Geometric properties of certain linear integral transforms

S. Ponnusamy* P. Sahoo

Abstract

For $\lambda>0$ and $0<\mu<n$, let $\mathcal{U}_{n}(\lambda, \mu)$ denote the class of all normalized analytic functions f in the unit disc Δ of the form $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}$ such that $$
\left|f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\mu+1}-1\right|<\lambda, z \in \Delta
$$ where $n \in \mathbb{N}$ is fixed. In addition to the discussion of the basic properties of the class $\mathcal{U}_{n}(\lambda, \mu)$, we find conditions so that $\mathcal{U}_{n}(\lambda, \mu)$ is included in \mathcal{S}_{γ}, the class of all strongly starlike functions of order $\gamma(0<\gamma \leq 1)$. We also find necessary conditions so that $f \in \mathcal{U}_{n}(\lambda, \mu)$ implies that $$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1}{2 \beta}\right|<\frac{1}{2 \beta}, \quad \text { for all } z \in \Delta,
$$ or $$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{1}{2 \beta}\right|<\frac{1}{2 \beta}, \quad \text { for }|z|<r<1,
$$ where $r=r(\lambda, \mu, n)$ will be specified.

\footnotetext{ *The work of the first author was supported by a Sponsored Research project (Ref No. DST/MS/092/98) from the Department of Science and Technology (India) and the work of the second author was supported by National Board for Higher Mathematics (India) in the form of a Postdoctoral Fellowship.

Received by the editors September 2002. Communicated by R. Delanghe. 1991 Mathematics Subject Classification : 30C45, 30C55. Key words and phrases : Univalent, starlike and convex functions, subordination, and integral transform. }

1 Introduction

Let \mathcal{A} denote the class of all analytic functions defined on the unit disc $\Delta=\{z$: $|z|<1\}$ with the normalization condition $f(0)=0=f^{\prime}(0)-1$. Let $\mathcal{S}=\{f \in \mathcal{A}$: f is univalent in $\Delta\}$. A function $f \in \mathcal{A}$ is said to belong to \mathcal{S}^{*} iff $f(\Delta)$ is a starlike domain with respect to the origin. A function $f \in \mathcal{A}$ is said to be Bazilevič of type $\mu=\alpha+i \beta(\alpha \geq 0$ and $\beta \in \mathbb{R})$, if f satisfies the differential equation

$$
f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1-\mu}=\left(\frac{g(z)}{z}\right)^{\alpha} h(z)
$$

g being a function in \mathcal{S}^{*} and $\operatorname{Re} e^{i \phi} h(z)>0$ in Δ for some $\phi \in \mathbb{R}$ [1]. It is a wellknown result that Bazilevič functions are in \mathcal{S} and the above differential equation necessarily has a solution analytic in Δ for any choice of g and h. We are interested in the case of $g(z)=z, \beta=0$ and formulate the following class for $0 \leq \lambda<1$:

$$
\mathcal{B}_{1}(\lambda, \mu)=\left\{f: \operatorname{Re}\left(f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\mu+1}\right)>\lambda\right\} .
$$

Here $\mu<0$ and for convenience, we have avoided the rotation factor and assumed that $h(z)=(1+(1-2 \lambda) z) /(1-z)$. The Bazilevič functions are also discussed in [15] and it is clear that $\mathcal{B}_{1}(\lambda, \mu) \subseteq \mathcal{S}$. We are interested to know whether $\mathcal{B}_{1}(\lambda, \mu)$ is extendable to cover certain values of μ with $\mu>0$. To carry out our investigation, we consider a class $\mathcal{U}_{h}(\mu)$ as follows: For a univalent function h in Δ and $\mu>0$, we define

$$
\mathcal{U}_{h}(\mu)=\left\{f \in \mathcal{A}: f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\mu+1} \prec h(z), z \in \Delta\right\}
$$

where \prec denotes the subordination. For the basic results on subordination we refer to the book by P. L. Duren [3]. The choice of $h(z)=1+\lambda z$ leads to the class $\mathcal{U}(\lambda, \mu)$,

$$
\mathcal{U}(\lambda, \mu)=\left\{f: f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\mu+1} \prec 1+\lambda z, z \in \Delta\right\} .
$$

Since $\mathcal{B}_{1}(0, \mu) \subset \mathcal{S}$ for $\mu<0$, it follows that $\mathcal{U}(\lambda, \mu) \subset \mathcal{S}$ for $\mu<0$ and $0<\lambda \leq 1$. We note that the Koebe function belongs to $\mathcal{U}(1,1)$. On the other hand, Nunokawa and Ozaki [8] have shown that $\mathcal{U}(\lambda, 1)$ is included in \mathcal{S} for $0<\lambda \leq 1$ whereas, among several other interesting results, Ponnusamy [9] has found conditions on λ and $\mu<0$ so that $\mathcal{U}(\lambda, \mu)$ is included in \mathcal{S}^{*} or other well known subclasses. In view of these inclusion results, it is natural to seek condition on λ (depending on μ) so that $\mathcal{U}(\lambda, \mu) \subset \mathcal{S}^{*}$ for $0<\mu<1$. Obradović [5] used the idea of Ponnusamy [9] and Ponnusamy and Singh [10] to fill this gap and proved, for example, the following result.

Theorem 1.1. If $f \in \mathcal{U}(\lambda, \mu)$ with $0<\mu<1$ and $0<\lambda \leq \frac{1-\mu}{\sqrt{(1-\mu)^{2}+\mu^{2}}}$, then $f \in \mathcal{S}^{*}$.

Our aim in this paper is not only to extend Theorem 1.1 but also to obtain a number of new results extending several other interesting results in this direction, eg. [7]. Let \mathcal{A}_{n} denote the class of all functions $f \in \mathcal{A}$ such that f has the form

$$
\begin{equation*}
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \tag{1.2}
\end{equation*}
$$

where $n \in \mathbb{N}$ is fixed. Clearly, $\mathcal{A}:=\mathcal{A}_{1}$. For $\lambda>0$ and $\mu \geq 0$, we define

$$
\mathcal{U}_{n}(\lambda, \mu)=\left\{f \in \mathcal{A}_{n}:\left|f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\mu+1}-1\right|<\lambda, \quad z \in \Delta\right\} \equiv \mathcal{A}_{n} \cap \mathcal{U}(\lambda, \mu)
$$

For the case $\mu=1$, this class has been discussed in detail by Ponnusamy and Vasundhara [12]. More recently, the special situations, namely, the classes

$$
\mathcal{U}_{1}(\lambda, \mu):=\mathcal{U}(\lambda, \mu), \mathcal{U}_{1}(1,1):=\mathcal{U}, \quad \text { and } \mathcal{U}_{1}(\lambda, 1):=\mathcal{U}(\lambda)
$$

under the restriction $\lambda \in(0,1]$ and $\mu \in(0,1)$, have been studied extensively in $[5,6,7,11,13]$. In the present paper, we enforce "missing coefficients" and extend the range of μ beyond the unit interval.

A function $f \in \mathcal{A}$ is said to be strongly starlike of order $\gamma, 0<\gamma \leq 1$, if and only if f satisfies the analytic condition

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\gamma}, \quad z \in \Delta .
$$

We denote the class of strongly starlike functions of order γ by \mathcal{S}_{γ}. Clearly, $\mathcal{S}^{*} \equiv \mathcal{S}_{1}$. If $0<\gamma<1$, then \mathcal{S}_{γ} is completely contained in the class of bounded starlike functions [2]. Set

$$
\mathcal{S}^{*}(\alpha)=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+(1-2 \alpha) z}{1-z}, z \in \Delta\right\}
$$

so that $\mathcal{S}^{*}(0) \equiv \mathcal{S}^{*}$. For our investigation we need a number of preliminary results.

2 Discussion of $\mathcal{U}_{n}(\lambda, \mu)$

Let $\lambda>0$ and $\mu \in(0, n)$, where $n \in \mathbb{N}$ is fixed. Then, each $f \in \mathcal{U}_{n}(\lambda, \mu)$ can be written as

$$
\begin{equation*}
\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)=1+\lambda w(z)=1+(n-\mu) a_{n+1} z^{n}+\cdots \tag{2.1}
\end{equation*}
$$

for some $w \in \mathcal{B}_{n}$, where

$$
\mathcal{B}_{n}=\left\{w \in \mathcal{H}: w(0)=w^{\prime}(0)=\cdots=w^{(n-1)}(0)=0, \quad \text { and }|w(z)|<1 \text { for } z \in \Delta\right\}
$$

Here \mathcal{H} denotes the class of all analytic functions in Δ. If we set

$$
p(z)=\left(\frac{z}{f(z)}\right)^{\mu}=1+p_{n} z^{n}+\cdots
$$

then (2.1) is seen to be equivalent to

$$
p(z)-\frac{1}{\mu} z p^{\prime}(z)=1+\lambda w(z) .
$$

An algebraic computation implies that

$$
\begin{equation*}
p(z)=1-\lambda \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t \tag{2.2}
\end{equation*}
$$

As $w(z) \in \mathcal{B}_{n}$, Schwarz' lemma gives that $|w(z)| \leq|z|^{n}$ for $z \in \Delta$ and therefore

$$
|p(z)-1| \leq \frac{\lambda \mu}{n-\mu}|z|^{n}, \quad z \in \Delta
$$

which is

$$
\begin{equation*}
\left|\left(\frac{z}{f(z)}\right)^{\mu}-1\right| \leq \frac{\lambda \mu}{n-\mu}|z|^{n} \tag{2.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
1-\frac{\lambda \mu}{n-\mu}|z|^{n} \leq \operatorname{Re}\left(\frac{z}{f(z)}\right)^{\mu} \leq 1+\frac{\lambda \mu}{n-\mu}|z|^{n} . \tag{2.4}
\end{equation*}
$$

Equality holds in each of the last two inequalities (2.3) and (2.4) for functions of the form

$$
f(z)=\frac{z}{\left(1 \pm(\lambda \mu /(n-\mu)) z^{n}\right)^{1 / \mu}}
$$

By (2.3), it follows that

$$
\left(\frac{z}{f(z)}\right)^{\mu} \in\{w:|w-1|<1\} \quad \text { for } \quad|z|<\left(\frac{n-\mu}{\lambda \mu}\right)^{1 / n} .
$$

Thus, for $f \in \mathcal{U}_{n}(\lambda, \mu)$, we have

$$
\operatorname{Re}\left(\frac{z}{f(z)}\right)^{\mu}>0 \text { for }|z|<\left(\frac{n-\mu}{\lambda \mu}\right)^{1 / n}
$$

In particular, for $0<\lambda \leq(n-\mu) / \mu$, we have

$$
\operatorname{Re}\left(\frac{z}{f(z)}\right)^{\mu}>0 \text { for } z \in \Delta
$$

Also, with the inequality $0<\lambda \leq(n-\mu) / \mu,(2.3)$ is equivalent to

$$
\left|\left(\frac{f(z)}{z}\right)^{\mu}-\frac{1}{1-(\lambda \mu /(n-\mu))^{2}|z|^{2 n}}\right| \leq \frac{[\lambda \mu /(n-\mu)]|z|^{n}}{1-(\lambda \mu /(n-\mu))^{2}|z|^{2 n}}
$$

which implies that

$$
\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\mu} \geq \frac{1}{1+(\lambda \mu /(n-\mu))|z|^{n}} \geq \frac{n-\mu}{n-\mu+\lambda \mu} .
$$

If $(n-\mu) / \mu<\lambda$, then for $f \in \mathcal{U}_{n}(\lambda, \mu)$ we have

$$
\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\mu} \geq \frac{1}{1+(\lambda \mu /(n-\mu))|z|^{n}}>\frac{n-\mu}{n-\mu+\lambda \mu} \text { for } \quad|z|<\left(\frac{n-\mu}{\lambda \mu}\right)^{1 / n}<1
$$

3 Starlikeness and Convexity of $f \in \mathcal{U}_{n}(\lambda, \mu)$

Although the Koebe function belongs to $\mathcal{U}(1,1)$, the class $\mathcal{U}(1,1)$ is not included in \mathcal{S}^{*}. On the other hand, $f \in \mathcal{U}_{2}(\lambda, 1)$ is seen to be in \mathcal{S}^{*} whenever $0<\lambda \leq 1 / \sqrt{2}$. We are now in a position to state our first result.

Theorem 3.1. Let $\gamma \in(0,1], n \geq 1, \mu \in(0, n)$ and

$$
\lambda_{*}(\gamma, \mu, n)=\frac{(n-\mu) \sin (\gamma \pi / 2)}{\sqrt{(n-\mu)^{2}+\mu^{2}+2 \mu(n-\mu) \cos (\gamma \pi / 2)}}
$$

If $f \in \mathcal{U}_{n}(\lambda, \mu)$, then $f \in \mathcal{S}_{\gamma}$ for $0<\lambda \leq \lambda_{*}(\gamma, \mu, n)$.
Note that $\lambda_{*}(\gamma, \mu, n)$ is an increasing function of n and

$$
\lambda_{*}(\gamma, \mu, n) \rightarrow \sin (\gamma \pi / 2) \text { as } n \rightarrow \infty .
$$

Theorem 3.1 for $\mu=1$ (under the restriction $n \geq 2$) is due to Ponnusamy and Vasundhara [12]. In the case $\gamma=1$, Theorem 3.1 yields criteria for starlike functions for missing coefficients.

Corollary 3.2. If $f \in \mathcal{U}_{n}(\lambda, \mu)$ and $0<\lambda \leq \frac{n-\mu}{\sqrt{(n-\mu)^{2}+\mu^{2}}}$, then $f \in \mathcal{S}^{*}$.
For $n=1$, this result gives Theorem 1.1 which is due to Obradović [5]. Also for $n=2$ (i.e. $f \in \mathcal{A}$ with $f^{\prime \prime}(0)=0$) and $\mu=1$, Theorem 3.1 gives a recent result of Obradović et al [7].

Theorem 3.3. Let $\alpha \in[0,1), n \geq 1$ and $\mu \in(0, n)$. If $f(z) \in \mathcal{U}_{n}(\lambda, \mu)$, then $f \in \mathcal{S}^{*}(\alpha)$ for $0<\lambda \leq \lambda^{*}(\alpha, \mu, n)$, where

$$
\lambda^{*}(\alpha, \mu, n)= \begin{cases}\frac{(n-\mu) \sqrt{1-2 \alpha}}{\sqrt{(n-\mu)^{2}+\mu^{2}(1-2 \alpha)}} & \text { for } 0 \leq \alpha \leq \frac{\mu}{n+\mu} \\ \frac{(n-\mu)(1-\alpha)}{n-\mu+\mu \alpha} & \text { for } \frac{\mu}{n+\mu}<\alpha<1\end{cases}
$$

The case $\alpha=0$ of Theorem 3.3 also gives Corollary 3.2 and the case $\mu=1$ has been obtained by Ponnusamy and Vasundhara [12] whereas the case $\mu=1, n=2$ and $\alpha=0$ of Theorem 3.3 has been obtained by Obradović et al [7].

The same reasoning indicated in the proof of Theorem 3.1 helps to obtain the following results.

Theorem 3.4. Let $f \in \mathcal{U}_{n}(\lambda, \mu)$ and $\lambda_{*}(\gamma, \mu, n)$ be as in Theorem 3.1. Then, for $\lambda_{*}(\gamma, \mu, n) \leq \lambda, f$ is strongly starlike in $|z|<r=r(\lambda, \gamma, \mu, n)$, where

$$
r=r(\lambda, \gamma, \mu, n)=\left\{\frac{(n-\mu) \sin (\gamma \pi / 2)}{\lambda \sqrt{(n-\mu)^{2}+\mu^{2}+2 \mu(n-\mu) \cos (\gamma \pi / 2)}}\right\}^{1 / n}
$$

Corollary 3.5. If $f \in \mathcal{U}_{n}(\lambda, \mu)$ and $\lambda_{*}(\mu, n)=\frac{n-\mu}{\sqrt{(n-\mu)^{2}+\mu^{2}}}$, then, for $\lambda_{*}(\mu, n) \leq$ $\lambda, f \in \mathcal{S}^{*}$ in $|z|<r=r(\lambda, \mu, n)$, where

$$
r(\lambda, \mu, n)=\left\{\frac{n-\mu}{\lambda \sqrt{(n-\mu)^{2}+\mu^{2}}}\right\}^{1 / n}
$$

In the following theorem, we consider similar results for a subset of the set of all starlike functions. To do this, we define

$$
\mathcal{S}_{b}^{*}(\beta)=\left\{f \in \mathcal{A}:\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1}{2 \beta}\right|<\frac{1}{2 \beta}, z \in \Delta\right\},
$$

where $0<\beta<1$. Clearly, $\mathcal{S}_{b}^{*}(\beta) \subsetneq \mathcal{S}^{*}$.
Theorem 3.6. Let $n \in \mathbb{N}, \mu \in(0, n), \lambda \in(0,1]$ and $r_{\lambda, \mu, n}^{*}(\beta)=\left(\lambda_{\beta}^{*} / \lambda\right)^{1 / n}$, where

$$
\lambda_{\beta}^{*}=\frac{\beta^{*}(n-\mu)}{\beta(n-\mu)+\mu} \quad \text { and } \quad \beta^{*}=\left\{\begin{array}{ll}
\beta & \text { if } 0<\beta \leq 1 / 2 \\
1-\beta & \text { if } 1 / 2 \leq \beta<1
\end{array} .\right.
$$

Then
(i) for $0<\lambda \leq \lambda_{\beta}^{*}$, we have $\mathcal{U}_{n}(\lambda, \mu) \subset \mathcal{S}_{b}^{*}(\beta)$.
(ii) for $\lambda_{\beta}^{*}<\lambda \leq 1, f \in \mathcal{U}_{n}(\lambda, \mu)$, we have $f \in \mathcal{S}_{b}^{*}(\beta)$ for $|z|<r_{\lambda, \mu, n}^{*}(\beta)$.

Taking $n=2$ and $\mu=1$ in Theorem 3.6, we obtain the following
Corollary 3.7. Let $\lambda \in(0,1]$ and $r_{\beta, \lambda}^{*}(\beta)=\left(\lambda_{\beta}^{*} / \lambda\right)^{1 / 2}$, where

$$
\lambda_{\beta}^{*}=\frac{\beta^{*}}{\beta+1} \quad \text { and } \quad \beta^{*}= \begin{cases}\beta & \text { if } 0<\beta \leq 1 / 2 \\ 1-\beta & \text { if } 1 / 2 \leq \beta<1\end{cases}
$$

Then
(i) for $0<\lambda \leq \lambda_{\beta}^{*}$, we have $\mathcal{U}_{2}(\lambda) \subset \mathcal{S}_{b}^{*}(\beta)$.
(ii) for $\lambda_{\beta}^{*}<\lambda \leq 1, f \in \mathcal{U}_{2}(\lambda)$, we have $f \in \mathcal{S}_{b}^{*}(\beta)$ for $|z|<r_{\lambda}^{*}(\beta)$.

This corollary is a special case of Theorem 1.9 of [7].
Theorem 3.8. Let $n \in \mathbb{N}, \mu \in(0, n)$ and $\lambda \in(0,1]$. If $f \in \mathcal{U}_{n}(\lambda, \mu)$, then for $0<\beta \leq 1$ we have

$$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{1}{2 \beta}\right|<\frac{1}{2 \beta} \quad \text { for } \quad|z|<r_{\lambda, \mu, n}(\beta),
$$

where $r=r_{\lambda, \mu, n}(\beta)$ is the smallest positive root of the equation

$$
\begin{array}{r}
2 \beta \lambda^{2} \mu r^{2 n+1}+2 \lambda[\beta(\mu+1) n+\mu(1-\beta)] r^{n+2}-2 \beta \lambda(n-\lambda \mu-\mu) r^{n+1}- \tag{3.9}\\
2 \lambda[\beta(\mu+1) n+(1-\beta) \mu)] r^{n}-\left[(1-|2 \beta-1|) r^{2}+2 \beta \lambda r+|2 \beta-1|-1\right](n-\mu)=0 .
\end{array}
$$

In particular, $f(r z) \in \mathcal{K}$.

Here \mathcal{K} denotes the class of all convex functions g, i.e. $z g^{\prime} \in S^{*}$.
If we choose $\beta=1 / 2$, we obtain
Corollary 3.10. Let $f \in \mathcal{U}_{n}(\lambda, \mu)$. Then

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<1 \quad \text { for } \quad|z|<r_{\lambda, \mu}(1 / 2)
$$

where $r_{\lambda, \mu, n}(1 / 2)$ is the smallest positive root of the equation

$$
\begin{aligned}
& \lambda^{2} \mu r^{2 n+1}+\lambda[(\mu+1) n+\mu] r^{n+2} \\
& \quad-\lambda(n-\lambda \mu-\mu) r^{n+1}-\lambda[(\mu+1) n+\mu] r^{n}-\left(r^{2}+\lambda r-1\right)(n-\mu)=0 .
\end{aligned}
$$

The case $\mu=1$ and $n=2$ of Theorem 3.8 is due to [7]. The proof of these theorems will be given in Section 4.

4 Proofs of the Main Theorems

4.1. Proof of Theorem 3.1. Suppose that $f \in \mathcal{U}_{n}(\lambda, \mu)$ for some $\lambda \in(0,1]$ and $\mu \in$ $(0, n)$. Then, by the definition of $\mathcal{U}_{n}(\lambda, \mu)$, we have

$$
\left|\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)-1\right|<\lambda
$$

and, by (2.3), we get

$$
\left|\left(\frac{z}{f(z)}\right)^{\mu}-1\right|<\frac{\lambda \mu}{n-\mu}|z|^{n}<\frac{\lambda \mu}{n-\mu} .
$$

Therefore, it follows that

$$
\begin{equation*}
\left|\arg \left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)\right|<\arcsin (\lambda) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{z}{f(z)}\right)^{\mu}\right|<\arcsin \left(\frac{\lambda \mu}{n-\mu}\right) . \tag{4.3}
\end{equation*}
$$

Using the formulae (4.2) and (4.3) and the addition formula for the inverse of sine function, namely,

$$
\arcsin (x)+\arcsin (y)=\arcsin \left[x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right],
$$

we find that

$$
\begin{aligned}
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| & \leq\left|\arg \left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)\right|+\left|\arg \left(\frac{z}{f(z)}\right)^{\mu}\right| \\
& <\arcsin (\lambda)+\arcsin \left(\frac{\lambda \mu}{n-\mu}\right) \\
& =\arcsin \left[\lambda \sqrt{1-\left(\frac{\lambda \mu}{n-\mu}\right)^{2}}+\frac{\lambda \mu}{n-\mu} \sqrt{1-\lambda^{2}}\right] .
\end{aligned}
$$

Thus, $f \in \mathcal{S}_{\gamma}$ whenever $\lambda \in\left(0, \lambda_{*}(\gamma, \mu, n)\right]$. Here $\lambda_{*}(\gamma, \mu, n)$ is the solution of the equation

$$
\phi(\lambda)=\lambda \sqrt{1-\left(\frac{\lambda \mu}{n-\mu}\right)^{2}}+\frac{\lambda \mu}{n-\mu} \sqrt{1-\lambda^{2}}-\sin \left(\frac{\pi \gamma}{2}\right)=0
$$

which proves the theorem.
4.4. Proof of Theorem 3.3. Suppose that $f(z) \in \mathcal{U}_{n}(\lambda, \mu)$. Then, by the representation (2.1) and (2.2), it follows that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+\lambda w(z)}{1-\lambda \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t}
$$

and therefore,

$$
\frac{1}{1-\alpha}\left(\frac{z f^{\prime}(z)}{f(z)}-\alpha\right)=\frac{1+\frac{\lambda w(z)}{1-\alpha}+\frac{\alpha \lambda}{1-\alpha} \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t}{1-\lambda \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t}
$$

We want f to be in $\mathcal{S}^{*}(\alpha)$. To do this, according to a well known result [14] and the last equation, it suffices to show that

$$
\frac{1+\frac{\lambda w(z)}{1-\alpha}+\frac{\alpha \lambda}{1-\alpha} \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t}{1-\lambda \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t} \neq-i T, \quad T \in \mathbb{R}
$$

which is equivalent to

$$
\lambda\left[\frac{w(z)+(\alpha-i(1-\alpha) T) \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t}{(1-\alpha)(1+i T)}\right] \neq-1, \quad T \in \mathbb{R} .
$$

If we let

$$
M=\sup _{z \in \Delta, w \in \mathcal{B}_{n}, T \in \mathbb{R}}\left|\frac{w(z)+(\alpha-i(1-\alpha) T) \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t}{(1-\alpha)(1+i T)}\right|
$$

then, in view of the rotation invariance property of the space \mathcal{B}_{n}, we obtain that

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad \text { if } \quad M \lambda \leq 1
$$

This observation shows that it suffices to find M. First we notice that

$$
M \leq \sup _{T \in \mathbb{R}}\left\{\frac{(n-\mu)+\mu \sqrt{\alpha^{2}+(1-\alpha)^{2} T^{2}}}{(n-\mu)(1-\alpha) \sqrt{1+T^{2}}}\right\}
$$

Define $\phi:[0, \infty) \longrightarrow \mathbb{R}$ by

$$
\phi(x)=\frac{(n-\mu)+\mu \sqrt{\alpha^{2}+(1-\alpha)^{2} x}}{(n-\mu)(1-\alpha) \sqrt{1+x}}
$$

Then, by differentiating ϕ with respect to x, we get

$$
\phi^{\prime}(x)=\frac{\mu(1-2 \alpha)-(n-\mu) \sqrt{\alpha^{2}+(1-\alpha)^{2} x}}{2(n-\mu)(1-\alpha)(1+x)^{3 / 2} \sqrt{\alpha^{2}+(1-\alpha)^{2} x}} .
$$

Case(i) : Let $0<\alpha<\mu /(n+\mu)$. Then we see that ϕ has its only critical point in the positive real line at

$$
x_{0}=\frac{1}{(1-\alpha)^{2}}\left[\left(\frac{\mu(1-2 \alpha)}{n-\mu}\right)^{2}-\alpha^{2}\right]
$$

Further, we easily observe that $\phi^{\prime}(x)>0$ for $0 \leq x<x_{0}$ and $\phi^{\prime}(x)<0$ for $x>x_{0}$. Therefore, $\phi(x)$ attains maximum value at x_{0} and hence,

$$
\begin{equation*}
\phi(x) \leq \phi\left(x_{0}\right)=\frac{\sqrt{(n-\mu)^{2}+\mu^{2}(1-2 \alpha)}}{\sqrt{1-2 \alpha}(n-\mu)} \quad \text { for } \quad x \geq 0 \tag{4.5}
\end{equation*}
$$

$\underline{\text { Case(ii) }}$: Let $\alpha>\mu /(n+\mu)$. We can easily observe that

$$
\phi^{\prime}(x) \leq 0 \Longleftrightarrow \mu(1-2 \alpha)<(n-\mu) \sqrt{\alpha^{2}+(1-\alpha)^{2} x}, \quad \text { for } x \geq 0
$$

This implies that $\phi^{\prime}(x) \leq 0$ for all $x \geq 0$ whenever $\mu(1-2 \alpha)<(n-\mu) \alpha$. Therefore, if $\alpha \geq \mu /(n+\mu), \phi$ is decreasing on $[0, \infty)$ and hence,

$$
\begin{equation*}
\phi(x) \leq \phi(0)=\frac{n-\mu+\mu \alpha}{(n-\mu)(1-\alpha)} \quad \text { for all } x \geq 0 \tag{4.6}
\end{equation*}
$$

The required conclusion follows from (4.5) and (4.6).
4.7. Proof of Theorem 3.4. Let $f \in \mathcal{U}_{n}(\lambda, \mu)$ for some $\mu \in(0, n)$. Following the proof of Theorem 3.1, we obtain that

$$
\left|\arg \left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)\right|<\arcsin \left(\lambda r^{n}\right)
$$

and

$$
\left|\arg \left(\frac{z}{f(z)}\right)^{\mu}\right|<\arcsin \left(\frac{\lambda \mu}{n-\mu} r^{n}\right) .
$$

Combining the last two inequalities we get

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| \leq \arcsin \left[\lambda r^{n} \sqrt{1-\left(\frac{\lambda \mu}{n-\mu}\right)^{2} r^{2 n}}+\frac{\lambda \mu}{n-\mu} r^{n} \sqrt{1-\lambda^{2} r^{2}}\right]
$$

By a calculation, we see that the right hand side of the last inequality is less than or equal to $\pi \gamma / 2$ provided

$$
r^{n} \leq \frac{(n-\mu) \sin (\gamma \pi / 2)}{\lambda \sqrt{(n-\mu)^{2}+\mu^{2}+2 \mu(n-\mu) \cos (\gamma \pi / 2)}}
$$

which completes the proof.
4.8. Proof of Theorem 3.6. Let $f \in \mathcal{U}_{n}(\lambda, \mu)$. Then, by the representations (2.1) and (2.2), it follows that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+\lambda w(z)}{1-\lambda \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t} \tag{4.9}
\end{equation*}
$$

where $w \in \mathcal{B}_{n}$. Then, $|w(z)| \leq|z|^{n}$. We proceed with the method of the proof of Theorem 1.9 in [7]. According to this

$$
\begin{aligned}
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1}{2 \beta}\right| & =\frac{1}{2 \beta} \frac{\left|2 \beta-1+2 \beta \lambda w(z)+\lambda \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t\right|}{\left|1-\lambda \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t\right|} \\
& \leq \frac{1}{2 \beta} \frac{|2 \beta-1|+2 \beta \lambda|z|^{n}+\frac{\lambda \mu}{n-\mu}|z|^{n}}{1-\frac{\lambda \mu}{n-\mu}|z|^{n}} \\
& =\frac{1}{2 \beta}\left[\frac{|2 \beta-1|(n-\mu)+2 \beta \lambda(n-\mu)|z|^{n}+\lambda \mu|z|^{n}}{1-\lambda \mu|z|^{n}}\right]
\end{aligned}
$$

It is a simple exercise to see that the square bracketed term in the last step is less than 1 provided

$$
|z|<\left[\frac{\beta^{*}(n-\mu)}{\beta \lambda(n-\mu)+\lambda \mu}\right]^{1 / n}=: r_{\lambda, \mu, n}^{\beta}
$$

where $2 \beta^{*}=1-|2 \beta-1|$. We remark that $r_{\lambda, \mu, n}^{\beta} \geq 1$ if and only if

$$
\lambda \leq \frac{\beta^{*}(n-\mu)}{\beta(n-\mu)+\mu} .
$$

The desired result follows.
4.10. Proof of Theorem 3.8. Let $f \in \mathcal{U}_{n}(\lambda, \mu)$. Then taking logarithmic derivative of the representation given by (2.1), we have

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=(\mu+1) \frac{z f^{\prime}(z)}{f(z)}-\mu+\frac{\lambda z w^{\prime}(z)}{1+\lambda w(z)}
$$

In view of this equation and (4.9) we see that

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{1}{2 \beta}=(\mu+1) \frac{1+\lambda w(z)}{1-\lambda \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t}-\mu+\frac{\lambda z w^{\prime}(z)}{1+\lambda w(z)}-\frac{1}{2 \beta} .
$$

Since $w \in \mathcal{B}_{n}$, by the definition of \mathcal{B}_{n}, we have $|w(z)| \leq|z|^{n}$. By the well-known Schwarz-Pick lemma, we find that

$$
\left|w^{\prime}(z)\right| \leq \frac{1-|w(z)|^{2}}{1-|z|^{2}}
$$

It follows that (as $\lambda \leq 1$)

$$
\left|\frac{z w^{\prime}(z)}{1+\lambda w(z)}\right| \leq \frac{|z|}{1-\lambda|w(z)|}\left(\frac{1-|w(z)|^{2}}{1-|z|^{2}}\right) \leq \frac{|z|\left(1+|z|^{n}\right)}{1-|z|^{2}}
$$

With the help of this inequality and the fact that $|w(z)| \leq|z|^{n}$, after computation, we obtain

$$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{1}{2 \beta}\right|<\frac{1}{2 \beta} R_{\mu}(\lambda, \beta,|z|),
$$

where $R_{\mu}(\lambda, \beta,|z|):=R_{\mu}$ with

$$
R_{\mu}=\frac{\left(|2 \beta-1|+2 \beta \lambda(\mu+1)|z|^{n}\right)(n-\mu)+(2 \beta \mu+1) \lambda \mu|z|^{n}}{n-\mu-\lambda \mu|z|^{n}}+\frac{2 \beta \lambda\left(|z|+|z|^{n+1}\right)}{1-|z|^{2}}
$$

It can be easily seen that the equality $R_{\mu}(\lambda, \beta,|z|)<1$ is equivalent to (3.9). The desired conclusion follows.

5 Integral Transforms

In this section we consider the following integral transform $I(f)$ of $f \in \mathcal{A}$ defined by

$$
\begin{equation*}
[I(f)](z)=F(z)=z\left[\frac{c+1-\mu}{z^{c+1-\mu}} \int_{0}^{z}\left(\frac{t}{f(t)}\right)^{\mu} t^{c-\mu} d t\right]^{1 / \mu}, \quad c+1-\mu>0 \tag{5.1}
\end{equation*}
$$

This transform is similar to the Alexander transform when $c=\mu=1$ and is similar to Bernardi transformation when $\mu=1$ and $c>0$.

Theorem 5.2. Let $f \in \mathcal{U}_{n}(\lambda, \mu)$ for some $\lambda>0, n \geq 2$ and $\mu \in(0, n)$. For $c+1-\mu>0$ and $\alpha<1$, let $F(z)$ be defined by (5.1). Then $F \in \mathcal{S}_{\alpha}^{*}$ whenever c, λ are related by

$$
\begin{equation*}
0<\lambda \leq \frac{(1-\alpha)(n-\mu)(c+1-\mu+n)}{(c+1-\mu)(n+(1-\alpha) \mu)} \tag{5.3}
\end{equation*}
$$

Proof. Assume that $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in \mathcal{U}_{n}(\lambda, \mu)$. By (5.1), we see that

$$
(c+1-\mu)\left(\frac{F(z)}{z}\right)^{\mu}+z \frac{d}{d z}\left(\frac{F(z)}{z}\right)^{\mu}=(c+1-\mu)\left(\frac{z}{f(z)}\right)^{\mu} .
$$

It is a simple exercise to show that

$$
\begin{gathered}
\frac{1}{\mu(c+1-\mu)}\left[(c-\mu)(\mu+1)\left(\frac{F(z)}{z}\right)^{\mu}-(c-2 \mu) \frac{d}{d z}\left(z\left(\frac{F(z)}{z}\right)^{\mu}\right)\right. \\
\left.-z \frac{d^{2}}{d z^{2}}\left(z\left(\frac{F(z)}{z}\right)^{\mu}\right)\right]=\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z) .
\end{gathered}
$$

If we set

$$
\begin{equation*}
P(z)=z\left(\frac{F(z)}{z}\right)^{\mu} \tag{5.4}
\end{equation*}
$$

then, from the last equation and the assumption $f \in \mathcal{U}_{n}(\lambda, \mu)$, it follows that $P(z)$ satisfies the second order differential equation

$$
\begin{equation*}
\frac{(c-\mu)(\mu+1)}{\mu(c+1-\mu)} \frac{P(z)}{z}-\frac{c-2 \mu}{\mu(c+1-\mu)} P^{\prime}(z)-\frac{1}{\mu(c+1-\mu)} z P^{\prime \prime}(z)=1+\lambda w(z) \tag{5.5}
\end{equation*}
$$

where $w \in \mathcal{B}_{n}$. If we take $P(z)=z+\sum_{k=n+1}^{\infty} c_{k} z^{k}$ and $w(z)=\sum_{k=n}^{\infty} w_{k} z^{k}$ in (5.5), then by equating the coefficients of z^{n} we get the representations

$$
\begin{equation*}
\frac{P(z)}{z}=1-\frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right)\left(1-t^{-(c+1) / \mu}\right) d t \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
P^{\prime}(z)=1-\frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right)\left(\mu+1+(c-\mu) t^{-(c+1) / \mu}\right) d t \tag{5.7}
\end{equation*}
$$

In view of the equality

$$
\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)=\left(\frac{z}{f(z)}\right)^{\mu}-\frac{z}{\mu}\left\{\left(\frac{z}{f(z)}\right)^{\mu}\right\}^{\prime}=1+\lambda w(z)
$$

where $w \in \mathcal{B}_{n}$, it follows that (see Section 2)

$$
\left(\frac{z}{f(z)}\right)^{\mu}=1-\lambda \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right) d t
$$

From (5.4) we have

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}-1=\frac{1}{\mu}\left(\frac{z P^{\prime}(z)}{P(z)}-1\right) . \tag{5.8}
\end{equation*}
$$

Using (5.6), (5.7) and (5.8), we compute that

$$
\begin{aligned}
& \frac{z F^{\prime}(z)}{F(z)}-1 \\
& =\frac{1}{\mu}\left[-1+\frac{1-\frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right)\left(\mu+1+(c-\mu) t^{-(c+1) / \mu}\right) d t}{1-\frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right)\left(1-t^{-(c+1) / \mu}\right) d t}\right] \\
& =-\frac{\frac{\lambda(c+1-\mu)}{\mu(c+1)} \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right)\left(\mu+(c+1-\mu) t^{-(c+1) / \mu}\right) d t}{1-\frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} w\left(t^{-1 / \mu} z\right)\left(1-t^{-(c+1) / \mu}\right) d t}
\end{aligned}
$$

so that

$$
\begin{align*}
\left|\frac{z F^{\prime}(z)}{F(z)}-1\right|< & \frac{\frac{\lambda(c+1-\mu)}{\mu(c+1)} \int_{1}^{\infty} t^{-n / \mu}\left(\mu+(c+1-\mu) t^{-(c+1) / \mu}\right) d t}{1-\frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} t^{-n / \mu}\left(1-t^{-(c+1) / \mu}\right) d t} \\
& <\frac{\frac{\lambda(c+1-\mu)}{c+1}\left[\frac{\mu}{n-\mu}+\frac{c+1-\mu}{c+1+n-\mu}\right]}{1-\frac{\lambda \mu(c+1-\mu)}{c+1}\left[\frac{1}{n-\mu}-\frac{1}{c+1+n-\mu}\right]} \leq 1-\alpha, \quad \text { by } \tag{5.3}
\end{align*}
$$

This completes the proof.
The case $\mu=1$ of Theorem 5.2 has been obtained in [11] (see also [12] for further discussion on this operator for $\mu=1$). Taking $\alpha=0$ in Theorem 5.2 we have

Corollary 5.9. Let $n \geq 1, \mu \in(0, n), c+1-\mu>0$ and $f \in \mathcal{U}_{n}(\lambda, \mu)$, for some λ such that $0<\lambda \leq \frac{(n-\mu)(c+1-\mu+n)}{(c+1-\mu)(n+\mu)}$. Then F defined in (5.1) satisfies the condition

$$
\left|\frac{z F^{\prime}(z)}{F(z)}-1\right|<1, \quad z \in \Delta
$$

and, in particular, F is starlike in Δ.
In particular, if $f(z)=z+a_{n+1} z^{n+1}+\cdots \in \mathcal{U}(\lambda)$ for some $0<\lambda \leq n-1$ and $n>1$, then

$$
\int_{0}^{z} \frac{t}{f(t)} d t
$$

is starlike in Δ.
We end the paper with the following remark: It would be interesting to know whether the bounds/estimates in Theorems 3.1, 3.3, 3.4 and 5.2 are all sharp.

References

[1] I.E. Bazilevič: On a case of integrability in quadratures of the LöewnerKufarev equation, Mat. Sb. 37(79)(1955), 471-476.
[2] D. Brannan and W. Kirwan: On some classes of bounded univalent functions, J. London Math. Soc. (2) 1(1969), 431-443.
[3] P. L. Duren: Univalent functions (Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo), Springer-Verlag, 1983.
[4] A.W. Goodman: Univalent functions, Vol. I \& II, Mariner Publ. Co. Tampa, Florida 1983.
[5] M. Obradović: A class of univalent functions, Hokkaido Mathematical Journal 27(1998), 329-335.
[6] M. Obradović and S. Ponnusamy: New criteria and distortion theorems for univalent functions, Complex Variables: Theory and Appl. 44(2001), 173191. (Also Reports of the Department of Mathematics, Preprint 190, June 1998, University of Helsinki, Finland).
[7] M. Obradović, S. Ponnusamy, V. Singh and P. Vasundhra: Univalency, starlikeness and convexity applied to certain classes of rational functions, Analysis (Munich) 22(3)(2002), 225-242.
[8] S. Ozaki and M. Nunokawa: The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33(2)(1972), 392-394.
[9] S. Ponnusamy: Pólya-Schoenberg conjecture by Carathéodory functions, J. London Math. Soc. (2)51(1995), 93-104.
[10] S. Ponnusamy and V. Singh: Convolution properties of some classes analytic functions, Zapiski Nauchnych Seminarov POMI 226(1996), 138-154.
[11] S. Ponnusamy, V. Singh and P. Vasundhra: Starlikeness and convexity of an integral transform, Integral Transforms and Special Functions, 15 (3)(2004), 267-280.
[12] S. Ponnusamy and P. Vasundhra: Univalent functions with missing Taylor coefficients, Hokkaido Mathematical Journal, 33(2004), 341-355.
[13] S. Ponnusamy and P. Vasundhra: Criteria for univalence, starlikeness and convexity, Annales Polonici Mathematici, To appear.
[14] St. Ruscheweyh: Convolutions in geometric function theory, Les Presses de l'Université de Montréal, Montréal, 1982.
[15] T. Sheil-Small: Some remarks on Bazilevič functions, J. Analyse Math. 43 (1983/84), 1-11.

Department of Mathematics, Indian Institute of Technology IIT-Madras, Chennai- 600 036, India email: samy@iitm.ac.in

Department of Mathematics
Mahila Maha Vidyalaya (MMV),
Banaras Hindu University, Banaras 221 005, India
e-mail: pravatis@yahoo.co.in

