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Abstract

Hyperbolic monogenics are introduced as eigenfunctions of the hyperbolic
angular Dirac operator Γ. Explicit formulae for the Taylor series of these
functions are given, as well as integral formulae related to the hyperbolic
angular Dirac operator.

1 Introduction

In this paper we consider a projective model for the m-dimensional hyperbolic unit
ball, realized as the manifold of rays inside the future cone in the real orthogonal
space R1,m (see section 5). Using Clifford algebras (see section 2), it is possible
to define a Clifford algebra structure on this manifold. This structure enables us
to define the Dirac operator on sections of homogeneous line bundles (section 6).
In previous papers (see e.g. [7] and [9]) we have calculated the fundamental solu-
tion for this operator together with a class of null-solutions. In this paper we will
reformulate these results in terms of Gegenbauer functions (see section 3) leading
to a function theory for the hyperbolic angular Dirac operator Γ, which arises as
a first order differential operator on the hyperbolic unit ball. Indeed, in section 7
we prove some important integral formulae (such as Stokes’ theorem and Cauchy’s
representation formula) and in section 8 we give an explicit formula for the Taylor
series of eigenfunctions of this hyperbolic Dirac operator Γ. In the construction of
this Taylor series, we make use of the Euclidean Cauchy kernel, which is defined
in section 4 where we give an overview of the most important function theoretical
results concerning the Dirac operator on flat Euclidean space Rm.
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The main results of this paper were obtained by Ryan and his collaborators and
Van Lancker for the case of the m-dimensional sphere (i.e. the positively curved
space) in references [11], [15] and [16]. As both the hyperbolic unit ball and the
sphere are real submanifolds of the complex sphere in Cm, one can argue that these
results extend to the hyperbolic situation via holomorphic continuation. However,
the authors did not fully exploit the projective nature of the model for Riemannian
spaces, in contrast to the approach followed in the present paper. The present ap-
proach can also be translated to the spherical situation, offering a way to reinterpret
spherical monogenics as modulated versions of monogenic functions on Rm.

One particular interesting case of the operator studied in this paper is the conformal
Dirac operator on the hyperbolic unit ball, invariant under the group Spin(2,m) or
the conformal group, for which we refer to [11] and [12]. For the more general case
of arbitrary manifolds, this has been done by Calderbank and Cnops, see references
[2] and [4]. By considering the subgroup Spin(1,m) of the conformal group one
obtains a richer class of functions, the so-called hyperbolic monogenics, which are
the subject of this paper.

2 Clifford Algebras

Throughout this paper two different Clifford algebras will be used : R0,m and R1,m.
Let us therefore start with the definition of the general universal Clifford algebra
Rp,q. Let (e1, · · · , em) be an orthonormal basis for the real orthogonal space Rp,q,
where p + q = m, endowed with the inner product ~x · ~y =

∑p
k=1 xiyi −

∑p+q
k=p+1 xiyi.

The Clifford algebra Rp,q is the 2m-dimensional real linear associative algebra defined
by the following multiplication rules :

e2i = 1 i = 1, . . . , p
e2i = −1 i = p+ 1, . . . , p+ q = m
eiej + ejei = 0 i 6= j = 1 . . .m

An element of Rp,q is called a Clifford number; it has the form a =
∑

A⊂M aAeA

where aA ∈ R and M = {1, · · · ,m}, eA = ei1 · · · eik for A = {i1, · · · , ik} with
1 ≤ i1 < · · · < ik ≤ m and eφ = 1. If A has k elements, eA is called a k-vector. The
space of k-vectors is denoted by R(k)

p,q . If [a]k is the projection of the Clifford number

a on R(k)
p,q , then

a =
m∑

k=0

[a]k , ∀a ∈ Rp,q .

The subspace R(+)
p,q =

∑
k even⊕R(k)

p,q is a subalgebra of Rp,q, called the even subalge-

bra; it is isomorphic with Rq,p−1
∼= Rp,q−1. For two 1-vectors ~x, ~y ∈ R(1)

p,q - or vectors
for short - we define the inner and outer product as follows :{

~x · ~y = 1
2
(~x~y + ~y~x)

~x ∧ ~y = 1
2
(~x~y − ~y~x)

On the Clifford algebra Rp,q we have three important involutory (anti-)automorphisms.
For all a, b ∈ Rp,q and λ ∈ R we define :
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1. the main involution a 7→ ã

ẽi = −ei , (ab)˜= ãb̃

2. the reversion a 7→ a∗

e∗i = ei , (ab)∗ = b∗a∗

3. the conjugation (also known as bar-map) a 7→ ā

ēi = −ei , (ab) = b̄ā

The following subgroups of Rp,q are of interest : the Clifford group Γ(p, q) defined as
the set of all invertible elements g ∈ Rp,q such that for all ~x ∈ R(1)

p,q : g~x(g̃)−1 ∈ R(1)
p,q,

the Pin group Pin(p, q) defined as the quotient group Γ(p, q)/R+ and the Spin group
Spin(p, q) = Pin(p, q) ∩ R(+)

p,q .

For each element s ∈ Pin(p, q) the map χ(s) : Rp,q 7→ Rp,q : ~x 7→ s~xs induces
a map from Rp,q onto itself. In this way Pin(p, q) defines a double covering of
the orthogonal group O(p, q) whereas Spin(p, q) defines a double covering of the
orthogonal group SO(p, q).

3 The Gegenbauer Functions

As we will frequently use Gegenbauer functions in this paper, we give a brief intro-
duction to these special functions.

The Gegenbauer functions Cµ
ν (z) andDµ

ν (z) are holomorphic functions in the z-plane
cut along the real axis from −∞ to 1, and solutions in this region of Gegenbauer’s
differential equation

(1− z2)
d2f

dz2
− (2ν + 1)z

df

dz
+ µ(µ+ 2ν)f = 0 , µ, ν ∈ C .

The Gegenbauer functions are defined in terms of the associated Legendre functions
by :

Cµ
ν (z) = π

1
2 2−µ+ 1

2
Γ(ν + 2µ)

Γ(µ)Γ(1 + ν)
(z2 − 1)

1
4
−µ

2P
−µ+ 1

2

ν+µ− 1
2

(z) (1)

Dµ
ν (z) = π−

1
2 e2iπ(µ− 1

4
)2−µ+ 1

2
Γ(ν + 2µ)

Γ(µ)Γ(1 + ν)
(z2 − 1)

1
4
−µ

2Q
−µ+ 1

2

ν+µ− 1
2

(z) (2)

The Gegenbauer function Cµ
ν (z) has zeroes for µ ∈ −N and simple poles for ν+2µ ∈

−N, while the Gegenbauer function Dµ
ν (z) has zeroes for µ ∈ −N and simple poles

for ν + 2µ ∈ −N (see e.g. [6]).
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The functions Dµ
ν (z) and Cµ

ν (z) satisfy the same recurrence relations, see e.g. [10].
Some of these relations that will be used in the sequel are listed here :

d

dz
Cµ

ν (z) = 2µCµ+1
ν−1 (z) . (3)

νCµ
ν (z) = 2µ[zCµ+1

ν−1 (z)− Cµ+1
ν−2 (z)] . (4)

(ν + 2µ)Cµ
ν (z) = 2µ[Cµ+1

ν (z)− zCµ+1
ν−1 (z)] (5)

For ν = n ∈ N, the Gegenbauer function of the second kind Cµ
ν (z) reduces to the

classical Gegenbauer polynomial Cµ
n(t), defined as the coefficient of zn in the power

series expansion of (1− 2tz + z2)−µ :

(1− 2tz + z2)−µ =
∞∑

n=0

Cµ
n(t)zn , |z| < |t± (t2 − 1)

1
2 | (6)

4 The Euclidean Cauchy Kernel E(~x) on R0,m

Consider the Clifford algebra R0,m generated by an orthonormal basis (e1, · · · , em)
for R0,m. The Dirac operator ∂~x on R0,m is defined as

∑m
i=1 ei∂xi

and a polar decom-

position for this operator is given by ∂~x = ~ξ(∂r + 1
r
Γ~ξ) with ~x = r~ξ, ~ξ belonging to

the unit sphere Sm−1 in Rm, and with Γ~ξ = −~x ∧ ∂~x the spherical Dirac operator

on Sm−1. A function f(~x) defined in an open set Ω ⊂ Rm such that ∂~xf = 0 in Ω
is called a monogenic function in Ω. The concept of monogenic functions lies at the
very heart of Clifford analysis and has been studied in extenso, see e.g. [1] and [5].

A R0,m-valued C∞ function Pk(~ξ) on Sm−1 is called an inner spherical monogenic of
order k if it is the restriction to the unit sphere of a polynomial monogenic function
of order k on Rm. Inner spherical monogenics are global eigenfunctions of the sphe-
rical Dirac operator, with eigenvalue Γ~ξPk = −kPk. A C∞ function Qk(~ξ) on Sm−1

is an outer spherical monogenic of order k if it is the restriction to the unit sphere
of a monogenic function on Rm \ {~0} which is homogeneous of degree (1− k −m).
Outer spherical monogenics are also eigenfunctions of the spherical Dirac operator,
satisfying Γ~ξQk = (k+m−1)Qk. The set of inner (resp. outer) spherical monogenics
provided with the obvious laws of addition and (right) multiplication with Clifford
numbers is a right Clifford-module, denoted as M+(k) (resp. M−(k)). Inner and

outer spherical monogenics are related : Pk(~ξ) ∈ M+(k) ⇒ ~ξPk(~ξ) ∈ M−(k) and

Qk(~ξ) ∈M−(k) ⇒ ~ξQk(~ξ) ∈M+(k).

The fundamental solution for the Euclidean Dirac operator ∂~x is the so-called Cauchy
kernel E(~x), defined as :

E(~x) =
1

Am

~x

|~x|m
,
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with Am = 2πm/2

Γ(m
2 )

the area of the unit sphere Sm−1 in Rm. The Cauchy kernel

is both left and right monogenic in Rm \ {~0} w.r.t. the Dirac operator ∂~x and
∂~xE(~x) = −δ(~x) in distributional sense. As the Dirac operator ∂~x is invariant under
translations, we also have that ∂~xE(~x− ~y) = −δ(~x− ~y). A series representation for
E(~x− ~y) can easily be found as follows :

E(~x− ~y) =
1

Am

~x− ~y

|~x− ~y|m
=

1

Am

1

m− 2
∂~y

1

|~x− ~y|m−2
.

With ~x = |~x| ~ξ, ~y = |~y| ~η and putting r = |~x|/|~y| and

t =< ~ξ, ~η >= −~ξ · ~η =
m∑

j=1

ξjηj

the standard Euclidian inner product of ~ξ and ~η ∈ Sm−1, one can easily verify that
for |~x| < |~y|

1

|~x− ~y|m−2
= |~y|2−m (1− 2tr + r2)−(m

2
−1) .

In view of (6), we find :

∂~y
1

|~x− ~y|m−2
= ~η

∑
k

{
(2−m− k)C

m
2
−1

k (t) + Γ~η (t)
d

dt

(
C

m
2
−1

k (t)
)} |~x|k

|~y|m+k−1
.

Using relations (4) and (5) and the fact that Γ~η (t) = ~ξ ∧ ~η, we obtain :

E(~x− ~y) = − 1

Am

∞∑
k=0

|~x|k

|~y|k+m−1

{
C

m
2

k (t)~η − C
m
2

k−1(t)
~ξ
}

= − 1

Am

∞∑
k=0

|~x|k

|~y|k+m−1
Ck(~η, ~ξ) , (7)

where we have introduced the functions Ck(~η, ~ξ) on Sm−1 × Sm−1 as

Ck(~η, ~ξ) = C
m
2

k (< ~ξ, ~η >)~η − C
m
2

k−1(<
~ξ, ~η >)~ξ . (8)

For all k ∈ N the function Ck(~η, ~ξ) is an inner spherical monogenic of order k with
respect to the Dirac operator ∂~x and an outer spherical monogenic of order k with
respect to the Dirac operator ∂~y, whence :

Γ~ξ Ck(~η, ~ξ) = −kCk(~η, ~ξ)

Γ~η Ck(~η, ~ξ) = (k +m− 1)Ck(~η, ~ξ)

Each f ∈ L2(S
m−1) can be decomposed as

f(~ξ) =
∞∑

k=0

P (k)f(~ξ) +Q(k)f(~ξ)
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where the series converges in L2-sense on Sm−1. The projections P (k)f and Q(k)f
of the function f on the spaces M+(k) and M−(k) of inner and outer spherical
monogenics of order k are given by :

P (k)f(~η) = − 1

Am

~η
∫

Sm−1
Ck(~η, ~ξ)f(~ξ)dS(~ξ)

Q(k)f(~η) = − 1

Am

∫
Sm−1

Ck(~η, ~ξ)~ξf(~ξ)dS(~ξ)

For further details, we refer the reader to [5].

5 Hyperbolic Space

In this section a model for the m-dimensional hyperbolic unit ball is introduced.
Consider the real orthogonal space R1,m of signature (1,m) with an orthonormal
basis (ε, e1, · · · , em). Note that we prefer to make a clear distinction between the
time unit vector ε and the spatial unit vectors ei. Space-time vectors will be denoted
by X = εT + ~X, again making a clear distinction between the time co-ordinate T
and the spatial co-ordinates ~X = (X1, · · · , Xm). The quadratic form associated
with the real orthogonal space R1,m is given by :

Q(X) = T 2 − | ~X|2 , for all X ∈ R1,m .

The norm |X| of a space-time vector X is defined as Q(X)
1
2 = (T 2 − | ~X|2) 1

2 . With
each space-time vector X ∈ R1,m we associate the unit space-time vector ξ, defined
as

ξ =
X

|X|
=

εT + ~X

(T 2 − | ~X|2) 1
2

.

The null cone NC is then defined as the set of all space-time vectors X satisfying
Q(X) = 0, and this NC separates the time-like region TLR (space-time vectors X
for whichQ(X) > 0) from the space-like region SLR (space-time vectorsX for which
Q(X) < 0). The TLR is the union of the future cone FC = {X : Q(X) > 0, T > 0}
and the past cone PC = {X : Q(X) > 0, T < 0}. In what follows we will often

encounter FCT , defined as FCT = {X = εT + ~X ∈ FC : ~X 6= ~0} or the future cone
FC minus the time-axis. The hyperboloid H+ is defined as {ξ ∈ FC : |ξ| = 1}.

A projective model for the m-dimensional hyperbolic unit ball is obtained by iden-
tifying the rays inside FC with points on the hyperbolic unit ball. Other models
for the m-dimensional hyperbolic unit ball are then readily obtained by intersecting
the manifold of rays

ray(FC) = {λX : X ∈ FC, λ ∈ R+}

inside FC with an arbitrary surface Σ inside FC, such that each ray intersects Σ
in a unique point.
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6 Clifford Analysis on the Hyperbolic Unit Ball

Consider the real Clifford algebra R1,m generated by (ε, e1, · · · , em), the orthonormal
basis for the real orthogonal space R1,m. The Dirac operator on R1,m is defined as
∂X = ε∂T − ∂ ~X and it can be decomposed as ∂X = ξ(∂|X| +

1
|X|Γ) with X = |X|ξ,

ξ belonging to H+ and with Γ = X ∧ ∂X the hyperbolic angular operator tangent
to H+. This operator satisfies Γ(ξ · η) = ξ ∧ η and ξΓξ + Γ = m (see e.g. [8]).
Introducing the Euler operator EX on R1,m as EX = T∂T +

∑m
i=1Xi∂Xi

we also have
that X∂X = EX + Γ.
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Due to the projective nature of our model for the hyperbolic unit ball, nullsolutions
for the Dirac operator ∂X on the hyperbolic unit ball have to be defined in such a way
that they correspond to an invariant object on ray(FC), which is the true hyperbolic
space. This can be done by considering functions satisfying a fixed homogeneity
condition of the form f(λX) = λαf(X), α ∈ R. Such functions are sections of
homogeneous bundles over the manifold of rays issuing from the origin, defined as the
equivalence classes of the equivalence relation (X, c) ∼ (λX, λαc) on (R1,m \ {0})×
R1,m, with λ > 0. Hence we define hyperbolic monogenic functions as nullsolutions
for ∂X which are α-homogeneous.

Each hyperbolic monogenic function F (X) after restriction to H+ gives rise to an
eigenfunction F (ξ) of Γ and vice versa : each eigenfunction F (ξ) of the hyperbolic
angular operator can be extended to a hyperbolic monogenic function F (X). Indeed,
if F (X) is an α-homogeneous solution of the Dirac operator ∂X for all X ∈ FC{

∂XF (X) = 0
EXF (X) = αF (X)

the restriction of F (X) to H+ yields an eigenfunction of the angular operator Γ :

ξ(Γ + α)F (ξ) = 0

Conversely, an eigenfunction F (ξ) for Γ with eigenvalue α gives a hyperbolic mono-
genic function F (X) = |X|αF (ξ) which is homogeneous of degree α.

Let us therefore introduce the following definition :

Definition 1 : Let Ω ⊂ H+ be open, let

R+Ω = {X ∈ FC : X = λξ, λ ∈ R and ξ ∈ Ω}

be the open half cone over Ω and let α ∈ C. Then one puts :

Hα(Ω) = {F ∈ C1(Ω) : ξ(Γ + α)F = 0 in Ω}
Hα(R+Ω) = {F ∈ C1(R+Ω) : EF = αF and ∂XF = 0 in R+Ω}

Provided with the obvious laws for addition and multiplication with Clifford numbers
both sets are right R1,m-modules. Elements of Hα(R+Ω) are R1,m-valued hyperbolic
monogenic functions in R+Ω and elements of Hα(Ω) are the restrictions to Ω ⊂ H+

of hyperbolic monogenic functions in R+Ω. From now on we will label these latter
functions as hyperbolic monogenics :

Definition 2 : Elements of Hα(Ω) are called hyperbolic monogenics in Ω ⊂ H+.

In [7] it was proved that each inner spherical monogenic on R0,m can be used to
construct an element of Hα(FC), whereas each outer spherical monogenic on R0,m

can be used to construct an element of Hα(FCT ). Before rephrasing this theorem,
let us introduce the following definition :
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Definition 3 : For all X = εT + ~X ∈ FC the function Mod (α, k,X) is defined as

Mod (α, k,X) = F1

 | ~X|2
T 2

+
k − α

2k +m

~Xε

T
F2

 | ~X|2
T 2


where

F1(t) = F

(
1 + k − α

2
,
k − α

2
, k +

m

2
; t

)

and

F2(t) = F

(
1 + k − α

2
,
2 + k − α

2
, 1 + k +

m

2
; t

)

For the proof of the following theorem we refer to [7] :

Theorem 1 : Let Pk(~ξ) ∈M+(k) be an inner spherical monogenic on R0,m and let

α ∈ C. Then the function Pα,k(X) given for all X = εT + ~X ∈ FC by

Pα,k(X) = TαMod (α, k,X)Pk

 ~X

T


belongs to Hα(FC).

Using the definition for the Gegenbauer function Cµ
ν (z), and writing

X = |X|ξ = |X|
(
τε+ (τ 2 − 1)

1
2 ~ξ

)
with τ =

T

(T 2 − | ~X|2) 1
2

and ~ξ ∈ Sm−1

Theorem 1 can be reformulated as follows :

Theorem 1(bis) : Let Pk(~ξ) ∈ M+(k) be an inner spherical monogenic on R0,m

and let α ∈ C. Then the function Pα,k(ξ) for all ξ ∈ H+ given by

Pα,k(ξ) =
Γ(1 + α− k)Γ(2k +m)

Γ(α+ k +m)
(τ 2 − 1)

k
2

{
C

k+m+1
2

α−k (τ)− C
k+m+1

2
α−k−1 (τ)ξε

}
Pk

(
~ξ
)

belongs to Hα(H+)

Note that in the above expression the poles of Γ(α + k + m) are cancelled by the
poles of the Gegenbauer functions and that the poles of Γ(1 + α− k) are cancelled
by the zeroes of the Gegenbauer functions, whence no restrictions on the complex
parameter α are to be made.

Recalling the definition of FCT as the future cone minus the time-axis, we have a
similar result for the outer spherical monogenics on R0,m :
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Theorem 2 : Let Qk(~ξ) ∈M−(k) be an outer spherical monogenic on R0,m and let

α ∈ C. Then the function Q′
α,k(X) for all X = εT + ~X ∈ FC given by

Q′
α,k(X) = TαMod (α, 1− k −m,X)Qk

 ~X

T


belongs to Hα(FCT ).

Note that Q′
α,k(X) ∈ Hα(FCT ), constructed by means of the outer spherical mono-

genic Qk(~ξ) ∈M−(k) on R0,m, is not unique in the sense that one can always add an
arbitrary element of Hα(FC) without changing the singular behaviour of Q′

α,k(X)

for ~X = ~0.

This enables us to add a particular null-solution P ′
α,k(X) ∈ Hα(FC) to Q′

α,k(X) in
order to obtain a function Qα,k(X) ∈ Hα(FCT ) satisfying a boundary condition ”at
infinity”. We will explain what is meant by that in what follows.

This particular null-solution P ′
α,k(X) is constructed by means of the inner spherical

monogenic1 Pk(~ξ) = ε~ξQk(~ξ) associated with Qk(~ξ) ∈M−(k), hereby using Theorem
1 :

P ′
α,k(X) = TαMod (α, k,X)

( |X|
T

)k

ε~ξQk(~ξ)


We then introduce Qα,k(X) ∈ Hα(FCT ) as follows :

Qα,k(X) = Q′
α,k(X)− 21−2k−m

Γ
(
1− k − m

2

)
Γ
(
k + m

2

) Γ(α+ k +m)

Γ(α− k + 1)
P ′

α,k(X)

Theorem 2 can now also be reformulated :

Theorem 2(bis) : Let Qk(~ξ) ∈ M−(k) be an outer spherical monogenic on R0,m

and let α ∈ C. Then the function Qα,k(X) given for all X = εT + ~X ∈ FC and
α /∈ −N− k −m by

Qα,k(ξ) =
2π

1
2

eiπ(k+m+1
2 )

Γ
(
k + m+1

2

)
Γ
(
k + m

2

) (τ 2 − 1)
k
2

{
D

k+m+1
2

α−k−1 (τ)ξε−D
k+m+1

2
α−k (τ)

}
~ξεQk

(
~ξ
)

belongs to Hα(FCT ).

Note that the above expression has simple poles at α = −m− k−n, n ∈ N, whence
these values for the parameter α are excluded.

1Notice the fact that we have multiplied the inner spherical monogenic Pk(~ξ) on R0,m with ε,
but this does not change monogeneity w.r.t. the operator ∂~x
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From Theorem 2(bis) it is clear that for τ →∞ the function Qα,k(ξ) behaves like

Qα,k(ξ) ∼
{

ξε

τα+m
− 1

τα+m+1

}
~ξεQk

(
~ξ
)

Because τ → ∞ is equivalent to | ~X| → T , it becomes clear what is meant by the
boundary condition at infinity : for α +m > 0, the function Qα,k(ξ) disappears on
the null-cone NC. This condition must be interpreted as the hyperbolic counterpart
of the demand that the Cauchy kernel on R0,m tends to zero at infinity in order to
be uniquely determined.

Choosing k = 0, which is equivalent with saying that we choose Qk(~x) = E(~x) to be
the Cauchy kernel on R0,m, we find the fundamental solution for the Dirac equation
on the hyperbolic unit ball (see references [8] and [9]), defined for all α+m /∈ −N :

Eα(X) = |X|α e
−iπ m+1

2

π
m−1

2

Γ
(
m+ 1

2

) [
D

m+1
2

α−1 (τ)ξ −D
m+1

2
α (τ)ε

]
.

Hence, we have for all X = |X|ξ ∈ FC :

Eα(X) = |X|αEα(ξ, ε)

where for arbitrary ξ and η ∈ H+, we define the function Eα(ξ, η), α+m /∈ −N, by

Eα(ξ, η) =
e−iπ m+1

2

π
m−1

2

Γ
(
m+ 1

2

) [
D

m+1
2

α−1 (ξ · η)ξ −D
m+1

2
α (ξ · η)η

]

Note that Eα(ξ, ε) can also be written as

Eα(ξ, ε) =
e−iπ m−1

2

2π
m−1

2

Γ
(
m− 1

2

)
ξ (Γ + 1 + α)D

m−1
2

α+1 (τ) , (9)

a relation that will be used in the sequel.

The function Eα(ξ, ε) is an element of Hα(H+ \ {ε}) and as a fundamental solution
of the operator ξ(Γ + α) it satisfies

ξ(Γξ + α)Eα(ξ, ε) = δ(ξ − ε) (10)

where the delta-function δ(ξ − ε) on the hyperboloid H+ in ε has to be interpreted
as the delta-function on the plane tangent to H+ in ε, when considering the radial
projection on this tangent plane as a local co-ordinate system for the hyperbolic
manifold in the neighbourhood of ε ∈ H+. This radial projection is defined as the

map sending an arbitrary vector X = εT + ~X ∈ FC to the intersection (1,
~X
T

) of the
tangent plane to H+ in ε and the ray through X.
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7 Integral Formulae for the Operator ξ(Γ + α)

Consider two arbitrary vectors ξ and η ∈ H+. In what follows we will use, depending
on the problem, two different expansions for these hyperbolic unit vectors :

ξ = τε+ (τ 2 − 1)1/2~ξ = ε cosh θ + ~ξ sinh θ
η = σε+ (σ2 − 1)1/2~η = ε coshϕ+ ~η sinhϕ

with ~ξ, ~η ∈ Sm−1 and θ, ϕ ∈ R.

According to (10) we have for arbitrary ξ and η ∈ H+ and α /∈ −m− N :

ξ(Γξ + α)Eα(ξ, η) = δ(ξ − η) . (11)

Let us now put β = −α − m. Using the following property of the Gegenbauer
function Dµ

ν (τ) (see e.g. [6]),

Dµ
ν (τ) = Dµ

−ν−2µ(τ) +
sin(ν + µ)π

sin(νπ)
eiµπCµ

ν (τ) ,

together with the fact that

ξ(Γξ + β)

[
C

m+1
2

β−1 (ξ · η)ξ − C
m+1

2
β (ξ · η)η

]
= 0

one can use the conjugation on R1,m to deduce from (11) that

Eα(ξ, η)(Γη − β)η = δ(ξ − η) . (12)

Note that the foregoing relation implies that Eα(X, Y ) is monogenic with respect
to the Dirac operator ∂Y acting from the right, and homogeneous of degree β :
Eα(ξ, Y ) = |Y |βEα(ξ, η).

In order to prove integral formulae for the Dirac operator, Stokes’ theorem is funda-
mental. To prove Stokes’ theorem for the Dirac operator ∂~x on the Clifford algebra
R0,m, one starts from the following identity on Rm (see [5]) :

d(f dσ~x g) = ((f∂~x)g + f(∂~xg))dV (~x) , (13)

with dV (~x) the volume element on Rm, ∂~x the Dirac operator on the orthogonal space
R0,m and dσ = ∂~xcdV (~x) the oriented surface element (the symbol c denoting the
contraction). What we need here is a homogeneous version of this identity, valid on
R1,m. Therefore, we first define the Leray-form L(X, dX) and a homogeneous version
of the dσ-form as contractions of respectively the volume-form dX0 · · · dXm and the
dσX-form on R1,m with the Euler-operator on R1,m (in the following formulae, X0 is
to be replaced by the time-variable T ) :

Definition 4 : The Leray-form L(X, dX) is defined as

L(X, dX) = EcdX0dX1 · · · dXm

=
m∑

j=0

(−1)jXjdXĵ
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Definition 5 : The homogeneous version of the dσ-form is given by

dΣX = EcdσX

=
∑
j<k

(−1)1+j+k(ejXk − ekXj)dXĵ,k̂

where the notation ĵ indicates that this index is omitted in the summation.

Under the transformation X → λX, dX → λdX +Xdλ both objects transform in
a homogeneous manner, which means they are well-defined on the hyperboloid H+.
The homogeneous version of identity (13) on Rm is then given by Cauchy-Pompeju’s
Theorem (see e.g. [3]) :

Theorem 3 (Cauchy-Pompeju) : For two C1-functions F (X) and G(X) on FC,
with F (X) = |X|βF (ξ), G(X) = |X|αG(ξ) and α+ β +m = 0, one has :

d(FdΣXG) = −
[
(F∂X)G+ F (∂XG)

]
L(X, dX)

As both sides of this equation are homogeneous of degree zero if α + β + m = 0,
this result is essentially valid on Ray(FC) and thus can be realized on an arbitrary
surface inside FC, in particular on H+. Let us therefore consider an open subset
Ω of H+ and let C ⊂ Ω be compact with smooth boundary ∂C. We then have the
following theorems :

Theorem 4 (Stokes) : Consider two homogeneous functions F,G ∈ C1(Ω), with
F (X) = |X|βF (ξ), G(X) = |X|αG(ξ) and let α+ β +m = 0. Then :∫

∂C
FdΣξG =

∫
C

[
(FΓξ)ξG+ FΓξ(ξG)

]
L(ξ, dξ)

=
∫

C

[
(F (Γξ − β))ξG− Fξ(Γξ + α)G

]
L(ξ, dξ)

Theorem 5 (Cauchy) : Let F ∈ Hα(Ω) and let α+ β +m = 0. Then :∫
∂C
Eα(η, ξ)dΣξF (ξ) =

∫
C
(Eα(η, ξ)(Γξ − β))ξF (ξ)L(ξ, dξ)

=

 F (η) if η ∈
◦
C

0 if η ∈ Ω \ C

Note that we have swapped the roles of ξ and η in Cauchy’s theorem.

8 The Taylor Series on the Hyperbolic Unit Ball

In this section the Taylor series for hyperbolic monogenics on SO(m)-invariant sub-
domains Ωε of H+ is established. An SO(m)-invariant subdomain Ωε of H+ is
defined as an open subset Ωε ⊂ H+ such that the subgroup SO(m)ε of SO(1,m)
fixing ε ∈ H+, leaves the subset Ωε invariant. We will introduce a decomposition for
the fundamental solution Eα(ξ, η) using the Cauchy kernel on R0,m and Theorems
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1(bis) and 2(bis) and we will then prove this formula using an addition formula
for the Gegenbauer functions. We will eventually use Cauchy’s theorem to find the
Taylor series for functions belonging to Hα(Ωε).

From the previous section it is clear that the fundamental solution for the operator
η(Γη + α) is the restriction to the hyperboloid H+ of a function Eα(Y,X) which is
α-homogeneous in Y and monogenic with respect to the operator ∂Y acting from
the left, and β-homogeneous in X and monogenic with respect to the operator ∂X

acting from the right (with α + β + m = 0). It is therefore natural to consider
the Cauchy kernel E(~y − ~x) on R0,m and to modulate this function, by means of
Theorems 1(bis) and 2(bis), to a function Eα(η, ξ).

Consider the series expansion (7) for E(~y− ~x), valid for all |~y| > |~x|. Since Ck(~η, ~ξ)
is an outer spherical monogenic with respect to the variable ~η for each k ∈ N, we
can use Theorem 2(bis) to obtain a hyperbolic monogenic on H+ \ {ε}. Denoting

η ∈ H+ as σε+ (σ2 − 1)
1
2~η, this function is given, for all η 6= ε, by

2π
1
2

eiπ(k+m+1
2 )

Γ
(
k + m+1

2

)
Γ
(
k + m

2

) (σ2 − 1)
k
2

{
D

k+m+1
2

α−k−1 (σ)ηε−D
k+m+1

2
α−k (σ)

}
~ηεC(~η, ~ξ)

Using the recurrence relations (4) and (5) this can also be written as

η
π

1
2

eiπ(k+m−1
2 )

Γ
(
k + m−1

2

)
Γ
(
k + m

2

) (σ2 − 1)
k
2 ×

{
(1 + α− k)D

k+m−1
2

1+α−k (σ) + (2k +m− 1)(σ2 − 1)1/2D
k+m+1

2
α−k (σ)~ηε

}
~ηC(~η, ~ξ)

On the other hand we also know that the function C(~η, ~ξ) is an inner spherical

monogenic with respect to the variable ~ξ. We may then use a slightly modified ver-
sion of Theorem 1(bis) to find a hyperbolic monogenic with respect to the operator
(Γ− β)ξ acting from the right :

Γ(1 + β − k)Γ(2k +m)

Γ(β + k +m)
(τ 2 − 1)

k
2C(~η, ~ξ)

{
C

k+m+1
2

β−k (τ)− C
k+m+1

2
β−k−1 (τ)ξε

}

As the Gegenbauer function Cµ
ν (z) satisfies

Cµ
ν (z) = − sin(νπ)

sin(ν + 2µ)π
Cµ
−ν−2µ(z)

this can also be written as

− Γ(1 + α− k)

Γ(α+ k +m)
Γ(2k +m− 1)(τ 2 − 1)

k
2 ×

C(~η, ~ξ)

{
(2k +m− 1)(τ 2 − 1)1/2~ξεC

k+m+1
2

α−k (τ) + (1 + α− k)C
k+m−1

2
1+α−k (τ)

}
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When modulating the Euclidean Cauchy kernel E(~y − ~x) to the hyperbolic bi-
monogenic function Eα(η, ξ), with α+m /∈ −N and

Y = |Y |(σε+ (σ2 − 1)
1
2~η) = εS + ~Y

X = |X|(τε+ (τ 2 − 1)
1
2 ~ξ) = εT + ~X

,

we have identified ~y with ~Y /S and ~x with ~X/T . Since |~y| > |~x| iff σ > τ we propose
the following decomposition for the function Eα(η, ξ), valid for all α+m /∈ −N and
σ > τ :

Eα(η, ξ) =
1

Am

∞∑
k=0

η(−1)k22k+m−2e−iπ m−1
2 Γ

(
k +

m− 1

2

)2 Γ(1 + α− k)

Γ(α+ k +m)

(σ2 − 1)
k
2

{
(1 + α− k)D

k+m−1
2

1+α−k (σ) + (2k +m− 1)(σ2 − 1)
1
2D

k+m+1
2

α−k (σ)~ηε

}
{
C

m
2

k (< ~ξ, ~η >) + C
m
2

k−1(<
~ξ, ~η >)~η~ξ

}
(τ 2 − 1)

k
2

{
(1 + α− k)C

k+m−1
2

1+α−k (τ) + (2k +m− 1)(τ 2 − 1)
1
2 ~ξεC

k+m+1
2

α−k (τ)

}

with a region of convergence that will be determined later.

Let us now put < ~η, ~ξ >= cosψ ∈ [−1, 1] such that

η · ξ = στ −
(
(σ2 − 1)(τ 2 − 1)

)1/2
< ~η, ~ξ >= coshϕ cosh θ − sinhϕ sinh θ cosψ .

In order to prove the proposed series expansion we will use formula (9) and the

following addition formula for the Gegenbauer function D
m−1

2
α+1 (η · ξ) (see reference

[6]), valid for σ > τ > 1 :

D
m−1

2
α+1 (η · ξ) =

Γ(m− 1)

Γ
(

m−1
2

)2

∞∑
k=0

ak(α,m)ck(θ, ϕ, ψ)

with

ak(α,m) = (−1)k4kΓ
(
m− 1

2
+ k

)2 Γ(2 + α− k)

Γ(α+ k +m)

ck(θ, ϕ, ψ) = (sinhϕ sinh θ)kD
m−1

2
+k

1+α−k (coshϕ)
m− 2 + 2k

m− 2
C

m
2
−1

k (cosψ)C
m−1

2
+k

1+α−k (cosh θ)

This series converges in the region where

| cosψ + (cosψ2 − 1)
1
2 | <

∣∣∣∣∣(coshϕ∓ 1)(cosh θ + 1)

(coshϕ± 1)(cosh θ − 1)

∣∣∣∣∣
1
2

.

One can easily verify that the hyperbolic angular operator Γη = Y ∧ ∂Y on H+ has

the following representation in space-time co-ordinates (S, ~Y ) :

Γη = ~Y ε∂S − Sε∂~Y + Γ~η ,
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where Γ~η is the spherical Dirac operator on Sm−1. With respect to ε as a privileged
direction, a co-ordinate system on the hyperbolic unit ball is obtained by choosing
ϕ ∈ R and ~η ∈ Sm−1 as the co-ordinates on H+. With respect to this co-ordinate
system, the angular hyperbolic Dirac operator Γη is given by

Γη =

(
1 + ~ηε

coshϕ

sinhϕ

)
Γ~η + ~ηε

∂

∂ϕ
.

Hence we have by equation (9), for all α+m /∈ −N :

Eα(η, ξ) =

e−iπ m−1
2

2π
m−1

2

Γ(m− 1)

Γ
(

m−1
2

) η[ (1 + ~ηε
coshϕ

sinhϕ

)
Γ~η + ~ηε

∂

∂ϕ
+ 1 + α

] ∞∑
k=0

ak(α,m)ck(θ, ϕ, ψ)

with ak(α,m) and ck(θ, ϕ, ψ) as above. Before further calculating this, let us intro-
duce the following definition :

Definition 6 : For two arbitrary vectors ~η, ~ξ ∈ Sm−1 one puts, for all k ∈ N

Zk(~η, ~ξ) = C
m
2

k (< ~η, ~ξ >) + ~η~ξC
m
2

k−1(< ~η, ~ξ >)

Bk(~η, ~ξ) =

{
−~ηZk−1(~η, ~ξ)~ξ k ≥ 1

0 k = 0

The motivation for introducing the functions Zk and Bk on Sm−1×Sm−1 lies in the
following :

m− 2 + 2k

m− 2
C

m
2
−1

k (< ~η, ~ξ >) = Zk(~η, ~ξ)−Bk(~η, ~ξ) .

Using the fact that Γ~ηZk(~η, ~ξ) = −kZk(~η, ~ξ) and Γ~ηBk(~η, ~ξ) = (m + k − 2)Bk(~η, ~ξ),
one can now verify that, with the expression for Γη in terms of the co-ordinates
(ϕ, ~η), we have :(

Γη + 1 + α

)[
(sinhϕ)kD

m−1
2

+k

1+α−k (coshϕ)
m− 2 + 2k

m− 2
C

m
2
−1

k (< ~η, ~ξ >)

]

= (sinhϕ)k−1


(1 + α− k) sinhϕD

m−1
2

+k

1+α−k (coshϕ)
+

(2k +m− 1) sinh2 ϕD
m+1

2
+k

α−k (coshϕ)~ηε

Zk

+ (sinhϕ)k−1


(m+ α+ k − 1) sinhϕD

m−1
2

+k

1+α−k (coshϕ)
+

(m+ α+ k − 1)(α+ 2− k)

(m+ 2k − 3)
D

m−3
2

+k

2+α−k (coshϕ)~ηε

Bk

Both the left-hand side and the right-hand side of the previous equation must then
be multiplied with

ak(α,m)
Γ(m− 1)

Γ
(

m−1
2

)2 (sinh θ)kC
m−1

2
+k

1+α−k (cosh θ)
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and summed over the parameter k, in order to obtain an expression for the operator

(Γη + 1 + α) acting on the Gegenbauer function D
m−1

2
1+α (η · ξ). This expression can

then be cast into the form

∞∑
k=0

ck

(
S1 + S2~ηε

)(
S3 + S4~η~ξ

)(
S5 + S6

~ξε

)

with ck a constant, depending on k, and Si a scalar function (i = 1, 2, · · · , 6). This

goes as follows : first of all we write Bk as −~ηZk−1
~ξ. Since Z−1 ≡ 0, the second

series starts from k = 1. Rewriting this series, by putting k′ = k − 1, one finds :

(Γη + 1 + α)D
m−1

2
1+α (η · ξ) = Σ1 + Σ2 ,

where we have put

Σ1 =
Γ(m− 1)

Γ
(

m−1
2

)2

∞∑
k=0

ak(α,m)(sinh θ)k(sinhϕ)kC
m−1

2
+k

1+α−k (cosh θ)×

[
(1 + α− k)D

m−1
2

+k

1+α−k (coshϕ) + (2k +m− 1) sinhϕD
m+1

2
+k

α−k (coshϕ)~ηε
]
Zk

and

Σ2 =
Γ(m− 1)

Γ
(

m−1
2

)2

∞∑
k=0

(2k +m− 1)2

(1 + α− k)
ak(α,m)(sinh θ)k+1C

m+1
2

+k

α−k (cosh θ)×

(sinhϕ)k

[
sinhϕD

m+1
2

+k

α−k (coshϕ)~η +
1 + α− k

2k +m− 1
D

m−1
2

+k

1+α−k (coshϕ)ε

]
Zk
~ξ .

Eventually, gathering the terms in D
m−1

2
+k

1+α−k (coshϕ) (resp. D
m+1

2
+k

α−k (coshϕ)) and
making use of definition 6 to rewrite Zk, we get :(

Γη + 1 + α

)
D

m−1
2

1+α (η · ξ) =
Γ(m− 1)

Γ
(

m−1
2

)2

∞∑
k=0

(−1)k4k Γ(α+ 1− k)

Γ(α+m+ k)
Γ
(
m− 1

2
+ k

)2

[
(1 + α− k)D

m−1
2

+k

1+α−k (coshϕ) + (2k +m− 1) sinhϕD
m+1

2
+k

α−k (coshϕ)~ηε
]

(sinhϕ sinh θ)k
[
C

m
2

k (< ~η, ~ξ >) + ~η~ξC
m
2

k−1(< ~η, ~ξ >)
]

[
(1 + α− k)C

m−1
2

+k

1+α−k (cosh θ) + (2k +m− 1) sinh θC
m+1

2
+k

α−k (cosh θ)~ξε
]

In view of (9) this yields the following expression for the fundamental solution
Eα(η, ξ), for all α+m /∈ −N :

Eα(η, ξ) =
e−iπ m−1

2

2π
m−1

2

Γ(m− 1)

Γ
(

m−1
2

) η ∞∑
k=0

(−1)k4k Γ(α+ 1− k)

Γ(α+m+ k)
Γ
(
m− 1

2
+ k

)2

[
(1 + α− k)D

m−1
2

+k

1+α−k (coshϕ) + (2k +m− 1) sinhϕD
m+1

2
+k

α−k (coshϕ)~ηε
]

(sinhϕ sinh θ)k
[
C

m
2

k (< ~η, ~ξ >) + ~η~ξC
m
2

k−1(< ~η, ~ξ >)
]

[
(1 + α− k)C

m−1
2

+k

1+α−k (cosh θ) + (2k +m− 1) sinh θC
m+1

2
+k

α−k (cosh θ)~ξε
] (14)
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Invoking the relation π1/2Γ(2z) = 22z−1Γ(z)Γ(z+1/2) and using the explicit form of
Am, this yields precisely the series proposed earlier, at the beginning of this section,
using the Cauchy kernel on R0,m. Before we determine the region of convergence of
the series expansion for the fundamental solution Eα(η, ξ), we introduce :

Definition 7 : For an arbitrary R > 1 and for each ζ ∈ H+ one defines HC(R, ζ)
as

HC(R, ζ) = {ξ ∈ H+ : R > ξ · ζ ≥ 1}

The notation HC is inspired by the fact that this subset of H+ is a hyperbolic cap,
by analogy with the term spherical cap. Notice that HC(R, ζ) is invariant under
the subgroup SO(m)ζ of SO(1,m) fixing ζ.

Recalling our notations

η = σε+ (σ2 − 1)
1
2~η = ε coshϕ+ ~η sinhϕ

ξ = τε+ (τ 2 − 1)
1
2 ~ξ = ε cosh θ + ~ξ sinh θ

the series expansion for Eα(η, ξ) converges normally on each hyperbolic capHC(R, ε),
for all σ > R ≥ τ with σ kept fixed.

We then have the following :
Definition 8 : For two arbitrary elements η and ξ in H+ one defines, for all k ∈ N
and α+m /∈ −N :

Ek
α(η, ξ) = η(−1)k22k+m−2e−iπ m−1

2 Γ
(
k +

m− 1

2

)2 Γ(1 + α− k)

Γ(α+ k +m)

(σ2 − 1)
k
2

{
(1 + α− k)D

k+m−1
2

1+α−k (σ) + (2k +m− 1)(σ2 − 1)
1
2D

k+m+1
2

α−k (σ)~ηε

}
{
C

m
2

k (< ~η, ~ξ >) + C
m
2

k−1(< ~η, ~ξ >)~η ~ξ
}

(τ 2 − 1)
k
2

{
(1 + α− k)C

k+m−1
2

1+α−k (τ) + (2k +m− 1)(τ 2 − 1)
1
2C

k+m+1
2

α−k (τ)~ξε

}

The axial decomposition of the hyperbolic fundamental solution is expressed in the
following Theorem :

Theorem 6 : For all α + m /∈ −N, the fundamental solution Eα(η, ξ) for the
operator η(Γ + α) on H+ can be decomposed as

Eα(η, ξ) =
1

Am

∞∑
k=0

Ek
α(η, ξ) .

For σ fixed this series converges normally on each closed hyperbolic cap HC(R, ε),
σ > R ≥ τ . By construction, one also has for each k ∈ N :

Ek
α(η, ξ) ∈ Hβ(H+ \ {ε})

E
k
α(η, ξ) ∈ Hα(H+ \ {ε})
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respectively with respect to the operators ∂Y and ∂X .

To establish a Taylor expansion, we need to switch variables first. Indeed : the
expansion for Eα(η, ξ) above is valid for σ > τ , so we need an integration over η
instead of ξ (cfr. Cauchy’s Theorem) if we are to obtain a Taylor expansion around
ε ∈ H+. Since Eα(η, ξ) = −Eβ(ξ, η), up to a nullsolution for the hyperbolic angular
operator, Stokes’ Theorem for functions F ∈ Hα yields immediately :

η ∈ HC(R, ε) =⇒ F (η) =
∫

∂HC(R,ε)
Eα(η, ξ)dΣξF (ξ)

= −
∫

∂HC(R,ε)
Eβ(ξ, η)dΣξF (ξ) .

Equivalently, hereby making use of the fact that Eβ̄(ξ, η) = −Eβ(ξ, η), we get :

ξ ∈ HC(R, ε) =⇒ F (ξ) =
∫

∂HC(R,ε)
Eβ̄(η, ξ)dΣηF (η)

This gives rise to the following Taylor expansion :

Theorem 7 (Taylor) : Consider an arbitrary α ∈ C \ (−m − N) and let R > 1
be fixed. Let F ∈ Hα(HC(R, ε)). There exists a sequence of functions (F (k)

ε (ξ))k∈N
such that the function ξ 7→ F (k)

ε (ξ) belongs to Hα(H+) for each k ∈ N and such that
the following expansion holds in HC(R, ε) :

F (ξ) =
∞∑

k=0

F (k)
ε (ξ) , (15)

where for each k ∈ N the function F (k)
ε (ξ) has the following integral representation :

F (k)
ε (ξ) =

∫
σ=r

E
k
β̄(η, ξ)dΣηF (η)

=
(−1)k22k+m−2

eiπ m−1
2

Γ(1 + β − k)

Γ(m+ β + k)
Γ
(
m− 1

2
+ k

)2

(σ2 − 1)k(r2 − 1)
k+m−1

2

[
(β +m+ k − 1)C

k+m−1
2

β−k (τ) + (2k +m− 1)(τ 2 − 1)
1
2C

k+m+1
2

β−k−1 (τ)~ξε
]

P (k)


 (1 + β − k)D

k+m−1
2

1+β−k (r)~ηε
+

(2k +m− 1)(r2 − 1)
1
2D

k+m+1
2

β−k (r)

F (rε+ (r2 − 1)1/2~η
)

with r ∈]1, R[ arbitrarily and P (k)f the projection of f(~η) onto the space of inner
spherical monogenics of order k on Sm−1. This series expansion converges normally
on each hyperbolic cap HC(ρ, ε), with r > ρ ≥ τ .
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