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Abstract

We show a general method to translate Tauberian theorems for summa-
bility methods in R into Tauberian theorems for the corresponding forms of
statistical convergence in metric spaces. The main tools (distance functions
and the Hausdorff metric) come from set-valued analysis.

1 Introduction

Statistical convergence [5] provides a general framework for summability in metric
spaces. The original definition of this notion is in terms of the natural density of
a subset A of N, i.e. the quantity limn n−1 · card{k ≤ n : k ∈ A}. A sequence
{xn}n of real numbers converges statistically to ℓ ∈ R if the natural density of
{n ∈ N : |xn − ℓ| ≥ ε} is 0 for every ε > 0.

However, this notion is easy to generalize in several ways. First, spaces other than
R have been considered; some examples are locally convex spaces [11], Banach spaces
[4] and metric spaces [7]. Second, the factor n−1 in the definition can be replaced by
the coefficients of some summability method, e.g. [7, 8] (n−1 corresponding to the
Cesàro method).

Let {cn(λ)}n,λ be the coefficients of a summability method (C), where λ is a
discrete or continuous parameter, cn(λ) ≥ 0 and

∑∞
n=1 cn(λ) = 1 for each λ (in order
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to preserve the probabilistic interpretation). We will say that a sequence {xn}n in
a metric space (X, ρ) is (C)-statistically convergent to ℓ ∈ X if

∑

n: ρ(xn,ℓ)≥ε

cn(λ) → 0

for every ε > 0.
One can define random variables ξλ in [0, 1) (endowed with its Lebesgue mea-

surable structure) such that

ξλ(ω) = xk if ω ∈ [
k−1∑

n=1

cn(λ),
k∑

n=1

cn(λ)).

Then ρ(xn, ℓ) is (C)-summable to 0 if, and only if ξλ → ℓ in L1[0, 1), whereas
xn → ℓ (C)-statistically if, and only if ξλ → ℓ in probability. Accordingly, (C)-
statistical convergence is weaker than ordinary convergence as soon as the method
(C) is regular, i.e. if ordinary convergence entails (C)-summability. The reader is
referred to the papers [3, 9, 10] for more on the interplay between summability and
probability.

Fridy [5], and Fridy and Khan [6, 7, 8] have studied Tauberian theorems in
relation to statistical convergence. There are two interesting problems in this con-
nection: First, find Tauberian conditions under which (C)-statistical convergence
implies ordinary convergence. Then, ascertain whether classical Tauberian theorems
can be strengthened by substituting statistical convergence for ordinary convergence
in the hypothesis but not in the conclusion. In order to prove that, it suffices to check
that summability methods preserve the relevant properties of the original sequence
(see [8] for details), then apply the corresponding Tauberian theorem for statistical
convergence. However, it is also interesting to remark that Tauberian theorems in-
volving statistical convergence can also depart from their classical counterparts, as
shown in [7].

Our aim in this note is to propose a general reduction principle to translate
order-type Tauberian theorems for summability methods into Tauberian theorems
for statistical convergence. Fridy and Khan [8] have done so for the Cesàro, Abel
and Borel methods. However, their approach uses explicitly the coefficients of those
methods; in contrast, intuition suggests that the strong link between summability
and statistical convergence should allow one to find out a general approach irrespec-
tive of the particularities of each method.

2 The reduction principle

For this section, we assume that the method (C) satisfies a Tauberian theorem of
the following type: There exists a sequence {an}n ⊂ R such that for any sequence
{bn}n ⊂ R, the conditions

i) bn is (C)-summable to ℓ,

ii) bn − bn+1 = O(an),
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imply that bn → ℓ. Our aim is to show that the analogous condition ρ(xn, xn+1) =
O(an) is Tauberian in the sense that it, together with (C)-statistical convergence,
implies ordinary convergence. Since we wish the exposition of the reduction principle
to be as clear and transparent as possible, we have chosen this form of the Tauberian
theorem by its formal simplicity. Some variants are discussed in the next section.

We will use some elementary notions from set-valued analysis. The reader is
referred to [1, 2] for more details. The ε-envelope of K ⊂ X is defined to be the set
Kε = {x ∈ X : ρ(x, K) < ε}, where ρ(x, K) = infy∈K ρ(x, y) is called the distance

function associated to K. The space C of all non-empty closed subsets of X can
be endowed with the Wijsman topology, i.e. the weak topology generated by all
distance functionals ρ(x, ·). The space K of all non-empty closed bounded subsets
of X is endowed with the Hausdorff metric

dH(K, L) = inf{ε > 0 : K ⊂ Lε, L ⊂ Kε}.

It is well known that

dH(K, L) = sup
x∈X

|ρ(x, K) − ρ(x, L)|,

therefore the topology of the Hausdorff metric is finer than the Wijsman topology.
Also,

dH(Kε, Lε) ≤ dH(K, L)

for every ε > 0.
The reduction principle has two steps: (a) Obtain a version of the above Taube-

rian theorem for the distance functions associated to a sequence Kn of closed sub-
sets of X (Lemma 1, which can be seen as a Tauberian theorem for the Wijsman
topology). (b) Apply it taking Kn to be the (ε/2)-envelope of the singleton {xn}
(Theorem 2).

Lemma 1. Let {xn}n ⊂ X, ℓ ∈ X and {Kn}n ⊂ C. Then, the conditions

i)
∑

n: ℓ 6∈Kn

cn(λ) → 0,

ii) ρ(ℓ, Kn) − ρ(ℓ, Kn+1) = O(an),

imply that ρ(ℓ, Kn) → 0.

Proof. Define the bounded metric ρ′ = ρ/(1+ρ), which is equivalent to ρ. Moreover,

ρ′(ℓ, Kn) − ρ′(ℓ, Kn+1) =
ρ(ℓ, Kn) − ρ(ℓ, Kn+1)

(1 + ρ(ℓ, Kn))(1 + ρ(ℓ, Kn+1))
= O(an).

Since ρ′ ≤ 1 and ρ′(ℓ, Kn) = 0 if, and only if ℓ ∈ Kn,

∞∑

n=1

cn(λ)ρ′(ℓ, Kn) =
∑

n: ℓ 6∈Kn

cn(λ)ρ′(ℓ, Kn) ≤
∑

n: ℓ 6∈Kn

cn(λ) → 0.

By the Tauberian theorem assumed to hold, it follows that ρ′(ℓ, Kn) → 0. Thus,
also ρ(ℓ, Kn) → 0. �
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Theorem 2. Let {xn}n ⊂ X and ℓ ∈ X. Then, the conditions

i) xn → ℓ (C)-statistically

ii) ρ(xn, xn+1) = O(an),

imply that xn → ℓ.

Proof. Let ε > 0 and set Kn = Kn(ε) = {xn}
ε/2. Let us check that Lemma 1 can

be applied. Actually,
∑

n: ℓ 6∈Kn

cn(λ) =
∑

n: ρ(xn,ℓ)≥ε/2

cn(λ) → 0

according to (i) and

|ρ(ℓ, Kn) − ρ(ℓ, Kn+1)| ≤ dH(Kn, Kn+1) = dH({xn}
ε/2, {xn+1}

ε/2)

≤ dH({xn}, {xn+1}) = ρ(xn, xn+1) = O(an).

by (ii). Accordingly, ρ(ℓ, Kn) → 0. This implies that there exists n0 ∈ N such that

ρ(ℓ, {xn}
ε/2) < ε/2

for all n ≥ n0. It follows easily now that ρ(xn, ℓ) < ε. Therefore, xn → ℓ. �

3 Concluding remarks

Let us remark that also one-sided conditions can be dealt with. For instance, take
the condition

an(xn − xn+1) ≤ C

with X = R. One just has to modify the proof by replacing ρ(ℓ, Kn)−ρ(ℓ, Kn+1) by
its positive part [ρ(ℓ, Kn)− ρ(ℓ, Kn+1)]+ and the Hausdorff metric dH by the excess

functional

e(K, L) = inf{ε > 0 : K ⊂ Lε} = sup
x∈X

[ρ(x, K) − ρ(x, L)]+.

In fact, similar conditions can be established in other metric spaces, e. g. Rk with the
coordinatewise order or K with the excess functional (taken as a one-sided version
of the Hausdorff metric).

On the other hand, more sophisticated conditions can be analogously dealt with,
e.g. the condition

lim
δց0

lim sup
n

max
n≤m<n+δ·an

ρ(xm, xn) = 0,

where {an}n is a sequence tending to ∞.
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Facultad de CC. Económicas y Empresariales
Departamento de Métodos Estad́ısticos
Universidad de Zaragoza
Gran V́ıa, 2
50005 Zaragoza, Spain
e-mail: teran@unizar.es


