at L, we see that D has two 2-dimensional chief factors. Comparing with the information on $U_{3}(3)$ from [ATL], we see that $D \cap O^{2}(M)$ must have
structure $4^{2}: S_{3}$, and thus it has a trivial center. Turning again to L, we see that D is the normalizer of a subgroup 2^{2} from E. This yields (2). Moreover, since D has trivial center, so does M, and (3) follows, too.

Finally if L were the split extension of E, then D would have a normal elementary abelian subgroup of order 16. Since this is not the case, L does not split. This completes the proof of (1).

We remark that there is a unique nonsplit extension $2^{3} \cdot L_{3}(2)$, and so part (1) of the above lemma specifies L up to isomorphism.

Let B be a Sylow 2-subgroup in D. Let L_{1} be the full preimage in L of the second maximal parabolic from $\bar{L}=L / E \cong L_{3}(2)$ containing \bar{B}, and also let M_{1} be the second maximal parabolic from $M \cong G_{2}(2)$ containing B. Let \hat{L}_{1} be the normalizer of L_{1} in \hat{L}. We have $\left[\hat{L}_{1}: L_{1}\right]=2$.

Now we can introduce a new condition on \hat{G}. Clearly, $\hat{L}_{1} \cap M_{1}=L_{1} \cap M_{1}=B$. Let $\hat{N}=\left\langle\hat{L}_{1}, M_{1}\right\rangle$.
(G3) \hat{L}_{1} and M_{1} are permutable, that is, $\hat{N}=\hat{L}_{1} M_{1}$.
Let $N=\left\langle L_{1}, M_{1}\right\rangle$.
Lemma 2.2. We have $[\hat{N}: N]=2$ and $N=L_{1} M_{1}$, so L_{1} and M_{1} are permutable. Furthermore, $Q=O_{2}(N)$ coincides with $O_{2}\left(L_{1}\right)$ and $O_{2}\left(M_{1}\right)$, and it is an extraspecial subgroup 2_{+}^{1+4}. Finally, $\bar{N}=N / Q \cong 3^{2}: 2$ where the involution inverts all elements of order three.

Proof: Both $O_{2}\left(L_{1}\right)$ and $O_{2}\left(M_{1}\right)$ have order 2^{5} and the factor group is S_{3} in both cases. Consider \bar{N}. By (G3) we know that this is a group of order $2^{s} 3^{2}$ which has no normal 2 subgroup. This forces that the Sylow 3 -subgroup is normal. In particular, this means that all 2-dimensional chief factors of L_{1} and M_{1} are contained in Q. Looking at L_{1} as a subgroup of L we see that $O_{2}\left(L_{1}\right)$ is contained in Q. This forces the equalities $O_{2}\left(L_{1}\right)=B \cap Q=O_{2}\left(M_{1}\right)$. In particular, $Q_{0}=B \cap Q$ is normal in N. Since $O_{2}\left(N / Q_{0}\right)$ has size at most two, N / Q_{0} has a normal Sylow 3-subgroup, which means that $Q_{0}=Q$. It also means L_{1} and M_{1} are permutable and that \bar{N} is as claimed in the lemma.

It remains to show that Q is extraspecial of plus type. First of all, the center $Z(Q)$ is of order two. Also, the element of order 3 from L_{1} acts fixed-point-freely on $Q / Z(Q)$. This shows that $Q / Z(Q)$ is either elementary abelian or homocyclic 4^{2}. The latter structure is impossible because an element of order 3 from M_{1} has only one 2-dimensional factor in $Q / Z(Q)$. Thus, $Q / Z(Q)$ is elementary abelian, so Q is extraspecial. Moreover, since Q contains $E \cong 2^{3}, Q$ must be of plus type.

3 Uniqueness of the amalgam

In this section we prove that the amalgam $\mathcal{A}=L \cup M \cup N$ is unique up to isomorphism and also that $\hat{\mathcal{A}}=\hat{L} \cup M \cup \hat{N}$ is unique provided that the following extra condition holds.
(G4) \hat{L} and \hat{N} have no common direct factor of order two.

We remark that we do not impose condition (G4) until the end of this section. We also remark that \hat{L} and \hat{N} with a common direct factor are possible, but they lead to a not so interesting configuration, where that factor is in the center of \hat{G} (which can in that case be infinite).

Lemma 3.1. The outer automorphism group of D is of order two. Every automorphism of D is induced by an automorphism of L.
Proof: Let $R=O_{2}(D)$ and $Z=Z(R)$. Then $Z \cong 2^{2}$ is contained in E. Notice that $D / R \cong S_{3}$ acts nontrivially on Z. According to [ATL], D has a normal subgroup $T \cong 4^{2}$, which clearly contains Z. We claim that Z, E and T are characteristic in D. Indeed, it is clear for Z. Considering D / Z, we see that E / Z and T / Z are the only normal subgroups of D / Z of orders 2 and 2^{2}, respectively. So E and T are also characteristic.

Let $A=$ Aut D. Since the center of D is trivial, we can identify D with $\operatorname{Inn} D$. Since Z is characteristic, the images of A and D in Aut E coincide with the same maximal parabolic. This shows that $A=D C_{A}(E)$. Furthermore, since $E \leq C_{A}(E)$ and E is transitive on the Sylow 3 -subgroups of D, we get that $A=D\left(C_{A}(E) \cap\right.$ $N_{A}(S)$), where S is an arbitrary Sylow 3 -subgroup of D. Let $F=C_{A}(E) \cap N_{A}(S)$. Clearly, an element centralizing E cannot invert S, so $F=C_{A}(E S)$.

We claim that $|F| \leq 4$. Observe first that no nontrivial element of A centralizes $R S$. Indeed, $R S$ is characteristic in D and $C_{D}(R S)=1$. Hence, all elements of D induce different automorphisms of $R S$. Thus, $C_{A}(R S)=1$. This means, since $R S=T E S$, that F acts faithfully on T. Let $T=\left\langle t_{1}\right\rangle \times\left\langle t_{2}\right\rangle$. Since F centralizes $Z=\Omega_{1}(T)$, we have that t_{1} and t_{1}^{f} differ by an involution (from Z) for each $f \in F$. Furthermore, the action of f on t_{1} fully identifies the action of f on the entire T, since f commutes with S, and the latter acts on T fixed-point-freely. Consequently, $|F| \leq 4$.

Clearly, $F \cap D=F \cap E$ has order two. Since $A=D F$, this implies that \mid Out $D \mid=[A: D] \leq 2$. Thus, to complete the proof of the lemma it suffices to find an outer automorphism of D in Aut L.

It is well-known that Out L is of order two. Namely, Aut L is an extension of an indecomposable module 2^{4} by $L_{3}(2)$. Clearly, D has index two in O_{2} (Aut $\left.L\right) D$ (we identify L with $\operatorname{Inn} L$). So either D has an outer automorphism in Aut L, or D centralizes a subgroup of order two from $O_{2}($ Aut $L)$. However, the latter possibility cannot hold because the module on 2^{4} is indecomposable and D induces on it a full Sylow 2-subgroup of $L_{3}(2)$.

Corollary 3.2. The amalgam $L \cup M$ is unique up to isomorphism.
Proof: Follows from Lemma 3.1 and Goldschmidt's Lemma (see (2.7) in [G], or Proposition 8.3.2 in [IS]).

Notice that the subgroups L_{1} and M_{1} are uniquely determined within our unique amalgam $L \cup M$, once B is chosen. So the uniqueness of \mathcal{A} follows from our next lemma.

Lemma 3.3. The free product with intersection $L_{1} *_{B} M_{1}$ has a unique factor group such that (1) L_{1} and M_{1} map isomorphically into this factor group, and (2) the factor group is the product of the images of L_{1} and M_{1}.

Proof: Let $F=L_{1} *_{B} M_{1}$. Suppose F has two such factor groups and let U and V denote the corresponding kernels. Recall that $Q=O_{2}\left(L_{1}\right)=O_{2}\left(M_{1}\right)$ is extraspecial. We identify L_{1} and M_{1} with the corresponding subgroups in F. Under this identification, Q is normal in F and it trivially intersects both U and V. Hence $U, V \leq C_{F}(Q)$. Since F / U is the product of the images of L_{1} and M_{1} and since L_{1} and M_{1} act differently on $Q / Z(Q)$, we have that the centralizer in F / U of the image of Q is $Z(Q)$, which is of order two. Hence $[V: U \cap V]=2$.

Let $\bar{F}=F / Q(U \cap V)$. This group has structure $2.3^{2} .2$ and it is generated by \bar{L}_{1} and \bar{M}_{1}. The latter two groups are both isomorphic to S_{3} and they share $\bar{B} \cong 2$. This is a contradiction, since \bar{F} clearly has a normal Sylow 3 -subgroup.

Corollary 3.4. The amalgam \mathcal{A} is unique up to isomorphism.
We now turn to the amalgam $\hat{\mathcal{A}}$. If G is any group generated by a copy of our unique amalgam \mathcal{A} then consider, as \hat{G}, the direct product of G with a group of order two. Define \hat{L} and \hat{N} to be the extensions of L and N by the direct factor 2 . It is clear that the resulting amalgam $\hat{\mathcal{A}}$ satisfies (G1)-(G3), but not (G4).

So from this point on we assume that (G4) holds.
Lemma 3.5. The amalgam $\hat{\mathcal{A}}$ is unique up to isomorphism.
Proof: Suppose a is an automorphism of N centralizing L_{1}. Let $x \in N \backslash L_{1}$ be an element of order three. Clearly, $N=\left\langle L_{1}, x\right\rangle$. Notice that x and $x^{\prime}=x^{a}$ act the same way on Q (since $Q \leq L_{1}$). We have already seen that $C_{N}(Q)=Z(Q)$, so x and x^{\prime} differ by an element from $Z(Q)$, which means that $x=x^{\prime}$. This shows that a must in fact be trivial.

Next we identify the structure of \hat{L}. If $C_{\hat{L}}(L) \neq 1$ then $\hat{L}=L \times Z$, where Z has order two. Clearly, $Z \leq \hat{L}_{1}$, so $Z \leq \hat{N}$ and $\hat{N}=N Z$. Furthermore, the involution from Z acts trivially on L_{1} and by the above it acts trivially on N. Therefore, Z is a common direct factor in both \hat{L} and \hat{N}, contradicting (G4). Thus, $C_{\hat{L}}(L)=1$, which means that $\hat{L} \cong$ Aut L. In particular, the amalgam $\hat{L} \cup M \cup N$ is unique up to isomorphism.

Pick now any element $x \in \hat{L}_{1} \backslash L_{1}$. Since $\hat{N}=N\langle x\rangle$, it remains to see that the action of x uniquely extends from L_{1} to N. If there were two such actions on N then they would differ by an automorphism of N that is trivial on L_{1}. However, as we proved above, such an automorphism is trivial on the entire N, and so the action of x on N is unique.

We also record two useful facts. First, we showed in this proof that $\hat{L} \cong$ Aut L. Secondly, the element x in the last paragraph of the proof can be chosen to normalize both L_{1} and D (and hence also B). If this x normalizes M_{1} then it normalizes $M=\left\langle D, M_{1}\right\rangle$. However, $M \cong G_{2}(2)$ has no outer automorphisms. This yields that x acts on M as some element $y \in D \cap M_{1}=B$. However, this means that $x y^{-1} \in \hat{L} \backslash L$ acts trivially on B, which is not possible since $\hat{L} \cong$ Aut L. The contradiction shows that x does not normalize M_{1}. This forces that $\hat{N} / Q \cong S_{3} \times S_{3}$ and $Q=O_{2}(\hat{N})$.

Notice that almost all proofs in this section are purely amalgamic. The only exception is in the preceding paragraph, where the fact that $\hat{\mathcal{A}}$ is embedded in a
group was used to conclude that x acts on M. (Luckily, our unique amalgam $\hat{\mathcal{A}}$ can be found in $\operatorname{Aut} G_{2}(3)$.)

4 The geometries Γ and $\hat{\Gamma}$

The first order of business in this section is to choose a more suitable group \hat{G}. Let \hat{U} be the universal completion of the amalgam $\hat{\mathcal{A}}$. Since \hat{G} is generated by $\hat{\mathcal{A}}$, we have that \hat{G} is isomorphic to a factor group of \hat{U}. In particular, $\hat{\mathcal{A}}$ embeds into \hat{U} isomorphically. Furthermore, if we prove Theorem 1 for the group \hat{U} in place of \hat{G} then, clearly, \hat{U} has no proper nontrivial factor groups and so $\hat{G}=\hat{U}$, yielding the claim for \hat{G}. Thus, without loss of generality, we can assume from now on that $\hat{G}=\hat{U}$ is the universal completion of $\hat{\mathcal{A}}$.

Fix an arbitrary involution e in $\hat{L}_{1} \backslash L_{1}$ that normalizes D. Such an involution can be chosen, for example, in $\hat{E}=O_{2}(\hat{L}) \cong 2^{4}$ (this is how it was chosen in the introduction). Set $K=M^{e}$ and $K_{1}=M_{1}^{e}$. Notice that e normalizes L and N. We remarked at the end of the preceding section that $M_{1} \neq M_{1}^{e}=K_{1}$ and so $M \neq M^{e}=K$. Clearly, e interchanges M and K. Thus, it induces an automorphism of the amalgam $\mathcal{B}=L \cup N \cup M \cup K$. Let $G=\langle\mathcal{B}\rangle$. Notice that since $K=M^{e}=$ $\left\langle D^{e}, M_{1}^{e}\right\rangle=\left\langle D, K_{1}\right\rangle$ and since $K_{1} \leq N$, we have that $K \leq\langle\mathcal{A}\rangle$ and so $G=\langle\mathcal{A}\rangle$.
Lemma 4.1. We have $[\hat{G}: G]=2$; namely, $\hat{G}=G\langle e\rangle$. Furthermore, G is the universal completion of \mathcal{B}.
Proof: Clearly, e normalizes G and $\langle G, e\rangle$ contains the entire $\hat{\mathcal{A}}$, which means that $\hat{G}=G\langle e\rangle$. Thus, $[\hat{G}: G] \leq 2$. To show that the index is exactly two, consider the universal completion U of \mathcal{B}. Since e induces an automorphism of \mathcal{B}, it also induces an automorphism on U. Set \hat{U} to be the semidirect product of U and $\langle e\rangle$, defined with respect to this automorphism. Clearly, U contains a copy of \mathcal{B} left invariant by e. Extending the images of L and N by e we also find a copy of $\hat{\mathcal{A}}$ that generates \hat{U}. Thus, \hat{U} is a homomorphic image of \hat{G}, since \hat{G} is the universal completion of $\hat{\mathcal{A}}$. It is clear, that this homomorphism isomorphically maps G onto U. Thus, $\hat{G} \neq G$. Notice that this also establishes that G is the universal completion of \mathcal{B}.

We are ready to define the geometry Γ. We define it in the group-theoretic manner. The elements of Γ are the right cosets in G of the subgroups L, N, M, and K. Thus, Γ contains elements of four types. We call the cosets of L points and the cosets of N lines. For reasons that will become apparent later the cosets of M and K are called M - and K-hexagons, respectively. Two cosets are incident elements of Γ if they have a nonempty intersection.

Clearly, G acts on Γ by right multiplication. Also, e acts on Γ by conjugation. It is easy to see that these actions agree, so that the entire group \hat{G} acts on Γ. The elements from $\hat{G} \backslash G$ interchange the two types of hexagons in Γ, so with respect to the action of \hat{G} the rank four geometry Γ should be viewed as a rank three geometry $\hat{\Gamma}$, where M- and K-hexagons are united into one type - hexagons. Notice that Γ and $\hat{\Gamma}$ have the same set of elements. However, in order to satisfy the axioms of diagram geometry, we need to modify the incidence relation. Namely, we postulate that two hexagons are never incident in $\hat{\Gamma}$. The incidence between points and lines, and between hexagons and other elements is the same as in Γ.

We now proceed to establish the basic properties of Γ and $\hat{\Gamma}$.
Lemma 4.2. $\hat{\Gamma}$ is a residually connected geometry, on which \hat{G} acts flag-transitively.
Proof: Suppose F is a maximal flag in $\hat{\Gamma}$. Clearly, F consists of a point, a line, and a hexagon. Acting, if necessary, by e, we can assure that the hexagon in F is an M-hexagon. Thus, $F=\left\{L g_{1}, N g_{2}, M g_{3}\right\}$. Without loss of generality, $g_{2}=1$. Then $N g_{2}=N$; furthermore, $N \cap L g_{1}$ and $N \cap M g_{3}$ are cosets in N of L_{1} and M_{1}, respectively. Since $N=L_{1} M_{1}$, the triple intersection $L g_{1} \cap N \cap M g_{3}$ is nonempty, hence it contains an element g. Acting on F by g^{-1} we obtain the standard flag $\{L, N, M\}$. This proves flag-transitivity.

Observe that the stabilizers in \hat{G} of the cosets L, N, and M are \hat{L}, \hat{N}, and M, respectively. So $\hat{\mathcal{A}}$ is simply the amalgam of maximal parabolics in \hat{G}. Connectedness of $\hat{\Gamma}$ now follows from the fact that \hat{G} is generated by $\hat{\mathcal{A}}$. Similarly, the full residual connectedness follows from the fact that each of the three maximal parabolics is generated by its intersections with the other two maximal parabolics.

Since $\hat{N}=\hat{L}_{1} M_{1}$, the geometry $\hat{\Gamma}$ has a string diagram. Furthermore, since $D=$ $\hat{L} \cap M$ and $M_{1}=\hat{N} \cap M$ are the two maximal parabolic subgroups in $M \cong G_{2}(2)$, containing the Borel subgroup B, we see that the residue of the coset M (and hence also of every coset $M g$ or $K g)$ is a natural generalized hexagon geometry of $G_{2}(2)$. This explains our name for these elements.

Finally, we record some numeric data. Every point is incident to exactly [\hat{L} : $\left.\hat{L}_{1}\right]=7$ lines and $[\hat{L}: D]=14$ hexagons. It is easy to see that the 14 hexagons are evenly split between M- and K-hexagons - seven of each. Every line is incident to $\left[\hat{N}: \hat{L}_{1}\right]=3$ points and $\left[\hat{N}: M_{1}\right]=6$ hexagons (again three of each kind). Every hexagon is incident to $[M: D]=63$ points and $\left[M: M_{1}\right]=63$ lines.

5 The collinearity graph Δ

Let Δ be the collinearity graph of Γ, which is clearly the same as the collinearity graph of $\hat{\Gamma}$. We prove Theorem 1 as follows: In view of the uniqueness of the amalgam $\hat{\mathcal{A}}$, it coincides with the amalgam found in $\operatorname{Aut} G_{2}(3)$. This means that Aut $G_{2}(3)$ is a factor group of the universal completion \hat{G}. In particular, the number of points in Γ, that is, $|\Delta|$, is at least \mid Aut $G_{2}(3)|/|\hat{L}|=3159$ (cf. [ATL]). If we show that $|\Delta| \leq 3159$ then $|\Delta|=3159$ and $|\hat{G}|=\mid$ Aut $G_{2}(3) \mid$. Thus, we need to bound the size of Δ.

We first establish a few facts about Δ and about the action of the point stabilizer on it. It is convenient to identify every line and every hexagon with a subgraph of Δ on the points incident to that line or hexagon. Thus, every line becomes a 3 -clique in Δ and every hexagon becomes a subgraph on 63 points in Δ, isomorphic to the collinearity graph of the $G_{2}(2)$ generalized hexagon.

Let point p be chosen as the coset L. Then, clearly, $G_{p}=L$ and $\hat{G}_{p}=\hat{L}$. Also, it is clear that \hat{L} induces the group $L_{3}(2)$ on the seven lines through p.

Lemma 5.1. Γ is a partial linear space, that is, two points from Γ lie on at most one common line.

Proof: Suppose two lines share a point. Without loss of generality, that point is p. Since L induces the 2-transitive group $L_{3}(2)$ on the seven lines through p, any two of these lines lie in a common hexagon. The latter is a partial linear space, so the two lines share only one point.

In particular, this lemma shows that different lines produce different 3 -cliques. Also, the following holds.

Corollary 5.2. Every point is collinear with exactly 14 other points.
The point stabilizer in $G_{2}(2)$, acting on the 63 points of the generalized hexagon, has orbits of lengths $1,6,24$, and 32 (the orbits consist of the points at distance 0 , 1,2 , and 3 from the original point, respectively). Since the valency of Δ is only 14 , it shows that hexagons are induced subgraphs of Δ. This, in turn, implies that the neighborhood of $p, \Delta(p)$, has no further edges, other than the edges in the seven lines through p. It follows that the lines are maximal cliques in Δ and that every 3 -clique in Δ is a line.

Since \hat{L} induces $L_{3}(2)$ on the set of seven lines through p, this set carries the structure π_{p} of a Fano plane (projective plane of order two). Similarly for any point x we have a Fano plane π_{x} whose points are the seven lines through x. To distinguish the points and lines of π_{x} from those of Γ, we will call the former Fano points and Fano lines. Thus Fano points are lines on a given vertex x and Fano lines are some triples of lines on x. Clearly, π_{x} is invariant under the action of \hat{G}_{x}.

Lemma 5.3. If H is a hexagon containing a point x, then the three lines in H on x are the Fano points of a Fano line in π_{x}. Conversely, for any Fano line there is exactly one M-hexagon and exactly one K-hexagon containing those three lines.

Proof: We can assume x to be p and H to be the hexagon corresponding to the coset M. Notice that $D=\hat{L} \cap M$ stabilizes a Fano line in π_{p}. Furthermore, D has orbits of lengths 3 and 4 on the Fano points. Since H is invariant under D and it only contains three lines on p, we have the first claim of the lemma. Since L is transitive on the seven Fano lines and it does not interchange M- and K-hexagons, the second claim also follows.

Suppose ℓ_{1}, ℓ_{2}, and ℓ_{3} are lines on x, that are the Fano points of a Fano line from π_{x}. Then we will call $\ell_{1} \cup \ell_{2} \cup \ell_{3}$ a claw based at x.

Lemma 5.4. If H_{1} and H_{2} are hexagons then every connected component of $H_{1} \cap H_{2}$ is either a line or a claw.

Proof: Suppose x is a common point of H_{1} and H_{2}. Then H_{1} and H_{2} correspond to either the same Fano line in π_{x} (in which case they are hexagons of different type) or they correspond to two different Fano lines. In the first case, H_{1} and H_{2} share a claw, in the second case they share just a line in the neighborhood of x. Suppose the connected component of $H_{1} \cap H_{2}$ is not a line and not a claw. Then it contains
two claws based at neighbors y and z. Without loss of generality, $y=p$, the line ℓ through y and z corresponds to the coset N, and H_{1} and H_{2} correspond to the cosets M and K, respectively. Let g be an element of M (which is the stabilizer of H_{1}) that interchanges y and z. Then g also interchanges the claw based at y and the claw based at z. Since H_{2} is the only K-hexagon that contains either of those claws, we obtain that g leaves H_{2} invariant, that is, $g \in K$. However, since D is a maximal subgroup in both M and K and since $g \notin D$, this means that $M=\langle D, g\rangle=K$, a contradiction.

In a hexagon the distance between a claw (neighborhood of a point) and a line never exceeds one. This means that if two hexagons share a claw then they have no further intersection.

Lemma 5.5. If H and H^{\prime} are hexagons of different type then either they are disjoint or $H \cap H^{\prime}$ is a claw.

Proof: Suppose H and H^{\prime} are hexagons of different type and suppose they share a point x. Without loss of generality, H is an M-hexagon. Let $x_{0}=x$ and let x_{1}, x_{2}, \ldots, x_{6} be the six points collinear with x in H. Let H_{i} be the K-hexagon that shares with H the claw based at x_{i}. By the preceding lemma, the hexagons H_{i} are pairwise disjoint; furthermore, they all contain x. Since x is contained in exactly seven K-hexagons, we conclude that $H^{\prime}=H_{i}$ for some i. Thus, H and H^{\prime} share a claw. As we discussed before this lemma, the claw is the entire intersection of H and H^{\prime}.

If H and H^{\prime} are of the same type then it is still possible that $H \cap H^{\prime}$ is disconnected. However, each of the connected components is just a line.

We now consider the action of the point stabilizer on the neighborhood of the point. Namely, we study the actions of L and \hat{L} on $\Delta(p)$. Recall that $E=O_{2}(L) \cong$ 2^{3} and $\hat{E}=O_{2}(\hat{L}) \cong 2^{4}$.
Lemma 5.6. The group E acts trivially on $\Delta(p)$, while L acts on it transitively. Moreover, \hat{E} acts trivially on π_{p} but nontrivially on each line through p.

Proof: Clearly, \hat{E} acts trivially on π_{p}. Hence it stabilizes every line through p. Let ℓ be the line corresponding to the coset N. Then the stabilizer of ℓ in \hat{G} is \hat{N}. Recall that $Q=O_{2}(N)$ coincides with $O_{2}(\hat{N})$ and that $\hat{N} / Q \cong S_{3} \times S_{3}$. (See the discussion after Lemma 3.5.) Let $e \in \hat{E} \backslash E$ and consider the subgroup L_{1}. If t is an element of order three from L_{1} then t acts trivially on the line ℓ. Notice that e and t commute modulo Q. Since $e \notin Q$, we obtain that e does not centralize any other 3-element from \hat{N} / Q. This implies that e acts nontrivially on ℓ. Since \hat{E} is normal in \hat{L}, the same is also true for every line through p.

It remains to see that L is transitive on $\Delta(p)$. Notice first that L induces $L_{3}(2)$ on the seven lines through p, hence it acts transitively on them. Moreover, L_{1}, the joint stabilizer of p and ℓ, cannot act trivially on the other two points of ℓ because in that case N would act trivially on ℓ.

This lemma uniquely determines the action of L and \hat{L} on $\Delta(p)$. In L, the stabilizer of a point $q \in \ell$ (where ℓ is again the line stabilized by \hat{N}) is the unique index two subgroup in L_{1}.

In the remainder of this section we prove the following proposition.
Proposition 5.7. $|\Delta|=3159$.
We prove it in a sequence of lemmas. Let H be the M-hexagon corresponding to the coset M. Our approach is to decompose Δ with respect to H. Let Δ_{i} be the set of vertices at distance i from H. Then, clearly, $\Delta_{0}=H$ and $\left|\Delta_{0}\right|=63$. Also, notice that the stabilizer of Δ_{0} in \hat{G} is M.

By contradiction, we assume until the end of the proof of Proposition 5.7 that $|\Delta|>3159$.

Lemma 5.8. If $x \in \Delta_{0}$ then x has exactly six neighbors in Δ_{0}, while the remaining eight are in Δ_{1}. The group M_{x} acts transitively on those eight points. In particular, M is transitive on Δ_{1}.

Proof: Without loss of generality we can assume that $x=p$ and so $M_{x}=D$. Since H is an induced subgraph, p has exactly six neighbors in Δ_{0} and so the remaining eight must be in Δ_{1}. Moreover, D acts transitively on the 4 lines not lying in H. Let ℓ one of those four lines. Since E acts trivially on $\Delta(p)$, consider the action of $\bar{L}=L / E$. The stabilizer in \bar{L} of a point $q \in \ell$ is a subgroup A_{4} which intersects \bar{D} in just a group of order three. This shows that \bar{D}_{x} has index eight in \bar{D}. Hence \bar{D} is transitive on the eight points.

It follows from this lemma that $\left|\Delta_{1}\right| \leq 63 \cdot 8=504$. Let x be a point in Δ_{1} adjacent to p. As above, the joint stabilizer X in M of p and x is the extension of E by a group of order three.

Lemma 5.9. The group X has orbits of lengths 1, 1,12 on $\Delta(x)$. In particular, x has one neighbor in Δ_{0}, one in Δ_{1} and twelve in Δ_{2}. Moreover, M is transitive on Δ_{2}.

Proof: Let $L^{\prime}=G_{x}$ and let $\bar{L}^{\prime}=L^{\prime} / E^{\prime}$ where $E^{\prime}=O_{2}\left(L^{\prime}\right)$. Since E is not normal in N, E cannot be equal to E^{\prime}. Hence $\bar{X} \cong A_{4}$. This subgroup can be identified as the index two subgroup in the stabilizer in \bar{L}^{\prime} of the line through x and p. It coincides with the full stabilizer in \bar{L}^{\prime} of p.

Let q be a point in $\Delta(x)$ that does not lie on the line through p and x. We claim that the joint stabilizer U^{\prime} in L^{\prime} of p and q is E^{\prime}. It suffices to show that U^{\prime} fixes all Fano points in π_{x}. For a point $y \in \Delta(x)$ let \tilde{y} denote the Fano point containing y. Suppose that U^{\prime} moves a Fano point \tilde{r} for some $r \in \Delta(x)$. Then U^{\prime} moves the Fano line through \tilde{p} and \tilde{r}, or it moves the Fano line through \tilde{q} and \tilde{r}. Suppose the former holds. Since U^{\prime} fixes the Fano line through \tilde{p} and \tilde{q}, it must induce a transposition on the three Fano lines through \tilde{p}. However, this contradicts to the fact that U^{\prime} is contained in the stabilizer of p and hence it can only induce a group of even permutations on the three Fano lines through \tilde{p}. This is a contradiction. Similarly, U^{\prime} cannot move a Fano line through \tilde{q}. Thus, we have shown that $U^{\prime}=E^{\prime}$. This implies that $X_{q} \leq E^{\prime}$, hence $\left[X: X_{q}\right]=12$. This proves the claim about the orbits. Clearly, the orbit with twelve points cannot be contained in $\Delta_{0} \cup \Delta_{1}$, since in that case $\Delta_{2}=\emptyset$ and Δ is too small. Now all the claims follow.

Notice that since p is the only point in Δ_{0} adjacent to x, we have that $X=M_{x}$. Furthermore, since every point in Δ_{0} is adjacent to eight points in Δ_{1} and every point in Δ_{1} is adjacent to just one point in Δ_{0}, we compute that $\left|\Delta_{1}\right|=63 \cdot 8=504$.

Next we look at the hexagons that intersect Δ_{0}.
Lemma 5.10. Suppose $H^{\prime} \neq H$ is a hexagon intersecting $H=\Delta_{0}$ nontrivially.
(1) If H^{\prime} is a K-hexagon that $H \cap H^{\prime}$ is a claw based at some point $h \in H$. Furthermore, the points in H^{\prime} that are at distance $i \geq 1$ from h are contained in Δ_{i-1}.
(2) If H^{\prime} is an M-hexagon then $H \cap H^{\prime}$ is a line ℓ. Furthermore, the points in H^{\prime} that are at distance $i \geq 0$ from ℓ are contained in Δ_{i}.

Proof: If H^{\prime} is a K-hexagon then $H \cap H^{\prime}$ is a claw by Lemma 5.5. Clearly, the points in H^{\prime} that are at distance two from h, the base of the claw, are in Δ_{1}. Since, for every point in Δ_{1}, six lines on it go to Δ_{2}, we have that the points of H^{\prime}, that are at distance three from h, are contained in Δ_{2}. It remains to notice that three is the diameter of H^{\prime}.

Similarly, suppose H^{\prime} is an M-hexagon. By Lemma 5.4, every connected component of $H \cap H^{\prime}$ is a line. Let ℓ be one of them. Then the points in H^{\prime} that are at distance one from ℓ are in Δ_{1} and the points that are at distance two are in Δ_{2}. It remains to notice that every point from H^{\prime} is at distance at most two from ℓ.

Corollary 5.11. If H_{1} and H_{2} are of the same type then either they are disjoint or $H_{1} \cap H_{2}$ is a line.

Let $y \in \Delta_{2}$. Without loss of generality we can assume that y is adjacent to x. Let $Y=M_{y}$.

Lemma 5.12. The following hold.
(1) Three lines on y have a point in Δ_{1} and two other points in Δ_{2}; these lines are the Fano points of a Fano line from π_{y}.
(2) Three further lines on y are fully contained in Δ_{2}.
(3) The seventh line on y has two points in Δ_{3}.
(4) $Y \cong S_{3}$ has orbits $3,3,6$, and 2 on $\Delta(y)$; in particular, M is transitive on Δ_{3}.

Proof: First of all, y lies in a K-hexagon H^{\prime} containing x and p. So (1) follows from Lemma 5.10 (1). Let $x=x_{1}, x_{2}$, and x_{3} be the three neighbors of y in $\Delta_{1} \cap H^{\prime}$. Furthermore, let $p=p_{1}, p_{2}$, and p_{3} be the unique neighbors of x_{1}, x_{2}, and x_{3} in Δ_{0}. Assuming that y is adjacent to a fourth point $z \in \Delta_{1}$, we obtain that y is contained in a second K-hexagon $H^{\prime \prime}$ meeting Δ_{0}. However, H^{\prime} and $H^{\prime \prime}$ must share a line on y, that is, H^{\prime} and $H^{\prime \prime}$ share y, some x_{i}, and hence also p_{i}. This means that H^{\prime} and $H^{\prime \prime}$ share a claw, which is a contradiction, since H^{\prime} and $H^{\prime \prime}$ are of the same type. Thus, y has exactly three neighbors in Δ_{1}. It follows that $\left|\Delta_{2}\right|=\frac{504 \cdot 12}{3}=2016$. Since
$63+504+2016<3159$, we conclude that Δ_{3} is nonempty and hence y is adjacent to some points in Δ_{3}.

Let H_{i} be the M-hexagon containing y, x_{i}, and p_{i}. These three hexagons are pairwise distinct. In view of Lemma 5.10 (2) each of H_{i} contains two lines on y that are fully in Δ_{2}. Since there should still be at least one line reaching into Δ_{3}, we obtain that there are exactly three lines ℓ_{1}, ℓ_{2}, and ℓ_{3} on y, that are fully contained in Δ_{2}. Notice that every ℓ_{j} is contained in two hexagons H_{i}.

It remains to study M_{y} and its action on $\Delta(y)$. Let H^{\prime} be as above and let the claw $H \cap H^{\prime}$ be based at a point h. Let K^{\prime} be the stabilizer of H^{\prime}. Since $K^{\prime} \cong G_{2}(2)$ and since h and y are at distance three in H^{\prime}, we have that $K_{h y}^{\prime} \cong S_{3}$. We claim that $M_{y}=K_{h y}^{\prime}$. Clearly, M_{y} stabilizes H^{\prime}, and hence it also stabilizes $H \cap H^{\prime}$ and h. Thus, $M_{y} \leq K_{h y}^{\prime}$. On the other hand, $K_{h y}^{\prime}$ stabilizes the claw $H \cap H^{\prime}$ and hence it also stabilizes the only M-hexagon containing this claw, M. Thus, $K_{h y}^{\prime} \leq M_{y}$. We have established that $M_{y} \cong S_{3}$.

All subgroups S_{3} in $L_{3}(2)$ are conjugate. Each of them stabilizes a unique point and a unique line in the corresponding Fano plane. For M_{y} acting on π_{y}, those are the Fano point, that is the line on y reaching into Δ_{3}, and the Fano line corresponding to H^{\prime}. It is easy to see that M_{y} has two orbits of size three on the six neighbors of y in H^{\prime}, and that the remaining orbits have lengths 6 and 2. The latter orbit consists of the two points on the line reaching into Δ_{3}. Now all claims of the lemma follow.

We record that, as we have shown, $\left|\Delta_{2}\right|=2016$.
Before we study Δ_{3} we need to get information about the M-hexagons containing points from Δ_{2}. Let H^{\prime} be such a hexagon and let y^{\prime} be a point in $H^{\prime} \cap \Delta_{2}$. Recall that the stabilizer $M_{y^{\prime}}$ is isomorphic to S_{3}. This stabilizer has three orbits on the Fano lines in $\pi_{y^{\prime}}$, hence on the M-hexagons containing y^{\prime}. The first orbit consists of one Fano line, which has, as its three Fano points, the three lines reaching into Δ_{1}. The second orbit consists of three Fano lines, each of which has one Fano point, that is a line going into Δ_{1}, and two other Fano points, that are fully in Δ_{2}. The third orbit consists of three Fano lines, each of which has as one Fano point a line going to Δ_{1}, as second Fano point a line contained in Δ_{2}, and as the last Fano point the only line going into Δ_{3}. Notice that if H^{\prime} corresponds to a Fano line in the second orbit then H^{\prime} meets Δ_{0} in a line (see Lemma 5.10 (2)).

Suppose H^{\prime} is not of that kind. Then $H^{\prime} \cap \Delta_{2}=A_{1} \cup A_{3}$, where A_{i} consists of the points, for which H^{\prime} corresponds to a Fano line in orbit i. Potentially, either of A_{i} can be empty. However, we can choose H^{\prime} so that $A_{1} \neq \emptyset$. Let $B=H^{\prime} \cap \Delta_{1}$ and $C=H^{\prime} \cap\left(\cup_{i \geq 3} \Delta_{i}\right)$. Clearly, $B \neq \emptyset$.

Lemma 5.13. The following hold.
(1) $M_{H^{\prime}}$ acts transitively on A_{1}, and if $a \in A_{1}$ then $M_{a, H^{\prime}}=M_{a} \cong S_{3}$.
(2) $M_{H^{\prime}}$ acts transitively on B, and if $b \in B$ then $M_{b, H^{\prime}} \cong \mathbb{Z}_{6}$.

Proof: Take $a_{1}, a_{2} \in A_{1}$ and let $g \in M$ be such that $a_{1}^{g}=a_{2}$. Clearly g will map the Fano line in $\pi_{a_{1}}$ corresponding to H^{\prime} to the similar Fano line in $\pi_{a_{2}}$. Thus it will stabilize H^{\prime}. Moreover, if we repeat this argument for $a_{1}=a_{2}=a$ we get that $M_{a, H^{\prime}}=M_{a} \cong S_{3}$, proving (1).

To see (2), we notice that if $b \in B$ then the Fano line in π_{b} corresponding to H^{\prime}, consists of three Fano points that are lines going to Δ_{2}. We have seen that M_{x} induces on $\Delta(x)$ the full stabilizer of p (isomorphic to A_{4}). This stabilizer acts transitively on the four Fano lines in π_{x} of the above type. Thus, if $g \in M$ and it maps b_{1} to b_{2}, where $b_{1}, b_{2} \in B$, then g can be corrected by an element from $M_{b_{2}}$, so that the resulting new element normalizes H^{\prime}, still taking b_{1} to b_{2}. This shows that $M_{H^{\prime}}$ is transitive on B. Clearly, $M_{b, H^{\prime}}$ induces just \mathbb{Z}_{3} on $\Delta(b)$, so (2) follows.

Lemma 5.14. We have that $A_{3} \neq \emptyset$. Furthermore, $M_{H^{\prime}}$ acts transitively on A_{3}, and if $a \in A_{3}$ then $M_{a, H^{\prime}} \cong \mathbb{Z}_{2}$.
Proof: Let $b \in B$ and let ℓ be a line on b that is contained in H^{\prime}. Then $\ell \cap \Delta_{2}=$ $\left\{a_{1}, a_{2}\right\}$. We claim that these two points belong to different subsets A_{i}. Suppose not. Then by Lemma 5.13, there is an element $g \in M_{H^{\prime}}$ that maps a_{1} to a_{2}. This g can be chosen so that it fixes b. Indeed, if $i=3$ then this is automatic, since b is the only neighbor of each of a_{1} and a_{2} in B. If $i=1$ then $M_{a_{2}, H^{\prime}}$ acts transitively on the three neighbors of a_{2} in B, so g can be adjusted to fix b. However, now we have a contradiction. Since g fixes b, it preserves ℓ and hence it switches a_{1} and a_{2}. This means that g induces on $\Delta(b)$ an element of even order. This contradicts to the fact that $M_{b, H^{\prime}}$ induces on $\Delta(b)$ a group of order three.

Thus, a_{1} and a_{2} belong to different A_{i}. Say, $a_{1} \in A_{3}$, making the latter nonempty. Since $M_{a_{1}} \cong S_{3}$ and since H^{\prime} lies in the orbit of three M-hexagons, we obtain that $M_{a, H^{\prime}} \cong \mathbb{Z}_{2}$.

Lemma 5.15. Let $C=C_{1} \cup C_{2}$ where the points in C_{1} have neighbors in A_{3} and the points of C_{2} have only neighbors in C (within H^{\prime}). Then $M_{H^{\prime}}$ acts transitively on C_{1}. In particular, every point from C_{1} has the same number k of neighbors in A_{3}.

Proof: We know that $M_{H^{\prime}}$ acts transitively on A_{3} and so it acts transitively on the lines of H^{\prime} that go to Δ_{3}. Also, if $a \in A_{3}$, the stabilizer $M_{a, H^{\prime}}$ acts nontrivially on the line on a that goes to Δ_{3}. This completes the proof.

We are now ready to carry out some computations about the sizes of A_{i}, B, and C. Let $\left|A_{1}\right|=n$. Since every point from A_{1} has three neighbors in B and every point from B has three neighbors in A_{1}, we have that $|B|=n$, too. Since every point from A_{3} has one neighbor in B and since every point from B has three neighbors in A_{3}, we get that $\left|A_{3}\right|=3 n$. Similarly, $\left|C_{1}\right|=\frac{6 n}{k}$ where k is as in Lemma 5.15. Thus, $\left|C_{2}\right|=63-5 n-\frac{6 n}{k} \geq 0$. This immediately implies, since $k \leq 3$, that $3 \geq \frac{6 n}{63-5 n}$, and so $n \leq 9$. Observe now that $A_{1} \cup B$ induces a graph of valency three with girth at least six. This implies that $n=\left|A_{1}\right| \geq 7$.

Therefore $7 \leq n \leq 9$. If $n=8$ then $63-40-\frac{48}{k} \geq 0$, which means that $k \geq \frac{48}{23}>2$. It follows that $k=3$. However, this means that every neighbor in H^{\prime} of a point from C_{1} is either in A_{3} or in C_{1}, and so $C_{2}=\emptyset$, which is impossible, since there are too few points in $A_{1} \cup A_{3} \cup B \cup C_{1}$.

If $n=7$ then $\left|M_{H^{\prime}}\right|=7 \cdot 6$ and so $M_{H^{\prime}}$ is solvable. By Hall Theorem, there is only one conjugacy class of subgroups of order six, contradicting Lemma 5.13. It now follows that $n=9, k=3$ and $C=C_{1}$.

We summarize this as follows.

Lemma 5.16. Suppose H^{\prime} is an M-hexagon that contains a point in Δ_{2}, but does not intersect Δ_{0}. Then H^{\prime} contains exactly 9 points from $\Delta_{1}, 9+27$ points from Δ_{2}, and 14 points from Δ_{3}. Furthermore, if $z \in H^{\prime} \cap \Delta_{3}$ then each of the three lines through z in H^{\prime} contains one point from Δ_{2} and two points from Δ_{3} (z is one of the two).

Finally, we can bound the size of the graph Δ.
Lemma 5.17. If $u \in \Delta_{3}$ then each of the seven lines through u in Δ has one point in Δ_{2} and the two other points (including u itself) in Δ_{3}. In particular, $\Delta_{4}=\emptyset$.

Proof: Clearly, there is at least one line on u that contains a point from Δ_{2}. Consider an M-hexagon H^{\prime} that contains that line. Clearly, H^{\prime} contains a point from Δ_{2} and it does not intersect Δ_{0}, since it also contains a point from Δ_{3} (namely, u). By Lemma 5.16, each of the three lines through u in H^{\prime} contains a point from Δ_{2}. However, every M-hexagon on u contains at least one of those three lines. Repeating the above argument, we see that each line on u contains a point from Δ_{2}.

According to this lemma, $\left|\Delta_{3}\right|=\frac{2\left|\Delta_{2}\right|}{7}=576$ and $|\Delta|=\left|\Delta_{0}\right|+\left|\Delta_{1}\right|+\left|\Delta_{2}\right|+\left|\Delta_{3}\right|=$ $63+504+2016+576=3159$. This concludes the proof of Proposition 5.7.

It remains to notice that $|G|=|M| \cdot 3159=\left|G_{2}(3)\right|$ and so $|\hat{G}|=\mid$ Aut $G_{2}(3) \mid$. Since the unique amalgam $\hat{\mathcal{A}}$ occurs in Aut $G_{2}(3)$ and generates it, we have that Aut $G_{2}(3)$ is a factor group of \hat{G}. The equality of the orders now establishes Theorem 1.

References

[ATL] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford 1985.
[G] D. Goldschmidt, Automorphisms of trivalent graphs, Annals Math. 111 (1980), 377-407.
[GVM] R. Gramlich and H. Van Maldeghem, Intransitive geometries, preprint.
[IS] A.A. Ivanov and S.V. Shpectorov, Geometry of Sporadic Groups II Representations and Amalgams, Cambridge Univ. Press, 2002.
[T] J. Tits, Ensembles ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math. Belg. 38 (1986), 367-387.
email : hoffman@bgsu.edu

[^0]: *Partially supported by an NSA grant.
 ${ }^{\dagger}$ Partially supported by an NSA grant.

