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1 Introduction

The purpose of this article is to provide new presentations for the groups G2(3)
and Aut G2(3). These presentations come from the amalgam of maximal parabolic
subgroups arising in the action of Aut G2(3) on a certain geometry.

The members of this amalgam are the well-known subgroups of Ĝ = Aut G2(3)
(cf. [ATL]): L̂ = 23 · L3(2) : 2, N̂ = 21+4.(S3 × S3), and M = G2(2). Notice that
M is fully contained in G = O2(Ĝ) ∼= G2(3), while L̂ and N̂ are not. This explains
our hat notation. According to this notation we set L = L̂ ∩ G ∼= 23 · L3(2) and
N = N̂ ∩ G ∼= 21+4.(3 × 3).2.

We choose the subgroups L̂ and M so that D = L̂ ∩ M is a maximal parabolic
subgroup in M . Then D has a unique normal subgroup 22 (contained in O2(L) ∼= 23).
Let z be an involution from that normal subgroup. We choose N̂ = CĜ(z). This

uniquely specifies the amalgam Â = L̂ ∪ N̂ ∪ M . Let e ∈ O2(L̂) \ O2(L) and set
K = Me. Let B = L ∪ N ∪ M ∪ K. Clearly, Ĝ = 〈Â〉 and G = 〈B〉.

Theorem 1. Ĝ = Aut G2(3) is the universal completion of the amalgam Â.

As a corollary of this theorem we get our second main result.

Theorem 2. G = G2(3) is the universal completion of the amalgam B.

As we have already mentioned, the amalgam Â is the amalgam of maximal
parabolics with respect to the action of Ĝ on a certain geometry Γ̂. In this sense,
Theorem 1 is equivalent, via Tits’ Lemma [T] (also cf. [IS], Theorem 1.4.5), to the
simple connectedness of the geometry Γ̂.
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Our interest in presentations for the groups Aut G2(3) and G2(3) comes from
the need to find, in a computer-free way, a presentation for a larger group, the
sporadic Thompson group Th. In a forthcoming paper we will establish that Th
acts on a similar simply connected geometry Λ. In fact, Aut G2(3) arises in Th in
the normalizer of a suitable subgroup X of order three. Furthermore, our geometry
Γ̂ is just the fixed subgeometry for the action of X in Λ.

The structure of the paper is as follows. In Sections 2 and 3 we specify the
amalgam Â abstractly in terms of certain conditions (G1)–(G4), and we prove the
uniqueness of such an amalgam. In Section 4 we switch from an arbitrary completion
Ĝ of Â to its universal completion and define the geometry Γ̂ as the coset geometry.
Finally, in Section 5 we determine the exact number of points in Γ̂, which gives us
that the order of the universal completion Ĝ coincides with the order of Aut G2(3).
In view of the uniqueness of Â, the group Aut G2(3) is a factor group of Ĝ, and
hence Theorem 1 follows.

Our notation for groups follows that of [ATL]. The definitions, terminology and
basic facts concerning geometries can be found, for example, in [IS]. Our result in
Theorem 2 can be approached differently in terms of intransitive geometries (see
[GVM]). We thank R. Gramlich for pointing this out.

2 Set-up and basic properties

We let Ĝ be a group generated by its subgroups L̂ and M so that the following hold:

(G1) L̂ has an index two subgroup L such that L ∼= 23.L3(2); M has structure
U3(3).2.

(G2) D = L̂∩M is contained in L, it is the full preimage in L of a maximal parabolic
from L/O2(L).

We first list some basic properties that follow from (G1) and (G2). Let E =
O2(L).

Lemma 2.1. The following hold:

(1) The action of L on E is nontrivial and L is a nonsplit extension of E by L3(2);
also, O2(L̂) ∼= 24.

(2) D has a normal subgroup of order 4 in E and has a trivial center.

(3) M ∼= G2(2).

Proof: By (G2) we have that 26 divides |D|, which means that D contains a maximal
parabolic subgroup (for characteristic two) from O2(M) ∼= U3(3) ∼= G2(2)′. Hence,
comparing with [ATL], we see that D cannot have 23 in the center. This means that
the action of L on E is nontrivial, hence E is the natural module for L̄ = L/E ∼=
L3(2). Since the outer automorphism of L3(2) interchanges the natural and the dual
natural modules, O2(L̂) has order 24, and it can only be elementary abelian.

Now looking at L, we see that D has two 2-dimensional chief factors. Comparing
with the information on U3(3) from [ATL], we see that D ∩ O2(M) must have
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structure 42 : S3, and thus it has a trivial center. Turning again to L, we see that D
is the normalizer of a subgroup 22 from E. This yields (2). Moreover, since D has
trivial center, so does M , and (3) follows, too.

Finally if L were the split extension of E, then D would have a normal elementary
abelian subgroup of order 16. Since this is not the case, L does not split. This
completes the proof of (1). �

We remark that there is a unique nonsplit extension 23 · L3(2), and so part (1)
of the above lemma specifies L up to isomorphism.

Let B be a Sylow 2-subgroup in D. Let L1 be the full preimage in L of the
second maximal parabolic from L̄ = L/E ∼= L3(2) containing B̄, and also let M1

be the second maximal parabolic from M ∼= G2(2) containing B. Let L̂1 be the
normalizer of L1 in L̂. We have [L̂1 : L1] = 2.

Now we can introduce a new condition on Ĝ. Clearly, L̂1 ∩ M1 = L1 ∩ M1 = B.
Let N̂ = 〈L̂1, M1〉.

(G3) L̂1 and M1 are permutable, that is, N̂ = L̂1M1.

Let N = 〈L1, M1〉.

Lemma 2.2. We have [N̂ : N ] = 2 and N = L1M1, so L1 and M1 are permutable.
Furthermore, Q = O2(N) coincides with O2(L1) and O2(M1), and it is an extraspe-
cial subgroup 21+4

+ . Finally, N̄ = N/Q ∼= 32 : 2 where the involution inverts all
elements of order three.

Proof: Both O2(L1) and O2(M1) have order 25 and the factor group is S3 in both
cases. Consider N̄ . By (G3) we know that this is a group of order 2s32 which has no
normal 2 subgroup. This forces that the Sylow 3-subgroup is normal. In particular,
this means that all 2-dimensional chief factors of L1 and M1 are contained in Q.
Looking at L1 as a subgroup of L we see that O2(L1) is contained in Q. This forces
the equalities O2(L1) = B ∩ Q = O2(M1). In particular, Q0 = B ∩ Q is normal in
N . Since O2(N/Q0) has size at most two, N/Q0 has a normal Sylow 3-subgroup,
which means that Q0 = Q. It also means L1 and M1 are permutable and that N̄ is
as claimed in the lemma.

It remains to show that Q is extraspecial of plus type. First of all, the center
Z(Q) is of order two. Also, the element of order 3 from L1 acts fixed-point-freely on
Q/Z(Q). This shows that Q/Z(Q) is either elementary abelian or homocyclic 42.
The latter structure is impossible because an element of order 3 from M1 has only
one 2-dimensional factor in Q/Z(Q). Thus, Q/Z(Q) is elementary abelian, so Q is
extraspecial. Moreover, since Q contains E ∼= 23, Q must be of plus type. �

3 Uniqueness of the amalgam

In this section we prove that the amalgam A = L ∪ M ∪ N is unique up to isomor-
phism and also that Â = L̂ ∪ M ∪ N̂ is unique provided that the following extra
condition holds.

(G4) L̂ and N̂ have no common direct factor of order two.
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We remark that we do not impose condition (G4) until the end of this section.
We also remark that L̂ and N̂ with a common direct factor are possible, but they
lead to a not so interesting configuration, where that factor is in the center of Ĝ
(which can in that case be infinite).

Lemma 3.1. The outer automorphism group of D is of order two. Every automor-
phism of D is induced by an automorphism of L.

Proof: Let R = O2(D) and Z = Z(R). Then Z ∼= 22 is contained in E. Notice that
D/R ∼= S3 acts nontrivially on Z. According to [ATL], D has a normal subgroup
T ∼= 42, which clearly contains Z. We claim that Z, E and T are characteristic in
D. Indeed, it is clear for Z. Considering D/Z, we see that E/Z and T/Z are the
only normal subgroups of D/Z of orders 2 and 22, respectively. So E and T are also
characteristic.

Let A = Aut D. Since the center of D is trivial, we can identify D with Inn D.
Since Z is characteristic, the images of A and D in Aut E coincide with the same
maximal parabolic. This shows that A = DCA(E). Furthermore, since E ≤ CA(E)
and E is transitive on the Sylow 3-subgroups of D, we get that A = D(CA(E) ∩
NA(S)), where S is an arbitrary Sylow 3-subgroup of D. Let F = CA(E) ∩ NA(S).
Clearly, an element centralizing E cannot invert S, so F = CA(ES).

We claim that |F | ≤ 4. Observe first that no nontrivial element of A centralizes
RS. Indeed, RS is characteristic in D and CD(RS) = 1. Hence, all elements of
D induce different automorphisms of RS. Thus, CA(RS) = 1. This means, since
RS = TES, that F acts faithfully on T . Let T = 〈t1〉 × 〈t2〉. Since F centralizes
Z = Ω1(T ), we have that t1 and tf1 differ by an involution (from Z) for each f ∈ F .
Furthermore, the action of f on t1 fully identifies the action of f on the entire T ,
since f commutes with S, and the latter acts on T fixed-point-freely. Consequently,
|F | ≤ 4.

Clearly, F ∩ D = F ∩ E has order two. Since A = DF , this implies that
|Out D| = [A : D] ≤ 2. Thus, to complete the proof of the lemma it suffices to find
an outer automorphism of D in Aut L.

It is well-known that Out L is of order two. Namely, AutL is an extension of
an indecomposable module 24 by L3(2). Clearly, D has index two in O2(Aut L)D
(we identify L with Inn L). So either D has an outer automorphism in Aut L, or D
centralizes a subgroup of order two from O2(Aut L). However, the latter possibility
cannot hold because the module on 24 is indecomposable and D induces on it a full
Sylow 2-subgroup of L3(2). �

Corollary 3.2. The amalgam L ∪ M is unique up to isomorphism.

Proof: Follows from Lemma 3.1 and Goldschmidt’s Lemma (see (2.7) in [G], or
Proposition 8.3.2 in [IS]). �

Notice that the subgroups L1 and M1 are uniquely determined within our unique
amalgam L ∪ M , once B is chosen. So the uniqueness of A follows from our next
lemma.

Lemma 3.3. The free product with intersection L1 ∗B M1 has a unique factor group
such that (1) L1 and M1 map isomorphically into this factor group, and (2) the
factor group is the product of the images of L1 and M1.
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Proof: Let F = L1 ∗B M1. Suppose F has two such factor groups and let U and V
denote the corresponding kernels. Recall that Q = O2(L1) = O2(M1) is extraspe-
cial. We identify L1 and M1 with the corresponding subgroups in F . Under this
identification, Q is normal in F and it trivially intersects both U and V . Hence
U, V ≤ CF (Q). Since F/U is the product of the images of L1 and M1 and since L1

and M1 act differently on Q/Z(Q), we have that the centralizer in F/U of the image
of Q is Z(Q), which is of order two. Hence [V : U ∩ V ] = 2.

Let F̄ = F/Q(U ∩ V ). This group has structure 2.32.2 and it is generated by L̄1

and M̄1. The latter two groups are both isomorphic to S3 and they share B̄ ∼= 2.
This is a contradiction, since F̄ clearly has a normal Sylow 3-subgroup. �

Corollary 3.4. The amalgam A is unique up to isomorphism. �

We now turn to the amalgam Â. If G is any group generated by a copy of our
unique amalgam A then consider, as Ĝ, the direct product of G with a group of
order two. Define L̂ and N̂ to be the extensions of L and N by the direct factor 2.
It is clear that the resulting amalgam Â satisfies (G1)-(G3), but not (G4).

So from this point on we assume that (G4) holds.

Lemma 3.5. The amalgam Â is unique up to isomorphism.

Proof: Suppose a is an automorphism of N centralizing L1. Let x ∈ N \ L1 be an
element of order three. Clearly, N = 〈L1, x〉. Notice that x and x′ = xa act the
same way on Q (since Q ≤ L1). We have already seen that CN(Q) = Z(Q), so x
and x′ differ by an element from Z(Q), which means that x = x′. This shows that
a must in fact be trivial.

Next we identify the structure of L̂. If CL̂(L) 6= 1 then L̂ = L×Z, where Z has

order two. Clearly, Z ≤ L̂1, so Z ≤ N̂ and N̂ = NZ. Furthermore, the involution
from Z acts trivially on L1 and by the above it acts trivially on N . Therefore, Z
is a common direct factor in both L̂ and N̂ , contradicting (G4). Thus, CL̂(L) = 1,

which means that L̂ ∼= Aut L. In particular, the amalgam L̂ ∪ M ∪ N is unique up
to isomorphism.

Pick now any element x ∈ L̂1 \ L1. Since N̂ = N〈x〉, it remains to see that the
action of x uniquely extends from L1 to N . If there were two such actions on N
then they would differ by an automorphism of N that is trivial on L1. However, as
we proved above, such an automorphism is trivial on the entire N , and so the action
of x on N is unique. �

We also record two useful facts. First, we showed in this proof that L̂ ∼= Aut L.
Secondly, the element x in the last paragraph of the proof can be chosen to normalize
both L1 and D (and hence also B). If this x normalizes M1 then it normalizes
M = 〈D, M1〉. However, M ∼= G2(2) has no outer automorphisms. This yields
that x acts on M as some element y ∈ D ∩ M1 = B. However, this means that
xy−1 ∈ L̂ \ L acts trivially on B, which is not possible since L̂ ∼= Aut L. The
contradiction shows that x does not normalize M1. This forces that N̂/Q ∼= S3 ×S3

and Q = O2(N̂).
Notice that almost all proofs in this section are purely amalgamic. The only

exception is in the preceding paragraph, where the fact that Â is embedded in a
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group was used to conclude that x acts on M . (Luckily, our unique amalgam Â can
be found in Aut G2(3).)

4 The geometries Γ and Γ̂

The first order of business in this section is to choose a more suitable group Ĝ. Let
Û be the universal completion of the amalgam Â. Since Ĝ is generated by Â, we
have that Ĝ is isomorphic to a factor group of Û . In particular, Â embeds into Û
isomorphically. Furthermore, if we prove Theorem 1 for the group Û in place of
Ĝ then, clearly, Û has no proper nontrivial factor groups and so Ĝ = Û , yielding
the claim for Ĝ. Thus, without loss of generality, we can assume from now on that
Ĝ = Û is the universal completion of Â.

Fix an arbitrary involution e in L̂1 \ L1 that normalizes D. Such an involution
can be chosen, for example, in Ê = O2(L̂) ∼= 24 (this is how it was chosen in
the introduction). Set K = Me and K1 = Me

1 . Notice that e normalizes L and
N . We remarked at the end of the preceding section that M1 6= Me

1 = K1 and so
M 6= Me = K. Clearly, e interchanges M and K. Thus, it induces an automorphism
of the amalgam B = L ∪ N ∪ M ∪ K. Let G = 〈B〉. Notice that since K = Me =
〈De, Me

1 〉 = 〈D, K1〉 and since K1 ≤ N , we have that K ≤ 〈A〉 and so G = 〈A〉.

Lemma 4.1. We have [Ĝ : G] = 2; namely, Ĝ = G〈e〉. Furthermore, G is the
universal completion of B.

Proof: Clearly, e normalizes G and 〈G, e〉 contains the entire Â, which means that
Ĝ = G〈e〉. Thus, [Ĝ : G] ≤ 2. To show that the index is exactly two, consider the
universal completion U of B. Since e induces an automorphism of B, it also induces
an automorphism on U . Set Û to be the semidirect product of U and 〈e〉, defined
with respect to this automorphism. Clearly, U contains a copy of B left invariant
by e. Extending the images of L and N by e we also find a copy of Â that generates
Û . Thus, Û is a homomorphic image of Ĝ, since Ĝ is the universal completion of Â.
It is clear, that this homomorphism isomorphically maps G onto U . Thus, Ĝ 6= G.
Notice that this also establishes that G is the universal completion of B. �

We are ready to define the geometry Γ. We define it in the group-theoretic
manner. The elements of Γ are the right cosets in G of the subgroups L, N , M , and
K. Thus, Γ contains elements of four types. We call the cosets of L points and the
cosets of N lines. For reasons that will become apparent later the cosets of M and
K are called M- and K-hexagons, respectively. Two cosets are incident elements of
Γ if they have a nonempty intersection.

Clearly, G acts on Γ by right multiplication. Also, e acts on Γ by conjugation.
It is easy to see that these actions agree, so that the entire group Ĝ acts on Γ. The
elements from Ĝ \G interchange the two types of hexagons in Γ, so with respect to
the action of Ĝ the rank four geometry Γ should be viewed as a rank three geometry
Γ̂, where M- and K-hexagons are united into one type—hexagons. Notice that Γ
and Γ̂ have the same set of elements. However, in order to satisfy the axioms of
diagram geometry, we need to modify the incidence relation. Namely, we postulate
that two hexagons are never incident in Γ̂. The incidence between points and lines,
and between hexagons and other elements is the same as in Γ.
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We now proceed to establish the basic properties of Γ and Γ̂.

Lemma 4.2. Γ̂ is a residually connected geometry, on which Ĝ acts flag-transitively.

Proof: Suppose F is a maximal flag in Γ̂. Clearly, F consists of a point, a line,
and a hexagon. Acting, if necessary, by e, we can assure that the hexagon in F is
an M-hexagon. Thus, F = {Lg1, Ng2, Mg3}. Without loss of generality, g2 = 1.
Then Ng2 = N ; furthermore, N ∩ Lg1 and N ∩ Mg3 are cosets in N of L1 and M1,
respectively. Since N = L1M1, the triple intersection Lg1 ∩ N ∩ Mg3 is nonempty,
hence it contains an element g. Acting on F by g−1 we obtain the standard flag
{L, N, M}. This proves flag-transitivity.

Observe that the stabilizers in Ĝ of the cosets L, N , and M are L̂, N̂ , and M , re-
spectively. So Â is simply the amalgam of maximal parabolics in Ĝ. Connectedness
of Γ̂ now follows from the fact that Ĝ is generated by Â. Similarly, the full residual
connectedness follows from the fact that each of the three maximal parabolics is
generated by its intersections with the other two maximal parabolics. �

Since N̂ = L̂1M1, the geometry Γ̂ has a string diagram. Furthermore, since D =
L̂ ∩ M and M1 = N̂ ∩ M are the two maximal parabolic subgroups in M ∼= G2(2),
containing the Borel subgroup B, we see that the residue of the coset M (and hence
also of every coset Mg or Kg) is a natural generalized hexagon geometry of G2(2).
This explains our name for these elements.

Finally, we record some numeric data. Every point is incident to exactly [L̂ :
L̂1] = 7 lines and [L̂ : D] = 14 hexagons. It is easy to see that the 14 hexagons are
evenly split between M- and K-hexagons—seven of each. Every line is incident to
[N̂ : L̂1] = 3 points and [N̂ : M1] = 6 hexagons (again three of each kind). Every
hexagon is incident to [M : D] = 63 points and [M : M1] = 63 lines.

5 The collinearity graph ∆

Let ∆ be the collinearity graph of Γ, which is clearly the same as the collinearity
graph of Γ̂. We prove Theorem 1 as follows: In view of the uniqueness of the
amalgam Â, it coincides with the amalgam found in AutG2(3). This means that
Aut G2(3) is a factor group of the universal completion Ĝ. In particular, the number
of points in Γ, that is, |∆|, is at least |AutG2(3)|/|L̂| = 3159 (cf. [ATL]). If we show
that |∆| ≤ 3159 then |∆| = 3159 and |Ĝ| = |AutG2(3)|. Thus, we need to bound
the size of ∆.

We first establish a few facts about ∆ and about the action of the point stabilizer
on it. It is convenient to identify every line and every hexagon with a subgraph of ∆
on the points incident to that line or hexagon. Thus, every line becomes a 3-clique
in ∆ and every hexagon becomes a subgraph on 63 points in ∆, isomorphic to the
collinearity graph of the G2(2) generalized hexagon.

Let point p be chosen as the coset L. Then, clearly, Gp = L and Ĝp = L̂. Also,

it is clear that L̂ induces the group L3(2) on the seven lines through p.
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Lemma 5.1. Γ is a partial linear space, that is, two points from Γ lie on at most
one common line.

Proof: Suppose two lines share a point. Without loss of generality, that point is p.
Since L induces the 2-transitive group L3(2) on the seven lines through p, any two
of these lines lie in a common hexagon. The latter is a partial linear space, so the
two lines share only one point. �

In particular, this lemma shows that different lines produce different 3-cliques.
Also, the following holds.

Corollary 5.2. Every point is collinear with exactly 14 other points. �

The point stabilizer in G2(2), acting on the 63 points of the generalized hexagon,
has orbits of lengths 1, 6, 24, and 32 (the orbits consist of the points at distance 0,
1, 2, and 3 from the original point, respectively). Since the valency of ∆ is only 14,
it shows that hexagons are induced subgraphs of ∆. This, in turn, implies that the
neighborhood of p, ∆(p), has no further edges, other than the edges in the seven
lines through p. It follows that the lines are maximal cliques in ∆ and that every
3-clique in ∆ is a line.

Since L̂ induces L3(2) on the set of seven lines through p, this set carries the
structure πp of a Fano plane (projective plane of order two). Similarly for any point
x we have a Fano plane πx whose points are the seven lines through x. To distinguish
the points and lines of πx from those of Γ, we will call the former Fano points and
Fano lines. Thus Fano points are lines on a given vertex x and Fano lines are some
triples of lines on x. Clearly, πx is invariant under the action of Ĝx.

Lemma 5.3. If H is a hexagon containing a point x, then the three lines in H on
x are the Fano points of a Fano line in πx. Conversely, for any Fano line there is
exactly one M-hexagon and exactly one K-hexagon containing those three lines.

Proof: We can assume x to be p and H to be the hexagon corresponding to the coset
M . Notice that D = L̂ ∩ M stabilizes a Fano line in πp. Furthermore, D has orbits
of lengths 3 and 4 on the Fano points. Since H is invariant under D and it only
contains three lines on p, we have the first claim of the lemma. Since L is transitive
on the seven Fano lines and it does not interchange M- and K-hexagons, the second
claim also follows. �

Suppose ℓ1, ℓ2, and ℓ3 are lines on x, that are the Fano points of a Fano line
from πx. Then we will call ℓ1 ∪ ℓ2 ∪ ℓ3 a claw based at x.

Lemma 5.4. If H1 and H2 are hexagons then every connected component of H1∩H2

is either a line or a claw.

Proof: Suppose x is a common point of H1 and H2. Then H1 and H2 correspond to
either the same Fano line in πx (in which case they are hexagons of different type)
or they correspond to two different Fano lines. In the first case, H1 and H2 share a
claw, in the second case they share just a line in the neighborhood of x. Suppose
the connected component of H1 ∩H2 is not a line and not a claw. Then it contains
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two claws based at neighbors y and z. Without loss of generality, y = p, the line
ℓ through y and z corresponds to the coset N , and H1 and H2 correspond to the
cosets M and K, respectively. Let g be an element of M (which is the stabilizer of
H1) that interchanges y and z. Then g also interchanges the claw based at y and the
claw based at z. Since H2 is the only K-hexagon that contains either of those claws,
we obtain that g leaves H2 invariant, that is, g ∈ K. However, since D is a maximal
subgroup in both M and K and since g 6∈ D, this means that M = 〈D, g〉 = K, a
contradiction. �

In a hexagon the distance between a claw (neighborhood of a point) and a line
never exceeds one. This means that if two hexagons share a claw then they have no
further intersection.

Lemma 5.5. If H and H ′ are hexagons of different type then either they are disjoint
or H ∩ H ′ is a claw.

Proof: Suppose H and H ′ are hexagons of different type and suppose they share a
point x. Without loss of generality, H is an M-hexagon. Let x0 = x and let x1,
x2, . . . , x6 be the six points collinear with x in H . Let Hi be the K-hexagon that
shares with H the claw based at xi. By the preceding lemma, the hexagons Hi are
pairwise disjoint; furthermore, they all contain x. Since x is contained in exactly
seven K-hexagons, we conclude that H ′ = Hi for some i. Thus, H and H ′ share a
claw. As we discussed before this lemma, the claw is the entire intersection of H
and H ′. �

If H and H ′ are of the same type then it is still possible that H ∩ H ′ is discon-
nected. However, each of the connected components is just a line.

We now consider the action of the point stabilizer on the neighborhood of the
point. Namely, we study the actions of L and L̂ on ∆(p). Recall that E = O2(L) ∼=
23 and Ê = O2(L̂) ∼= 24.

Lemma 5.6. The group E acts trivially on ∆(p), while L acts on it transitively.
Moreover, Ê acts trivially on πp but nontrivially on each line through p.

Proof: Clearly, Ê acts trivially on πp. Hence it stabilizes every line through p. Let ℓ

be the line corresponding to the coset N . Then the stabilizer of ℓ in Ĝ is N̂ . Recall
that Q = O2(N) coincides with O2(N̂) and that N̂/Q ∼= S3×S3. (See the discussion
after Lemma 3.5.) Let e ∈ Ê \E and consider the subgroup L1. If t is an element of
order three from L1 then t acts trivially on the line ℓ. Notice that e and t commute
modulo Q. Since e 6∈ Q, we obtain that e does not centralize any other 3-element
from N̂/Q. This implies that e acts nontrivially on ℓ. Since Ê is normal in L̂, the
same is also true for every line through p.

It remains to see that L is transitive on ∆(p). Notice first that L induces L3(2)
on the seven lines through p, hence it acts transitively on them. Moreover, L1, the
joint stabilizer of p and ℓ, cannot act trivially on the other two points of ℓ because
in that case N would act trivially on ℓ. �

This lemma uniquely determines the action of L and L̂ on ∆(p). In L, the
stabilizer of a point q ∈ ℓ (where ℓ is again the line stabilized by N̂) is the unique
index two subgroup in L1.
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In the remainder of this section we prove the following proposition.

Proposition 5.7. |∆| = 3159.

We prove it in a sequence of lemmas. Let H be the M-hexagon corresponding
to the coset M . Our approach is to decompose ∆ with respect to H . Let ∆i be the
set of vertices at distance i from H . Then, clearly, ∆0 = H and |∆0| = 63. Also,
notice that the stabilizer of ∆0 in Ĝ is M .

By contradiction, we assume until the end of the proof of Proposition 5.7 that
|∆| > 3159.

Lemma 5.8. If x ∈ ∆0 then x has exactly six neighbors in ∆0, while the remaining
eight are in ∆1. The group Mx acts transitively on those eight points. In particular,
M is transitive on ∆1.

Proof: Without loss of generality we can assume that x = p and so Mx = D. Since
H is an induced subgraph, p has exactly six neighbors in ∆0 and so the remaining
eight must be in ∆1. Moreover, D acts transitively on the 4 lines not lying in H .
Let ℓ one of those four lines. Since E acts trivially on ∆(p), consider the action of
L̄ = L/E. The stabilizer in L̄ of a point q ∈ ℓ is a subgroup A4 which intersects D̄
in just a group of order three. This shows that D̄x has index eight in D̄. Hence D̄
is transitive on the eight points. �

It follows from this lemma that |∆1| ≤ 63 · 8 = 504. Let x be a point in ∆1

adjacent to p. As above, the joint stabilizer X in M of p and x is the extension of
E by a group of order three.

Lemma 5.9. The group X has orbits of lengths 1, 1, 12 on ∆(x). In particular, x
has one neighbor in ∆0, one in ∆1 and twelve in ∆2. Moreover, M is transitive on
∆2.

Proof: Let L′ = Gx and let L̄′ = L′/E′ where E ′ = O2(L
′). Since E is not normal in

N , E cannot be equal to E ′. Hence X̄ ∼= A4. This subgroup can be identified as the
index two subgroup in the stabilizer in L̄′ of the line through x and p. It coincides
with the full stabilizer in L̄′ of p.

Let q be a point in ∆(x) that does not lie on the line through p and x. We claim
that the joint stabilizer U ′ in L′ of p and q is E ′. It suffices to show that U ′ fixes
all Fano points in πx. For a point y ∈ ∆(x) let ỹ denote the Fano point containing
y. Suppose that U ′ moves a Fano point r̃ for some r ∈ ∆(x). Then U ′ moves the
Fano line through p̃ and r̃, or it moves the Fano line through q̃ and r̃. Suppose
the former holds. Since U ′ fixes the Fano line through p̃ and q̃, it must induce a
transposition on the three Fano lines through p̃. However, this contradicts to the
fact that U ′ is contained in the stabilizer of p and hence it can only induce a group
of even permutations on the three Fano lines through p̃. This is a contradiction.
Similarly, U ′ cannot move a Fano line through q̃. Thus, we have shown that U ′ = E ′.
This implies that Xq ≤ E ′, hence [X : Xq] = 12. This proves the claim about the
orbits. Clearly, the orbit with twelve points cannot be contained in ∆0 ∪ ∆1, since
in that case ∆2 = ∅ and ∆ is too small. Now all the claims follow. �



New geometric presentations for Aut G2(3) and G2(3) 823

Notice that since p is the only point in ∆0 adjacent to x, we have that X = Mx.
Furthermore, since every point in ∆0 is adjacent to eight points in ∆1 and every
point in ∆1 is adjacent to just one point in ∆0, we compute that |∆1| = 63 ·8 = 504.

Next we look at the hexagons that intersect ∆0.

Lemma 5.10. Suppose H ′ 6= H is a hexagon intersecting H = ∆0 nontrivially.

(1) If H ′ is a K-hexagon that H ∩ H ′ is a claw based at some point h ∈ H.
Furthermore, the points in H ′ that are at distance i ≥ 1 from h are contained
in ∆i−1.

(2) If H ′ is an M-hexagon then H ∩H ′ is a line ℓ. Furthermore, the points in H ′

that are at distance i ≥ 0 from ℓ are contained in ∆i.

Proof: If H ′ is a K-hexagon then H ∩H ′ is a claw by Lemma 5.5. Clearly, the points
in H ′ that are at distance two from h, the base of the claw, are in ∆1. Since, for
every point in ∆1, six lines on it go to ∆2, we have that the points of H ′, that are
at distance three from h, are contained in ∆2. It remains to notice that three is the
diameter of H ′.

Similarly, suppose H ′ is an M-hexagon. By Lemma 5.4, every connected compo-
nent of H ∩ H ′ is a line. Let ℓ be one of them. Then the points in H ′ that are at
distance one from ℓ are in ∆1 and the points that are at distance two are in ∆2. It
remains to notice that every point from H ′ is at distance at most two from ℓ. �

Corollary 5.11. If H1 and H2 are of the same type then either they are disjoint or
H1 ∩ H2 is a line. �

Let y ∈ ∆2. Without loss of generality we can assume that y is adjacent to x.
Let Y = My.

Lemma 5.12. The following hold.

(1) Three lines on y have a point in ∆1 and two other points in ∆2; these lines
are the Fano points of a Fano line from πy.

(2) Three further lines on y are fully contained in ∆2.

(3) The seventh line on y has two points in ∆3.

(4) Y ∼= S3 has orbits 3, 3, 6, and 2 on ∆(y); in particular, M is transitive on
∆3.

Proof: First of all, y lies in a K-hexagon H ′ containing x and p. So (1) follows from
Lemma 5.10 (1). Let x = x1, x2, and x3 be the three neighbors of y in ∆1 ∩ H ′.
Furthermore, let p = p1, p2, and p3 be the unique neighbors of x1, x2, and x3 in ∆0.
Assuming that y is adjacent to a fourth point z ∈ ∆1, we obtain that y is contained
in a second K-hexagon H ′′ meeting ∆0. However, H ′ and H ′′ must share a line on y,
that is, H ′ and H ′′ share y, some xi, and hence also pi. This means that H ′ and H ′′

share a claw, which is a contradiction, since H ′ and H ′′ are of the same type. Thus,
y has exactly three neighbors in ∆1. It follows that |∆2| = 504·12

3
= 2016. Since
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63 + 504 + 2016 < 3159, we conclude that ∆3 is nonempty and hence y is adjacent
to some points in ∆3.

Let Hi be the M-hexagon containing y, xi, and pi. These three hexagons are
pairwise distinct. In view of Lemma 5.10 (2) each of Hi contains two lines on y that
are fully in ∆2. Since there should still be at least one line reaching into ∆3, we
obtain that there are exactly three lines ℓ1, ℓ2, and ℓ3 on y, that are fully contained
in ∆2. Notice that every ℓj is contained in two hexagons Hi.

It remains to study My and its action on ∆(y). Let H ′ be as above and let the
claw H ∩H ′ be based at a point h. Let K ′ be the stabilizer of H ′. Since K ′ ∼= G2(2)
and since h and y are at distance three in H ′, we have that K ′

hy
∼= S3. We claim

that My = K ′
hy. Clearly, My stabilizes H ′, and hence it also stabilizes H ∩H ′ and h.

Thus, My ≤ K ′
hy. On the other hand, K ′

hy stabilizes the claw H ∩ H ′ and hence it
also stabilizes the only M-hexagon containing this claw, M . Thus, K ′

hy ≤ My. We
have established that My

∼= S3.
All subgroups S3 in L3(2) are conjugate. Each of them stabilizes a unique point

and a unique line in the corresponding Fano plane. For My acting on πy, those are the
Fano point, that is the line on y reaching into ∆3, and the Fano line corresponding
to H ′. It is easy to see that My has two orbits of size three on the six neighbors of y
in H ′, and that the remaining orbits have lengths 6 and 2. The latter orbit consists
of the two points on the line reaching into ∆3. Now all claims of the lemma follow.�

We record that, as we have shown, |∆2| = 2016.
Before we study ∆3 we need to get information about the M-hexagons containing

points from ∆2. Let H ′ be such a hexagon and let y′ be a point in H ′ ∩ ∆2. Recall
that the stabilizer My′ is isomorphic to S3. This stabilizer has three orbits on the
Fano lines in πy′ , hence on the M-hexagons containing y′. The first orbit consists of
one Fano line, which has, as its three Fano points, the three lines reaching into ∆1.
The second orbit consists of three Fano lines, each of which has one Fano point, that
is a line going into ∆1, and two other Fano points, that are fully in ∆2. The third
orbit consists of three Fano lines, each of which has as one Fano point a line going
to ∆1, as second Fano point a line contained in ∆2, and as the last Fano point the
only line going into ∆3. Notice that if H ′ corresponds to a Fano line in the second
orbit then H ′ meets ∆0 in a line (see Lemma 5.10 (2)).

Suppose H ′ is not of that kind. Then H ′ ∩ ∆2 = A1 ∪ A3, where Ai consists of
the points, for which H ′ corresponds to a Fano line in orbit i. Potentially, either of
Ai can be empty. However, we can choose H ′ so that A1 6= ∅. Let B = H ′ ∩∆1 and
C = H ′ ∩ (∪i≥3∆i). Clearly, B 6= ∅.

Lemma 5.13. The following hold.

(1) MH′ acts transitively on A1, and if a ∈ A1 then Ma,H′ = Ma
∼= S3.

(2) MH′ acts transitively on B, and if b ∈ B then Mb,H′
∼= Z6.

Proof: Take a1, a2 ∈ A1 and let g ∈ M be such that ag
1 = a2. Clearly g will map

the Fano line in πa1
corresponding to H ′ to the similar Fano line in πa2

. Thus it
will stabilize H ′. Moreover, if we repeat this argument for a1 = a2 = a we get that
Ma,H′ = Ma

∼= S3, proving (1).
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To see (2), we notice that if b ∈ B then the Fano line in πb corresponding to
H ′, consists of three Fano points that are lines going to ∆2. We have seen that
Mx induces on ∆(x) the full stabilizer of p (isomorphic to A4). This stabilizer acts
transitively on the four Fano lines in πx of the above type. Thus, if g ∈ M and it
maps b1 to b2, where b1, b2 ∈ B, then g can be corrected by an element from Mb2 , so
that the resulting new element normalizes H ′, still taking b1 to b2. This shows that
MH′ is transitive on B. Clearly, Mb,H′ induces just Z3 on ∆(b), so (2) follows. �

Lemma 5.14. We have that A3 6= ∅. Furthermore, MH′ acts transitively on A3,
and if a ∈ A3 then Ma,H′

∼= Z2.

Proof: Let b ∈ B and let ℓ be a line on b that is contained in H ′. Then ℓ ∩ ∆2 =
{a1, a2}. We claim that these two points belong to different subsets Ai. Suppose
not. Then by Lemma 5.13, there is an element g ∈ MH′ that maps a1 to a2. This
g can be chosen so that it fixes b. Indeed, if i = 3 then this is automatic, since b is
the only neighbor of each of a1 and a2 in B. If i = 1 then Ma2,H′ acts transitively
on the three neighbors of a2 in B, so g can be adjusted to fix b. However, now we
have a contradiction. Since g fixes b, it preserves ℓ and hence it switches a1 and a2.
This means that g induces on ∆(b) an element of even order. This contradicts to
the fact that Mb,H′ induces on ∆(b) a group of order three.

Thus, a1 and a2 belong to different Ai. Say, a1 ∈ A3, making the latter nonempty.
Since Ma1

∼= S3 and since H ′ lies in the orbit of three M-hexagons, we obtain that
Ma,H′

∼= Z2. �

Lemma 5.15. Let C = C1 ∪ C2 where the points in C1 have neighbors in A3 and
the points of C2 have only neighbors in C (within H ′). Then MH′ acts transitively
on C1. In particular, every point from C1 has the same number k of neighbors in
A3.

Proof: We know that MH′ acts transitively on A3 and so it acts transitively on the
lines of H ′ that go to ∆3. Also, if a ∈ A3, the stabilizer Ma,H′ acts nontrivially on
the line on a that goes to ∆3. This completes the proof. �

We are now ready to carry out some computations about the sizes of Ai, B, and
C. Let |A1| = n. Since every point from A1 has three neighbors in B and every
point from B has three neighbors in A1, we have that |B| = n, too. Since every point
from A3 has one neighbor in B and since every point from B has three neighbors in
A3, we get that |A3| = 3n. Similarly, |C1| = 6n

k
where k is as in Lemma 5.15. Thus,

|C2| = 63 − 5n − 6n
k

≥ 0. This immediately implies, since k ≤ 3, that 3 ≥ 6n
63−5n

,
and so n ≤ 9. Observe now that A1 ∪B induces a graph of valency three with girth
at least six. This implies that n = |A1| ≥ 7.

Therefore 7 ≤ n ≤ 9. If n = 8 then 63 − 40 − 48

k
≥ 0, which means that

k ≥ 48

23
> 2. It follows that k = 3. However, this means that every neighbor in H ′

of a point from C1 is either in A3 or in C1, and so C2 = ∅, which is impossible, since
there are too few points in A1 ∪ A3 ∪ B ∪ C1.

If n = 7 then |MH′ | = 7 · 6 and so MH′ is solvable. By Hall Theorem, there is
only one conjugacy class of subgroups of order six, contradicting Lemma 5.13. It
now follows that n = 9, k = 3 and C = C1.

We summarize this as follows.
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Lemma 5.16. Suppose H ′ is an M-hexagon that contains a point in ∆2, but does
not intersect ∆0. Then H ′ contains exactly 9 points from ∆1, 9 + 27 points from
∆2, and 14 points from ∆3. Furthermore, if z ∈ H ′∩∆3 then each of the three lines
through z in H ′ contains one point from ∆2 and two points from ∆3 (z is one of the
two). �

Finally, we can bound the size of the graph ∆.

Lemma 5.17. If u ∈ ∆3 then each of the seven lines through u in ∆ has one point
in ∆2 and the two other points (including u itself) in ∆3. In particular, ∆4 = ∅.

Proof: Clearly, there is at least one line on u that contains a point from ∆2. Consider
an M-hexagon H ′ that contains that line. Clearly, H ′ contains a point from ∆2 and it
does not intersect ∆0, since it also contains a point from ∆3 (namely, u). By Lemma
5.16, each of the three lines through u in H ′ contains a point from ∆2. However,
every M-hexagon on u contains at least one of those three lines. Repeating the
above argument, we see that each line on u contains a point from ∆2. �

According to this lemma, |∆3| = 2|∆2|
7

= 576 and |∆| = |∆0|+|∆1|+|∆2|+|∆3| =
63 + 504 + 2016 + 576 = 3159. This concludes the proof of Proposition 5.7.

It remains to notice that |G| = |M | · 3159 = |G2(3)| and so |Ĝ| = |Aut G2(3)|.
Since the unique amalgam Â occurs in Aut G2(3) and generates it, we have that
Aut G2(3) is a factor group of Ĝ. The equality of the orders now establishes Theorem
1.
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