New geometric presentations for $\operatorname{Aut} G_2(3)$ and $G_2(3)$

Corneliu Hoffman^{*} Sergey Shpectorov[†]

1 Introduction

The purpose of this article is to provide new presentations for the groups $G_2(3)$ and Aut $G_2(3)$. These presentations come from the amalgam of maximal parabolic subgroups arising in the action of Aut $G_2(3)$ on a certain geometry.

The members of this amalgam are the well-known subgroups of $\hat{G} = \operatorname{Aut} G_2(3)$ (cf. [ATL]): $\hat{L} = 2^3 \cdot L_3(2) : 2$, $\hat{N} = 2^{1+4} \cdot (S_3 \times S_3)$, and $M = G_2(2)$. Notice that M is fully contained in $G = O^2(\hat{G}) \cong G_2(3)$, while \hat{L} and \hat{N} are not. This explains our hat notation. According to this notation we set $L = \hat{L} \cap G \cong 2^3 \cdot L_3(2)$ and $N = \hat{N} \cap G \cong 2^{1+4} \cdot (3 \times 3) \cdot 2$.

We choose the subgroups \hat{L} and M so that $D = \hat{L} \cap M$ is a maximal parabolic subgroup in M. Then D has a unique normal subgroup 2^2 (contained in $O_2(L) \cong 2^3$). Let z be an involution from that normal subgroup. We choose $\hat{N} = C_{\hat{G}}(z)$. This uniquely specifies the amalgam $\hat{\mathcal{A}} = \hat{L} \cup \hat{N} \cup M$. Let $e \in O_2(\hat{L}) \setminus O_2(L)$ and set $K = M^e$. Let $\mathcal{B} = L \cup N \cup M \cup K$. Clearly, $\hat{G} = \langle \hat{\mathcal{A}} \rangle$ and $G = \langle \mathcal{B} \rangle$.

Theorem 1. $\hat{G} = \operatorname{Aut} G_2(3)$ is the universal completion of the amalgam $\hat{\mathcal{A}}$.

As a corollary of this theorem we get our second main result.

Theorem 2. $G = G_2(3)$ is the universal completion of the amalgam \mathcal{B} .

As we have already mentioned, the amalgam $\hat{\mathcal{A}}$ is the amalgam of maximal parabolics with respect to the action of \hat{G} on a certain geometry $\hat{\Gamma}$. In this sense, Theorem 1 is equivalent, via Tits' Lemma [T] (also cf. [IS], Theorem 1.4.5), to the simple connectedness of the geometry $\hat{\Gamma}$.

^{*}Partially supported by an NSA grant.

[†]Partially supported by an NSA grant.

Our interest in presentations for the groups $\operatorname{Aut} G_2(3)$ and $G_2(3)$ comes from the need to find, in a computer-free way, a presentation for a larger group, the sporadic Thompson group Th. In a forthcoming paper we will establish that Thacts on a similar simply connected geometry Λ . In fact, $\operatorname{Aut} G_2(3)$ arises in Th in the normalizer of a suitable subgroup X of order three. Furthermore, our geometry $\hat{\Gamma}$ is just the fixed subgeometry for the action of X in Λ .

The structure of the paper is as follows. In Sections 2 and 3 we specify the amalgam $\hat{\mathcal{A}}$ abstractly in terms of certain conditions (G1)–(G4), and we prove the uniqueness of such an amalgam. In Section 4 we switch from an arbitrary completion \hat{G} of $\hat{\mathcal{A}}$ to its universal completion and define the geometry $\hat{\Gamma}$ as the coset geometry. Finally, in Section 5 we determine the exact number of points in $\hat{\Gamma}$, which gives us that the order of the universal completion \hat{G} coincides with the order of Aut $G_2(3)$. In view of the uniqueness of $\hat{\mathcal{A}}$, the group Aut $G_2(3)$ is a factor group of \hat{G} , and hence Theorem 1 follows.

Our notation for groups follows that of [ATL]. The definitions, terminology and basic facts concerning geometries can be found, for example, in [IS]. Our result in Theorem 2 can be approached differently in terms of intransitive geometries (see [GVM]). We thank R. Gramlich for pointing this out.

2 Set-up and basic properties

We let \hat{G} be a group generated by its subgroups \hat{L} and M so that the following hold:

- (G1) \hat{L} has an index two subgroup L such that $L \cong 2^3 \cdot L_3(2)$; M has structure $U_3(3) \cdot 2$.
- (G2) $D = \hat{L} \cap M$ is contained in L, it is the full preimage in L of a maximal parabolic from $L/O_2(L)$.

We first list some basic properties that follow from (G1) and (G2). Let $E = O_2(L)$.

Lemma 2.1. The following hold:

- (1) The action of L on E is nontrivial and L is a nonsplit extension of E by $L_3(2)$; also, $O_2(\hat{L}) \cong 2^4$.
- (2) D has a normal subgroup of order 4 in E and has a trivial center.
- (3) $M \cong G_2(2)$.

Proof: By (G2) we have that 2^6 divides |D|, which means that D contains a maximal parabolic subgroup (for characteristic two) from $O^2(M) \cong U_3(3) \cong G_2(2)'$. Hence, comparing with [ATL], we see that D cannot have 2^3 in the center. This means that the action of L on E is nontrivial, hence E is the natural module for $\overline{L} = L/E \cong$ $L_3(2)$. Since the outer automorphism of $L_3(2)$ interchanges the natural and the dual natural modules, $O_2(\hat{L})$ has order 2^4 , and it can only be elementary abelian.

Now looking at L, we see that D has two 2-dimensional chief factors. Comparing with the information on $U_3(3)$ from [ATL], we see that $D \cap O^2(M)$ must have

structure $4^2 : S_3$, and thus it has a trivial center. Turning again to L, we see that D is the normalizer of a subgroup 2^2 from E. This yields (2). Moreover, since D has trivial center, so does M, and (3) follows, too.

Finally if L were the split extension of E, then D would have a normal elementary abelian subgroup of order 16. Since this is not the case, L does not split. This completes the proof of (1).

We remark that there is a unique nonsplit extension $2^3 \cdot L_3(2)$, and so part (1) of the above lemma specifies L up to isomorphism.

Let B be a Sylow 2-subgroup in D. Let L_1 be the full preimage in L of the second maximal parabolic from $\overline{L} = L/E \cong L_3(2)$ containing \overline{B} , and also let M_1 be the second maximal parabolic from $M \cong G_2(2)$ containing B. Let \hat{L}_1 be the normalizer of L_1 in \hat{L} . We have $[\hat{L}_1 : L_1] = 2$.

Now we can introduce a new condition on \hat{G} . Clearly, $\hat{L}_1 \cap M_1 = L_1 \cap M_1 = B$. Let $\hat{N} = \langle \hat{L}_1, M_1 \rangle$.

(G3) \hat{L}_1 and M_1 are permutable, that is, $\hat{N} = \hat{L}_1 M_1$.

Let $N = \langle L_1, M_1 \rangle$.

Lemma 2.2. We have [N : N] = 2 and $N = L_1M_1$, so L_1 and M_1 are permutable. Furthermore, $Q = O_2(N)$ coincides with $O_2(L_1)$ and $O_2(M_1)$, and it is an extraspecial subgroup 2^{1+4}_+ . Finally, $\bar{N} = N/Q \cong 3^2 : 2$ where the involution inverts all elements of order three.

Proof: Both $O_2(L_1)$ and $O_2(M_1)$ have order 2^5 and the factor group is S_3 in both cases. Consider \bar{N} . By (G3) we know that this is a group of order $2^s 3^2$ which has no normal 2 subgroup. This forces that the Sylow 3-subgroup is normal. In particular, this means that all 2-dimensional chief factors of L_1 and M_1 are contained in Q. Looking at L_1 as a subgroup of L we see that $O_2(L_1)$ is contained in Q. This forces the equalities $O_2(L_1) = B \cap Q = O_2(M_1)$. In particular, $Q_0 = B \cap Q$ is normal in N. Since $O_2(N/Q_0)$ has size at most two, N/Q_0 has a normal Sylow 3-subgroup, which means that $Q_0 = Q$. It also means L_1 and M_1 are permutable and that \bar{N} is as claimed in the lemma.

It remains to show that Q is extraspecial of plus type. First of all, the center Z(Q) is of order two. Also, the element of order 3 from L_1 acts fixed-point-freely on Q/Z(Q). This shows that Q/Z(Q) is either elementary abelian or homocyclic 4^2 . The latter structure is impossible because an element of order 3 from M_1 has only one 2-dimensional factor in Q/Z(Q). Thus, Q/Z(Q) is elementary abelian, so Q is extraspecial. Moreover, since Q contains $E \cong 2^3$, Q must be of plus type.

3 Uniqueness of the amalgam

In this section we prove that the amalgam $\mathcal{A} = L \cup M \cup N$ is unique up to isomorphism and also that $\hat{\mathcal{A}} = \hat{L} \cup M \cup \hat{N}$ is unique provided that the following extra condition holds.

(G4) \hat{L} and \hat{N} have no common direct factor of order two.

We remark that we do not impose condition (G4) until the end of this section. We also remark that \hat{L} and \hat{N} with a common direct factor are possible, but they lead to a not so interesting configuration, where that factor is in the center of \hat{G} (which can in that case be infinite).

Lemma 3.1. The outer automorphism group of D is of order two. Every automorphism of D is induced by an automorphism of L.

Proof: Let $R = O_2(D)$ and Z = Z(R). Then $Z \cong 2^2$ is contained in E. Notice that $D/R \cong S_3$ acts nontrivially on Z. According to [ATL], D has a normal subgroup $T \cong 4^2$, which clearly contains Z. We claim that Z, E and T are characteristic in D. Indeed, it is clear for Z. Considering D/Z, we see that E/Z and T/Z are the only normal subgroups of D/Z of orders 2 and 2^2 , respectively. So E and T are also characteristic.

Let $A = \operatorname{Aut} D$. Since the center of D is trivial, we can identify D with $\operatorname{Inn} D$. Since Z is characteristic, the images of A and D in $\operatorname{Aut} E$ coincide with the same maximal parabolic. This shows that $A = DC_A(E)$. Furthermore, since $E \leq C_A(E)$ and E is transitive on the Sylow 3-subgroups of D, we get that $A = D(C_A(E) \cap N_A(S))$, where S is an arbitrary Sylow 3-subgroup of D. Let $F = C_A(E) \cap N_A(S)$. Clearly, an element centralizing E cannot invert S, so $F = C_A(ES)$.

We claim that $|F| \leq 4$. Observe first that no nontrivial element of A centralizes RS. Indeed, RS is characteristic in D and $C_D(RS) = 1$. Hence, all elements of D induce different automorphisms of RS. Thus, $C_A(RS) = 1$. This means, since RS = TES, that F acts faithfully on T. Let $T = \langle t_1 \rangle \times \langle t_2 \rangle$. Since F centralizes $Z = \Omega_1(T)$, we have that t_1 and t_1^f differ by an involution (from Z) for each $f \in F$. Furthermore, the action of f on t_1 fully identifies the action of f on the entire T, since f commutes with S, and the latter acts on T fixed-point-freely. Consequently, $|F| \leq 4$.

Clearly, $F \cap D = F \cap E$ has order two. Since A = DF, this implies that $|\operatorname{Out} D| = [A : D] \leq 2$. Thus, to complete the proof of the lemma it suffices to find an outer automorphism of D in Aut L.

It is well-known that $\operatorname{Out} L$ is of order two. Namely, $\operatorname{Aut} L$ is an extension of an indecomposable module 2^4 by $L_3(2)$. Clearly, D has index two in $O_2(\operatorname{Aut} L)D$ (we identify L with $\operatorname{Inn} L$). So either D has an outer automorphism in $\operatorname{Aut} L$, or Dcentralizes a subgroup of order two from $O_2(\operatorname{Aut} L)$. However, the latter possibility cannot hold because the module on 2^4 is indecomposable and D induces on it a full Sylow 2-subgroup of $L_3(2)$.

Corollary 3.2. The amalgam $L \cup M$ is unique up to isomorphism.

Proof: Follows from Lemma 3.1 and Goldschmidt's Lemma (see (2.7) in [G], or Proposition 8.3.2 in [IS]).

Notice that the subgroups L_1 and M_1 are uniquely determined within our unique amalgam $L \cup M$, once B is chosen. So the uniqueness of \mathcal{A} follows from our next lemma.

Lemma 3.3. The free product with intersection $L_1 *_B M_1$ has a unique factor group such that (1) L_1 and M_1 map isomorphically into this factor group, and (2) the factor group is the product of the images of L_1 and M_1 . Proof: Let $F = L_1 *_B M_1$. Suppose F has two such factor groups and let U and V denote the corresponding kernels. Recall that $Q = O_2(L_1) = O_2(M_1)$ is extraspecial. We identify L_1 and M_1 with the corresponding subgroups in F. Under this identification, Q is normal in F and it trivially intersects both U and V. Hence $U, V \leq C_F(Q)$. Since F/U is the product of the images of L_1 and M_1 and since L_1 and M_1 act differently on Q/Z(Q), we have that the centralizer in F/U of the image of Q is Z(Q), which is of order two. Hence $[V : U \cap V] = 2$.

Let $\overline{F} = F/Q(U \cap V)$. This group has structure 2.3².2 and it is generated by \overline{L}_1 and \overline{M}_1 . The latter two groups are both isomorphic to S_3 and they share $\overline{B} \cong 2$. This is a contradiction, since \overline{F} clearly has a normal Sylow 3-subgroup.

Corollary 3.4. The amalgam \mathcal{A} is unique up to isomorphism.

We now turn to the amalgam $\hat{\mathcal{A}}$. If G is any group generated by a copy of our unique amalgam \mathcal{A} then consider, as \hat{G} , the direct product of G with a group of order two. Define \hat{L} and \hat{N} to be the extensions of L and N by the direct factor 2. It is clear that the resulting amalgam $\hat{\mathcal{A}}$ satisfies (G1)-(G3), but not (G4).

So from this point on we assume that (G4) holds.

Lemma 3.5. The amalgam $\hat{\mathcal{A}}$ is unique up to isomorphism.

Proof: Suppose a is an automorphism of N centralizing L_1 . Let $x \in N \setminus L_1$ be an element of order three. Clearly, $N = \langle L_1, x \rangle$. Notice that x and $x' = x^a$ act the same way on Q (since $Q \leq L_1$). We have already seen that $C_N(Q) = Z(Q)$, so x and x' differ by an element from Z(Q), which means that x = x'. This shows that a must in fact be trivial.

Next we identify the structure of \hat{L} . If $C_{\hat{L}}(L) \neq 1$ then $\hat{L} = L \times Z$, where Z has order two. Clearly, $Z \leq \hat{L}_1$, so $Z \leq \hat{N}$ and $\hat{N} = NZ$. Furthermore, the involution from Z acts trivially on L_1 and by the above it acts trivially on N. Therefore, Z is a common direct factor in both \hat{L} and \hat{N} , contradicting (G4). Thus, $C_{\hat{L}}(L) = 1$, which means that $\hat{L} \cong \text{Aut } L$. In particular, the amalgam $\hat{L} \cup M \cup N$ is unique up to isomorphism.

Pick now any element $x \in \hat{L}_1 \setminus L_1$. Since $\hat{N} = N\langle x \rangle$, it remains to see that the action of x uniquely extends from L_1 to N. If there were two such actions on N then they would differ by an automorphism of N that is trivial on L_1 . However, as we proved above, such an automorphism is trivial on the entire N, and so the action of x on N is unique.

We also record two useful facts. First, we showed in this proof that $\hat{L} \cong \operatorname{Aut} L$. Secondly, the element x in the last paragraph of the proof can be chosen to normalize both L_1 and D (and hence also B). If this x normalizes M_1 then it normalizes $M = \langle D, M_1 \rangle$. However, $M \cong G_2(2)$ has no outer automorphisms. This yields that x acts on M as some element $y \in D \cap M_1 = B$. However, this means that $xy^{-1} \in \hat{L} \setminus L$ acts trivially on B, which is not possible since $\hat{L} \cong \operatorname{Aut} L$. The contradiction shows that x does not normalize M_1 . This forces that $\hat{N}/Q \cong S_3 \times S_3$ and $Q = O_2(\hat{N})$.

Notice that almost all proofs in this section are purely amalgamic. The only exception is in the preceding paragraph, where the fact that $\hat{\mathcal{A}}$ is embedded in a

group was used to conclude that x acts on M. (Luckily, our unique amalgam \mathcal{A} can be found in Aut $G_2(3)$.)

4 The geometries Γ and $\ddot{\Gamma}$

The first order of business in this section is to choose a more suitable group \hat{G} . Let \hat{U} be the universal completion of the amalgam $\hat{\mathcal{A}}$. Since \hat{G} is generated by $\hat{\mathcal{A}}$, we have that \hat{G} is isomorphic to a factor group of \hat{U} . In particular, $\hat{\mathcal{A}}$ embeds into \hat{U} isomorphically. Furthermore, if we prove Theorem 1 for the group \hat{U} in place of \hat{G} then, clearly, \hat{U} has no proper nontrivial factor groups and so $\hat{G} = \hat{U}$, yielding the claim for \hat{G} . Thus, without loss of generality, we can assume from now on that $\hat{G} = \hat{U}$ is the universal completion of $\hat{\mathcal{A}}$.

Fix an arbitrary involution e in $\hat{L}_1 \setminus L_1$ that normalizes D. Such an involution can be chosen, for example, in $\hat{E} = O_2(\hat{L}) \cong 2^4$ (this is how it was chosen in the introduction). Set $K = M^e$ and $K_1 = M_1^e$. Notice that e normalizes L and N. We remarked at the end of the preceding section that $M_1 \neq M_1^e = K_1$ and so $M \neq M^e = K$. Clearly, e interchanges M and K. Thus, it induces an automorphism of the amalgam $\mathcal{B} = L \cup N \cup M \cup K$. Let $G = \langle \mathcal{B} \rangle$. Notice that since $K = M^e =$ $\langle D^e, M_1^e \rangle = \langle D, K_1 \rangle$ and since $K_1 \leq N$, we have that $K \leq \langle \mathcal{A} \rangle$ and so $G = \langle \mathcal{A} \rangle$.

Lemma 4.1. We have $[\hat{G} : G] = 2$; namely, $\hat{G} = G\langle e \rangle$. Furthermore, G is the universal completion of \mathcal{B} .

Proof: Clearly, e normalizes G and $\langle G, e \rangle$ contains the entire $\hat{\mathcal{A}}$, which means that $\hat{G} = G\langle e \rangle$. Thus, $[\hat{G}:G] \leq 2$. To show that the index is exactly two, consider the universal completion U of \mathcal{B} . Since e induces an automorphism of \mathcal{B} , it also induces an automorphism on U. Set \hat{U} to be the semidirect product of U and $\langle e \rangle$, defined with respect to this automorphism. Clearly, U contains a copy of \mathcal{B} left invariant by e. Extending the images of L and N by e we also find a copy of $\hat{\mathcal{A}}$ that generates \hat{U} . Thus, \hat{U} is a homomorphic image of \hat{G} , since \hat{G} is the universal completion of $\hat{\mathcal{A}}$. It is clear, that this homomorphism isomorphically maps G onto U. Thus, $\hat{G} \neq G$. Notice that this also establishes that G is the universal completion of \mathcal{B} .

We are ready to define the geometry Γ . We define it in the group-theoretic manner. The elements of Γ are the right cosets in G of the subgroups L, N, M, and K. Thus, Γ contains elements of four types. We call the cosets of L points and the cosets of N lines. For reasons that will become apparent later the cosets of M and K are called M- and K-hexagons, respectively. Two cosets are incident elements of Γ if they have a nonempty intersection.

Clearly, G acts on Γ by right multiplication. Also, e acts on Γ by conjugation. It is easy to see that these actions agree, so that the entire group \hat{G} acts on Γ . The elements from $\hat{G} \setminus G$ interchange the two types of hexagons in Γ , so with respect to the action of \hat{G} the rank four geometry Γ should be viewed as a rank three geometry $\hat{\Gamma}$, where M- and K-hexagons are united into one type—*hexagons*. Notice that Γ and $\hat{\Gamma}$ have the same set of elements. However, in order to satisfy the axioms of diagram geometry, we need to modify the incidence relation. Namely, we postulate that *two hexagons are never incident in* $\hat{\Gamma}$. The incidence between points and lines, and between hexagons and other elements is the same as in Γ . We now proceed to establish the basic properties of Γ and $\hat{\Gamma}$.

Lemma 4.2. $\hat{\Gamma}$ is a residually connected geometry, on which \hat{G} acts flag-transitively.

Proof: Suppose F is a maximal flag in $\hat{\Gamma}$. Clearly, F consists of a point, a line, and a hexagon. Acting, if necessary, by e, we can assure that the hexagon in F is an M-hexagon. Thus, $F = \{Lg_1, Ng_2, Mg_3\}$. Without loss of generality, $g_2 = 1$. Then $Ng_2 = N$; furthermore, $N \cap Lg_1$ and $N \cap Mg_3$ are cosets in N of L_1 and M_1 , respectively. Since $N = L_1M_1$, the triple intersection $Lg_1 \cap N \cap Mg_3$ is nonempty, hence it contains an element g. Acting on F by g^{-1} we obtain the standard flag $\{L, N, M\}$. This proves flag-transitivity.

Observe that the stabilizers in \hat{G} of the cosets L, N, and M are \hat{L} , \hat{N} , and M, respectively. So $\hat{\mathcal{A}}$ is simply the amalgam of maximal parabolics in \hat{G} . Connectedness of $\hat{\Gamma}$ now follows from the fact that \hat{G} is generated by $\hat{\mathcal{A}}$. Similarly, the full residual connectedness follows from the fact that each of the three maximal parabolics is generated by its intersections with the other two maximal parabolics.

Since $\hat{N} = \hat{L}_1 M_1$, the geometry $\hat{\Gamma}$ has a string diagram. Furthermore, since $D = \hat{L} \cap M$ and $M_1 = \hat{N} \cap M$ are the two maximal parabolic subgroups in $M \cong G_2(2)$, containing the Borel subgroup B, we see that the residue of the coset M (and hence also of every coset Mg or Kg) is a natural generalized hexagon geometry of $G_2(2)$. This explains our name for these elements.

Finally, we record some numeric data. Every point is incident to exactly $[\hat{L} : \hat{L}_1] = 7$ lines and $[\hat{L} : D] = 14$ hexagons. It is easy to see that the 14 hexagons are evenly split between M- and K-hexagons—seven of each. Every line is incident to $[\hat{N} : \hat{L}_1] = 3$ points and $[\hat{N} : M_1] = 6$ hexagons (again three of each kind). Every hexagon is incident to [M : D] = 63 points and $[M : M_1] = 63$ lines.

5 The collinearity graph Δ

Let Δ be the collinearity graph of Γ , which is clearly the same as the collinearity graph of $\hat{\Gamma}$. We prove Theorem 1 as follows: In view of the uniqueness of the amalgam $\hat{\mathcal{A}}$, it coincides with the amalgam found in Aut $G_2(3)$. This means that Aut $G_2(3)$ is a factor group of the universal completion \hat{G} . In particular, the number of points in Γ , that is, $|\Delta|$, is at least $|\operatorname{Aut} G_2(3)|/|\hat{L}| = 3159$ (cf. [ATL]). If we show that $|\Delta| \leq 3159$ then $|\Delta| = 3159$ and $|\hat{G}| = |\operatorname{Aut} G_2(3)|$. Thus, we need to bound the size of Δ .

We first establish a few facts about Δ and about the action of the point stabilizer on it. It is convenient to identify every line and every hexagon with a subgraph of Δ on the points incident to that line or hexagon. Thus, every line becomes a 3-clique in Δ and every hexagon becomes a subgraph on 63 points in Δ , isomorphic to the collinearity graph of the $G_2(2)$ generalized hexagon.

Let point p be chosen as the coset L. Then, clearly, $G_p = L$ and $\hat{G}_p = \hat{L}$. Also, it is clear that \hat{L} induces the group $L_3(2)$ on the seven lines through p.

Lemma 5.1. Γ is a partial linear space, that is, two points from Γ lie on at most one common line.

Proof: Suppose two lines share a point. Without loss of generality, that point is p. Since L induces the 2-transitive group $L_3(2)$ on the seven lines through p, any two of these lines lie in a common hexagon. The latter is a partial linear space, so the two lines share only one point.

In particular, this lemma shows that different lines produce different 3-cliques. Also, the following holds.

Corollary 5.2. Every point is collinear with exactly 14 other points.

The point stabilizer in $G_2(2)$, acting on the 63 points of the generalized hexagon, has orbits of lengths 1, 6, 24, and 32 (the orbits consist of the points at distance 0, 1, 2, and 3 from the original point, respectively). Since the valency of Δ is only 14, it shows that hexagons are induced subgraphs of Δ . This, in turn, implies that the neighborhood of p, $\Delta(p)$, has no further edges, other than the edges in the seven lines through p. It follows that the lines are maximal cliques in Δ and that every 3-clique in Δ is a line.

Since \hat{L} induces $L_3(2)$ on the set of seven lines through p, this set carries the structure π_p of a Fano plane (projective plane of order two). Similarly for any point x we have a Fano plane π_x whose points are the seven lines through x. To distinguish the points and lines of π_x from those of Γ , we will call the former *Fano points* and *Fano lines*. Thus Fano points are lines on a given vertex x and Fano lines are some triples of lines on x. Clearly, π_x is invariant under the action of \hat{G}_x .

Lemma 5.3. If H is a hexagon containing a point x, then the three lines in H on x are the Fano points of a Fano line in π_x . Conversely, for any Fano line there is exactly one M-hexagon and exactly one K-hexagon containing those three lines.

Proof: We can assume x to be p and H to be the hexagon corresponding to the coset M. Notice that $D = \hat{L} \cap M$ stabilizes a Fano line in π_p . Furthermore, D has orbits of lengths 3 and 4 on the Fano points. Since H is invariant under D and it only contains three lines on p, we have the first claim of the lemma. Since L is transitive on the seven Fano lines and it does not interchange M- and K-hexagons, the second claim also follows.

Suppose ℓ_1 , ℓ_2 , and ℓ_3 are lines on x, that are the Fano points of a Fano line from π_x . Then we will call $\ell_1 \cup \ell_2 \cup \ell_3$ a *claw based at* x.

Lemma 5.4. If H_1 and H_2 are hexagons then every connected component of $H_1 \cap H_2$ is either a line or a claw.

Proof: Suppose x is a common point of H_1 and H_2 . Then H_1 and H_2 correspond to either the same Fano line in π_x (in which case they are hexagons of different type) or they correspond to two different Fano lines. In the first case, H_1 and H_2 share a claw, in the second case they share just a line in the neighborhood of x. Suppose the connected component of $H_1 \cap H_2$ is not a line and not a claw. Then it contains two claws based at neighbors y and z. Without loss of generality, y = p, the line ℓ through y and z corresponds to the coset N, and H_1 and H_2 correspond to the cosets M and K, respectively. Let g be an element of M (which is the stabilizer of H_1) that interchanges y and z. Then g also interchanges the claw based at y and the claw based at z. Since H_2 is the only K-hexagon that contains either of those claws, we obtain that g leaves H_2 invariant, that is, $g \in K$. However, since D is a maximal subgroup in both M and K and since $g \notin D$, this means that $M = \langle D, g \rangle = K$, a contradiction.

In a hexagon the distance between a claw (neighborhood of a point) and a line never exceeds one. This means that if two hexagons share a claw then they have no further intersection.

Lemma 5.5. If H and H' are hexagons of different type then either they are disjoint or $H \cap H'$ is a claw.

Proof: Suppose H and H' are hexagons of different type and suppose they share a point x. Without loss of generality, H is an M-hexagon. Let $x_0 = x$ and let x_1 , x_2, \ldots, x_6 be the six points collinear with x in H. Let H_i be the K-hexagon that shares with H the claw based at x_i . By the preceding lemma, the hexagons H_i are pairwise disjoint; furthermore, they all contain x. Since x is contained in exactly seven K-hexagons, we conclude that $H' = H_i$ for some i. Thus, H and H' share a claw. As we discussed before this lemma, the claw is the entire intersection of H and H'.

If H and H' are of the same type then it is still possible that $H \cap H'$ is disconnected. However, each of the connected components is just a line.

We now consider the action of the point stabilizer on the neighborhood of the point. Namely, we study the actions of L and \hat{L} on $\Delta(p)$. Recall that $E = O_2(L) \cong 2^3$ and $\hat{E} = O_2(\hat{L}) \cong 2^4$.

Lemma 5.6. The group E acts trivially on $\Delta(p)$, while L acts on it transitively. Moreover, \hat{E} acts trivially on π_p but nontrivially on each line through p.

Proof: Clearly, \hat{E} acts trivially on π_p . Hence it stabilizes every line through p. Let ℓ be the line corresponding to the coset N. Then the stabilizer of ℓ in \hat{G} is \hat{N} . Recall that $Q = O_2(N)$ coincides with $O_2(\hat{N})$ and that $\hat{N}/Q \cong S_3 \times S_3$. (See the discussion after Lemma 3.5.) Let $e \in \hat{E} \setminus E$ and consider the subgroup L_1 . If t is an element of order three from L_1 then t acts trivially on the line ℓ . Notice that e and t commute modulo Q. Since $e \notin Q$, we obtain that e does not centralize any other 3-element from \hat{N}/Q . This implies that e acts nontrivially on ℓ . Since \hat{E} is normal in \hat{L} , the same is also true for every line through p.

It remains to see that L is transitive on $\Delta(p)$. Notice first that L induces $L_3(2)$ on the seven lines through p, hence it acts transitively on them. Moreover, L_1 , the joint stabilizer of p and ℓ , cannot act trivially on the other two points of ℓ because in that case N would act trivially on ℓ .

This lemma uniquely determines the action of L and \hat{L} on $\Delta(p)$. In L, the stabilizer of a point $q \in \ell$ (where ℓ is again the line stabilized by \hat{N}) is the unique index two subgroup in L_1 .

In the remainder of this section we prove the following proposition.

Proposition 5.7. $|\Delta| = 3159$.

We prove it in a sequence of lemmas. Let H be the M-hexagon corresponding to the coset M. Our approach is to decompose Δ with respect to H. Let Δ_i be the set of vertices at distance i from H. Then, clearly, $\Delta_0 = H$ and $|\Delta_0| = 63$. Also, notice that the stabilizer of Δ_0 in \hat{G} is M.

By contradiction, we assume until the end of the proof of Proposition 5.7 that $|\Delta| > 3159$.

Lemma 5.8. If $x \in \Delta_0$ then x has exactly six neighbors in Δ_0 , while the remaining eight are in Δ_1 . The group M_x acts transitively on those eight points. In particular, M is transitive on Δ_1 .

Proof: Without loss of generality we can assume that x = p and so $M_x = D$. Since H is an induced subgraph, p has exactly six neighbors in Δ_0 and so the remaining eight must be in Δ_1 . Moreover, D acts transitively on the 4 lines not lying in H. Let ℓ one of those four lines. Since E acts trivially on $\Delta(p)$, consider the action of $\overline{L} = L/E$. The stabilizer in \overline{L} of a point $q \in \ell$ is a subgroup A_4 which intersects \overline{D} in just a group of order three. This shows that \overline{D}_x has index eight in \overline{D} . Hence \overline{D} is transitive on the eight points.

It follows from this lemma that $|\Delta_1| \leq 63 \cdot 8 = 504$. Let x be a point in Δ_1 adjacent to p. As above, the joint stabilizer X in M of p and x is the extension of E by a group of order three.

Lemma 5.9. The group X has orbits of lengths 1, 1, 12 on $\Delta(x)$. In particular, x has one neighbor in Δ_0 , one in Δ_1 and twelve in Δ_2 . Moreover, M is transitive on Δ_2 .

Proof: Let $L' = G_x$ and let $\overline{L}' = L'/E'$ where $E' = O_2(L')$. Since E is not normal in N, E cannot be equal to E'. Hence $\overline{X} \cong A_4$. This subgroup can be identified as the index two subgroup in the stabilizer in \overline{L}' of the line through x and p. It coincides with the full stabilizer in \overline{L}' of p.

Let q be a point in $\Delta(x)$ that does not lie on the line through p and x. We claim that the joint stabilizer U' in L' of p and q is E'. It suffices to show that U' fixes all Fano points in π_x . For a point $y \in \Delta(x)$ let \tilde{y} denote the Fano point containing y. Suppose that U' moves a Fano point \tilde{r} for some $r \in \Delta(x)$. Then U' moves the Fano line through \tilde{p} and \tilde{r} , or it moves the Fano line through \tilde{q} and \tilde{r} . Suppose the former holds. Since U' fixes the Fano line through \tilde{p} and \tilde{q} , it must induce a transposition on the three Fano lines through \tilde{p} . However, this contradicts to the fact that U' is contained in the stabilizer of p and hence it can only induce a group of even permutations on the three Fano lines through \tilde{p} . This is a contradiction. Similarly, U' cannot move a Fano line through \tilde{q} . Thus, we have shown that U' = E'. This implies that $X_q \leq E'$, hence $[X : X_q] = 12$. This proves the claim about the orbits. Clearly, the orbit with twelve points cannot be contained in $\Delta_0 \cup \Delta_1$, since in that case $\Delta_2 = \emptyset$ and Δ is too small. Now all the claims follow. Notice that since p is the only point in Δ_0 adjacent to x, we have that $X = M_x$. Furthermore, since every point in Δ_0 is adjacent to eight points in Δ_1 and every point in Δ_1 is adjacent to just one point in Δ_0 , we compute that $|\Delta_1| = 63 \cdot 8 = 504$. Next we look at the hexagons that intersect Δ_0 .

Lemma 5.10. Suppose $H' \neq H$ is a hexagon intersecting $H = \Delta_0$ nontrivially.

- (1) If H' is a K-hexagon that $H \cap H'$ is a claw based at some point $h \in H$. Furthermore, the points in H' that are at distance $i \ge 1$ from h are contained in Δ_{i-1} .
- (2) If H' is an M-hexagon then $H \cap H'$ is a line ℓ . Furthermore, the points in H' that are at distance $i \geq 0$ from ℓ are contained in Δ_i .

Proof: If H' is a K-hexagon then $H \cap H'$ is a claw by Lemma 5.5. Clearly, the points in H' that are at distance two from h, the base of the claw, are in Δ_1 . Since, for every point in Δ_1 , six lines on it go to Δ_2 , we have that the points of H', that are at distance three from h, are contained in Δ_2 . It remains to notice that three is the diameter of H'.

Similarly, suppose H' is an M-hexagon. By Lemma 5.4, every connected component of $H \cap H'$ is a line. Let ℓ be one of them. Then the points in H' that are at distance one from ℓ are in Δ_1 and the points that are at distance two are in Δ_2 . It remains to notice that every point from H' is at distance at most two from ℓ .

Corollary 5.11. If H_1 and H_2 are of the same type then either they are disjoint or $H_1 \cap H_2$ is a line.

Let $y \in \Delta_2$. Without loss of generality we can assume that y is adjacent to x. Let $Y = M_y$.

Lemma 5.12. The following hold.

- (1) Three lines on y have a point in Δ_1 and two other points in Δ_2 ; these lines are the Fano points of a Fano line from π_y .
- (2) Three further lines on y are fully contained in Δ_2 .
- (3) The seventh line on y has two points in Δ_3 .
- (4) $Y \cong S_3$ has orbits 3, 3, 6, and 2 on $\Delta(y)$; in particular, M is transitive on Δ_3 .

Proof: First of all, y lies in a K-hexagon H' containing x and p. So (1) follows from Lemma 5.10 (1). Let $x = x_1$, x_2 , and x_3 be the three neighbors of y in $\Delta_1 \cap H'$. Furthermore, let $p = p_1$, p_2 , and p_3 be the unique neighbors of x_1 , x_2 , and x_3 in Δ_0 . Assuming that y is adjacent to a fourth point $z \in \Delta_1$, we obtain that y is contained in a second K-hexagon H'' meeting Δ_0 . However, H' and H'' must share a line on y, that is, H' and H'' share y, some x_i , and hence also p_i . This means that H' and H''share a claw, which is a contradiction, since H' and H'' are of the same type. Thus, y has exactly three neighbors in Δ_1 . It follows that $|\Delta_2| = \frac{504 \cdot 12}{3} = 2016$. Since 63 + 504 + 2016 < 3159, we conclude that Δ_3 is nonempty and hence y is adjacent to some points in Δ_3 .

Let H_i be the M-hexagon containing y, x_i , and p_i . These three hexagons are pairwise distinct. In view of Lemma 5.10 (2) each of H_i contains two lines on y that are fully in Δ_2 . Since there should still be at least one line reaching into Δ_3 , we obtain that there are exactly three lines ℓ_1 , ℓ_2 , and ℓ_3 on y, that are fully contained in Δ_2 . Notice that every ℓ_j is contained in two hexagons H_i .

It remains to study M_y and its action on $\Delta(y)$. Let H' be as above and let the claw $H \cap H'$ be based at a point h. Let K' be the stabilizer of H'. Since $K' \cong G_2(2)$ and since h and y are at distance three in H', we have that $K'_{hy} \cong S_3$. We claim that $M_y = K'_{hy}$. Clearly, M_y stabilizes H', and hence it also stabilizes $H \cap H'$ and h. Thus, $M_y \leq K'_{hy}$. On the other hand, K'_{hy} stabilizes the claw $H \cap H'$ and hence it also stabilizes the only M-hexagon containing this claw, M. Thus, $K'_{hy} \leq M_y$. We have established that $M_y \cong S_3$.

All subgroups S_3 in $L_3(2)$ are conjugate. Each of them stabilizes a unique point and a unique line in the corresponding Fano plane. For M_y acting on π_y , those are the Fano point, that is the line on y reaching into Δ_3 , and the Fano line corresponding to H'. It is easy to see that M_y has two orbits of size three on the six neighbors of yin H', and that the remaining orbits have lengths 6 and 2. The latter orbit consists of the two points on the line reaching into Δ_3 . Now all claims of the lemma follow.

We record that, as we have shown, $|\Delta_2| = 2016$.

Before we study Δ_3 we need to get information about the M-hexagons containing points from Δ_2 . Let H' be such a hexagon and let y' be a point in $H' \cap \Delta_2$. Recall that the stabilizer $M_{y'}$ is isomorphic to S_3 . This stabilizer has three orbits on the Fano lines in $\pi_{y'}$, hence on the M-hexagons containing y'. The first orbit consists of one Fano line, which has, as its three Fano points, the three lines reaching into Δ_1 . The second orbit consists of three Fano lines, each of which has one Fano point, that is a line going into Δ_1 , and two other Fano points, that are fully in Δ_2 . The third orbit consists of three Fano lines, each of which has as one Fano point a line going to Δ_1 , as second Fano point a line contained in Δ_2 , and as the last Fano point the only line going into Δ_3 . Notice that if H' corresponds to a Fano line in the second orbit then H' meets Δ_0 in a line (see Lemma 5.10 (2)).

Suppose H' is not of that kind. Then $H' \cap \Delta_2 = A_1 \cup A_3$, where A_i consists of the points, for which H' corresponds to a Fano line in orbit *i*. Potentially, either of A_i can be empty. However, we can choose H' so that $A_1 \neq \emptyset$. Let $B = H' \cap \Delta_1$ and $C = H' \cap (\bigcup_{i>3} \Delta_i)$. Clearly, $B \neq \emptyset$.

Lemma 5.13. The following hold.

- (1) $M_{H'}$ acts transitively on A_1 , and if $a \in A_1$ then $M_{a,H'} = M_a \cong S_3$.
- (2) $M_{H'}$ acts transitively on B, and if $b \in B$ then $M_{b,H'} \cong \mathbb{Z}_6$.

Proof: Take $a_1, a_2 \in A_1$ and let $g \in M$ be such that $a_1^g = a_2$. Clearly g will map the Fano line in π_{a_1} corresponding to H' to the similar Fano line in π_{a_2} . Thus it will stabilize H'. Moreover, if we repeat this argument for $a_1 = a_2 = a$ we get that $M_{a,H'} = M_a \cong S_3$, proving (1). To see (2), we notice that if $b \in B$ then the Fano line in π_b corresponding to H', consists of three Fano points that are lines going to Δ_2 . We have seen that M_x induces on $\Delta(x)$ the full stabilizer of p (isomorphic to A_4). This stabilizer acts transitively on the four Fano lines in π_x of the above type. Thus, if $g \in M$ and it maps b_1 to b_2 , where $b_1, b_2 \in B$, then g can be corrected by an element from M_{b_2} , so that the resulting new element normalizes H', still taking b_1 to b_2 . This shows that $M_{H'}$ is transitive on B. Clearly, $M_{b,H'}$ induces just \mathbb{Z}_3 on $\Delta(b)$, so (2) follows.

Lemma 5.14. We have that $A_3 \neq \emptyset$. Furthermore, $M_{H'}$ acts transitively on A_3 , and if $a \in A_3$ then $M_{a,H'} \cong \mathbb{Z}_2$.

Proof: Let $b \in B$ and let ℓ be a line on b that is contained in H'. Then $\ell \cap \Delta_2 = \{a_1, a_2\}$. We claim that these two points belong to different subsets A_i . Suppose not. Then by Lemma 5.13, there is an element $g \in M_{H'}$ that maps a_1 to a_2 . This g can be chosen so that it fixes b. Indeed, if i = 3 then this is automatic, since b is the only neighbor of each of a_1 and a_2 in B. If i = 1 then $M_{a_2,H'}$ acts transitively on the three neighbors of a_2 in B, so g can be adjusted to fix b. However, now we have a contradiction. Since g fixes b, it preserves ℓ and hence it switches a_1 and a_2 . This means that g induces on $\Delta(b)$ an element of even order. This contradicts to the fact that $M_{b,H'}$ induces on $\Delta(b)$ a group of order three.

Thus, a_1 and a_2 belong to different A_i . Say, $a_1 \in A_3$, making the latter nonempty. Since $M_{a_1} \cong S_3$ and since H' lies in the orbit of three M-hexagons, we obtain that $M_{a,H'} \cong \mathbb{Z}_2$.

Lemma 5.15. Let $C = C_1 \cup C_2$ where the points in C_1 have neighbors in A_3 and the points of C_2 have only neighbors in C (within H'). Then $M_{H'}$ acts transitively on C_1 . In particular, every point from C_1 has the same number k of neighbors in A_3 .

Proof: We know that $M_{H'}$ acts transitively on A_3 and so it acts transitively on the lines of H' that go to Δ_3 . Also, if $a \in A_3$, the stabilizer $M_{a,H'}$ acts nontrivially on the line on a that goes to Δ_3 . This completes the proof.

We are now ready to carry out some computations about the sizes of A_i , B, and C. Let $|A_1| = n$. Since every point from A_1 has three neighbors in B and every point from B has three neighbors in A_1 , we have that |B| = n, too. Since every point from A_3 has one neighbor in B and since every point from B has three neighbors in A_3 , we get that $|A_3| = 3n$. Similarly, $|C_1| = \frac{6n}{k}$ where k is as in Lemma 5.15. Thus, $|C_2| = 63 - 5n - \frac{6n}{k} \ge 0$. This immediately implies, since $k \le 3$, that $3 \ge \frac{6n}{63-5n}$, and so $n \le 9$. Observe now that $A_1 \cup B$ induces a graph of valency three with girth at least six. This implies that $n = |A_1| \ge 7$.

Therefore $7 \leq n \leq 9$. If n = 8 then $63 - 40 - \frac{48}{k} \geq 0$, which means that $k \geq \frac{48}{23} > 2$. It follows that k = 3. However, this means that every neighbor in H' of a point from C_1 is either in A_3 or in C_1 , and so $C_2 = \emptyset$, which is impossible, since there are too few points in $A_1 \cup A_3 \cup B \cup C_1$.

If n = 7 then $|M_{H'}| = 7 \cdot 6$ and so $M_{H'}$ is solvable. By Hall Theorem, there is only one conjugacy class of subgroups of order six, contradicting Lemma 5.13. It now follows that n = 9, k = 3 and $C = C_1$.

We summarize this as follows.

Lemma 5.16. Suppose H' is an M-hexagon that contains a point in Δ_2 , but does not intersect Δ_0 . Then H' contains exactly 9 points from Δ_1 , 9 + 27 points from Δ_2 , and 14 points from Δ_3 . Furthermore, if $z \in H' \cap \Delta_3$ then each of the three lines through z in H' contains one point from Δ_2 and two points from Δ_3 (z is one of the two).

Finally, we can bound the size of the graph Δ .

Lemma 5.17. If $u \in \Delta_3$ then each of the seven lines through u in Δ has one point in Δ_2 and the two other points (including u itself) in Δ_3 . In particular, $\Delta_4 = \emptyset$.

Proof: Clearly, there is at least one line on u that contains a point from Δ_2 . Consider an M-hexagon H' that contains that line. Clearly, H' contains a point from Δ_2 and it does not intersect Δ_0 , since it also contains a point from Δ_3 (namely, u). By Lemma 5.16, each of the three lines through u in H' contains a point from Δ_2 . However, every M-hexagon on u contains at least one of those three lines. Repeating the above argument, we see that each line on u contains a point from Δ_2 .

According to this lemma, $|\Delta_3| = \frac{2|\Delta_2|}{7} = 576$ and $|\Delta| = |\Delta_0| + |\Delta_1| + |\Delta_2| + |\Delta_3| = 63 + 504 + 2016 + 576 = 3159$. This concludes the proof of Proposition 5.7.

It remains to notice that $|G| = |M| \cdot 3159 = |G_2(3)|$ and so $|G| = |\operatorname{Aut} G_2(3)|$. Since the unique amalgam $\hat{\mathcal{A}}$ occurs in $\operatorname{Aut} G_2(3)$ and generates it, we have that $\operatorname{Aut} G_2(3)$ is a factor group of \hat{G} . The equality of the orders now establishes Theorem 1.

References

- [ATL] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford 1985.
- [G] D. Goldschmidt, Automorphisms of trivalent graphs, Annals Math. 111 (1980), 377–407.
- [GVM] R. Gramlich and H. Van Maldeghem, Intransitive geometries, preprint.
- [IS] A.A. Ivanov and S.V. Shpectorov, *Geometry of Sporadic Groups II Representations and Amalgams*, Cambridge Univ. Press, 2002.
- [T] J. Tits, Ensembles ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math. Belg. 38 (1986), 367–387.

email : hoffman@bgsu.edu