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Abstract

We give a new description of the fundamental double four-spiral semigroup.

The fundamental four-spiral semigroup Sp4 and the fundamental double four-
spiral semigroup DSp4 were introduced in [1], [3], and [4]. These semigroups are in-
teresting examples of fundamental regular semigroups, and are indispensable build-
ing blocks of bisimple, idempotent-generated regular semigroups. Their basic prop-
erties are recalled in parts 1 and 2 of this note.

In part 3 we give an alternate construction of DSp4 in terms of the free semigroup
on two generators, as a set of quadruples with a simple, bicyclic-like multiplication.
This permits shorter proofs and easier access to the main properties of DSp4: de-
scriptions of DSp4/L and DSp4/R (part 4); reduced form of the elements (part 5);
and the property of congruences C 6⊆ L that DSp4/C is completely simple (part 6).

1. Recall that Sp4 is the semigroup

Sp4
∼= 〈a, b, c, d; a2 = a, b2 = b, c2 = c, d2 = d,

a = ba, b = ab, b = bc, c = cb, c = dc, d = cd, d = da〉

generated by four idempotents a, b, c, d such that aR b L c R d ≤L a. (We denote
Green’s left preorder x ∈ S1y by x ≤L y). It is shown in [3] that every element of
Sp4 can be written uniquely in reduced form

[c](ac)m[a], [d](bd)n[b], [c](ac)mad(bd)n[b],
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where m, n ≥ 0 and terms in square brackets may be omitted as long as the remain-
ing product is not empty. Hence Sp4 has a partition Sp4 = A ∪ B ∪ C ∪ D ∪ E,
where

A = { (ac)ma, (bd)n+1, (ac)mad(bd)n; m, n ≥ 0 },
B = { (ac)m+1, (bd)nb, (ac)mad(bd)nb; m, n ≥ 0 },
C = { c(ac)m, d(bd)nb, c(ac)mad(bd)nb; m, n ≥ 0 },
D = { d(bd)n, c(ac)mad(bd)n; m, n ≥ 0 },
E = { c(ac)ma; m ≥ 0 }

have a number of interesting properties [3].
By Theorem 1 in [2], Sp4 is a Rees matrix semigroup over the bicyclic semigroup,

and can be described up to isomorphism as the set of all quadruples (r, x, y, s) where
r, s ∈ { 0, 1 } and x, y are nonnegative integers, with multiplication

(r, x, y, s)(t, z, w, u) =

(r, x− y + max(y, z + 1), max(y − 1, z)− z + w, u) if s = 0, t = 1,

(r, x− y + max(y, z), max(y, z)− z + w, u) otherwise.

In this form, a = (0, 0, 0, 0), b = (0, 0, 0, 1), c = (1, 0, 0, 1), d = (1, 0, 1, 0), and it is
readily verified that

(ac)m = (0, m, 0, 1), c(ac)m = (1, m, 0, 1),
(ac)ma = (0, m, 0, 0), c(ac)ma = (1, m, 0, 0),

(bd)n = (0, 0, n, 0), d(bd)n = (1, 0, n + 1, 0),
(bd)nb = (0, 0, n, 1), d(bd)nb = (1, 0, n + 1, 1),

(ac)mad(bd)n = (0, m + 1, n + 1, 0),
c(ac)mad(bd)n = (1, m + 1, n + 1, 0),
(ac)mad(bd)nb = (0, m + 1, n + 1, 1),

c(ac)mad(bd)nb = (1, m + 1, n + 1, 1).

Then

(r, x, y, s) ∈ A ⇐⇒ r = 0, s = 0,
(r, x, y, s) ∈ B ⇐⇒ r = 0, s = 1,
(r, x, y, s) ∈ C ⇐⇒ r = 1, s = 1,
(r, x, y, s) ∈ D ⇐⇒ r = 1, s = 0, y > 0,
(r, x, y, s) ∈ E ⇐⇒ r = 1, s = 0, y = 0.

If C is a proper congruence on Sp4, then a C ad, and Sp4/C is completely simple.
Therefore, when a D-class of a semigroup contains idempotents e < a linked by an
E-chain of length 4, then a is contained in a subsemigroup of D which is isomorphic
to Sp4 or to Spop

4 [3].

2. The fundamental double four-spiral semigroup DSp4 may be defined as the
semigroup

DSp4
∼= 〈a, b, c, d, e; a2 = a, b2 = b, c2 = c, d2 = d, e2 = e,

a = ba, b = ab, b = bc, c = cb, c = dc, d = cd, d = de, e = ed, e = ae = ea〉

generated by five idempotents a, b, c, d, e such that a R b L c R d L e ≤ a. It is
shown in [4] that every element of DSp4 can be written uniquely in reduced form
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[c](xc)m[a], [d](bd)n[b], [c](xc)my(bd)n[b],

where: m, n ≥ 0; terms in square brackets may be omitted as long as the remaining
product is not empty; (xc)m is short for xcxc . . . xc where each x stands for either
a or e; and y stands for either ad or e. (In [4], x and y are denoted by ∂ and ∂ ′.)
Hence DSp4 has a partition DSp4 = A ∪B ∪ C ∪D ∪E, where

A = { (xc)ma, (bd)n+1, (xc)my(bd)n; m, n ≥ 0 },
B = { (xc)m+1, (bd)nb, (xc)my(bd)nb; m, n ≥ 0 },
C = { c(xc)m, d(bd)nb, c(xc)my(bd)nb; m, n ≥ 0 },
D = { d(bd)n, c(xc)my(bd)n; m, n ≥ 0 },
E = { c(xc)ma; m ≥ 0 }.

When a D-class of a semigroup contains idempotents e < a linked by an E-chain
of length 4, then a and e are contained in a subsemigroup of D which is isomorphic
to DSp4/C or to (DSp4/C)op for some congruence C ⊆ L [4].

3. In the above the reduced words [c](xc)m[a] and [c](xc)my(bd)n[b] are obtained
from [c](ac)m[a] and [c](ac)mad(bd)n[b] by replacing ad or some of the a’s by e’s. We
use sequences of a’s and e’s as templates to specify which a’s remain unchanged and
which are replaced by e’s.

Let F = F 1
{a,e} be the free monoid on { a, e }. We write the empty word in F as ∅

to distinguish it from the number 1. If X = x1x2 . . . xm ∈ F has length |X| = m ≥ 0,
then substituting e’s in [c](ac)m[a] according to X yields

X . [c](ac)m[a] = [c](x1c)(x2c) . . . (xmc)[a].

If X ∈ F has length m + 1, then substituting e’s in [c](ac)mad(bd)n[b] according to
X yields

X . [c](ac)mad(bd)n[b] = [c](x1c)(x2c) . . . (xmc)ad(bd)n[b] if xm+1 = a,

[c](x1c)(x2c) . . . (xmc)e(bd)n[b] if xm+1 = e.

Every reduced word p can then be written uniquely in the form p = X .q, where
X ∈ F has the appropriate length, and q is a reduced word without e’s. (If p =
[d](bd)n[b], then X = ∅ ∈ F and q = p.) Now q is a reduced word for the four-spiral
semigroup and can be viewed as a quadruple (r, k, `, s) in which r, s = 0, 1 and k, `
are nonnegative integers. In all cases k is the number of a’s in q which may be
replaced by e’s; thus X .q is defined if and only if X has length k. Therefore p is
uniquely determined by the quadruple (r, X; `, s).

To describe the multiplication on DSp4 in this form, let X` denote X with the
first ` letters removed (added, if ` = −1):

X` =


∅ if ` ≥ m,

x`+1 . . . xm if 0 ≤ ` < m,

aX if ` = −1,
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where X = x1x2 . . . xm ∈ F . In each case |X`| = max(`, m)− `. Inspecting the var-
ious products of reduced words [c](xc)m[a], [d](bd)n[b], [c](xc)my(bd)n[b] now yields
our main result. (In part 5 we give a direct proof, which also establishes that the
reduced words are all distinct in DSp4.)

Main Result. Up to isomorphism, DSp4 is the semigroup of all quadruples
(r, X; y, s) where r, s = 0, 1, y is a nonnegative integer, and X ∈ F 1

{a,e }, with
multiplication (r, X; y, s)(t, Z; w, u) =(r, XZy−1 ; max(y − 1, z)− z + w, u) if s = 0, t = 1,

(r, XZy ; max(y, z)− z + w, u) otherwise ,

where z = |Z|.

4. This main result has a number of easy applications. The projection π :
DSp4 −→ Sp4 may be described by

π(r, X; y, s) = (r, |X|, y, s).

The partition of DSp4 into A = π−1A, B = π−1B, etc. is given by:

(r, X; y, s) ∈ A ⇐⇒ r = 0, s = 0,
(r, X; y, s) ∈ B ⇐⇒ r = 0, s = 1,
(r, X; y, s) ∈ C ⇐⇒ r = 1, s = 1,
(r, X; y, s) ∈ D ⇐⇒ r = 1, s = 0, y > 0,
(r, X; y, s) ∈ E ⇐⇒ r = 1, s = 0, y = 0.

Up to isomorphism, A consists of all pairs (X, y), with multiplication (X, y)(Z, w) =
(XZy; max(y, z)− z + w). Then

(XZy−1; max(y − 1, z)− z + w) = (X, y)(a, 0)(Z, w)

and the main result describes DSp4 as a 2× 2 Rees matrix semigroup over A, with

sandwich matrix

(
(∅, 0) (a, 0)
(∅, 0) (∅, 0)

)
, equivalently,

(
a aca
a a

)
.

It is readily verified that, if r = 1, s = 0, then (r, X, y, s) is idempotent if and
only if y = |X|+ 1; otherwise (r, X, y, s) is idempotent if and only if y = |X|.

Green’s relations on DSp4 may be described by:

(r, X, y, s) ≤R (t, Y, z, u) ⇐⇒ r = t and X ≤R Y in F,
(r, X, y, s) ≤L (t, Y, z, u) ⇐⇒ s = u and y ≥ z.

Thus L contains the congruence induced by π : DSp4 −→ Sp4, and the partially
ordered set Λ = DSp4/L is isomorphic to Sp4/L and consists of two unrelated ω-
chains. For DSp4/R we note that X ≤R Y in F if and only if X is a prefix of Y .
Thus R Ø > Ra, Re; Ra > Raa, Rae; Re > Rea, Ree, etc.; and F/R is a complete
(upside down) binary tree in which every element covers two elements and (except
for R Ø) is covered by one element. Thus I = DSp4/R consists of two unrelated
complete binary trees. Our main result describes DSp4 as I × Λ with a suitable
multiplication.
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5. We now give a direct proof of the main result. This proof also establishes
that the reduced words [c](xc)m[a], [d](bd)n[b], [c](xc)my(bd)n[b] are all distinct in
DSp4.

First we verify that the quadruples in the statement constitute a semigroup
D. We use the mapping π : D −→ Sp4, π(r, X; y, s) = (r, |X|, y, s), which is a
homomorphism since |XZy| = |X| − y + max(y, |Z|) and |XZy−1| = |X| − y + 1 +
max(y − 1, |Z|) = |X| − y + max(y, |Z|+ 1)).

Let (r, A; b, s), (t, C; d, u), (v, E; f, w) ∈ D and

(r, A; b, s)(t, C; d, u) = (r, G; h, u), (r, G; h, u)(v, E; f, w) = (r, K; l, w),
(t, C; d, u)(v, E; f, w) = (t, I ; j, w), (r, A; b, s)(t, I ; j;w) = (r, M ; n, w)

We want to show that (r, K; l, w) = (r, M ; n, w). Since Sp4 is a semigroup, we have
l = n, and need only show that K = M .

There are four cases to consider. If (s, t), (u, v) 6= (0, 1), then G = ACb, h =
max(b, c) − c + d, where c = |C|, K = GEh, I = CEd, and M = AIb. Thus
K = ACbEh and M = A(CEd)b. If C has length c ≥ b, then h = d, (CEd)b =
CbEd = CbEh, and K = M . If C has length c < b, then h = b − c + d, (CEd)b =
(Ed)b−c = Ed+b−c = Eh, and K = AEh = M .

The other cases are similar. If (s, t) = (0, 1) and (u, v) 6= (0, 1), then G = ACb−1,
h = max(b − 1, c) − c + d, K = GEh, I = CEd, and M = AIb−1. If b > 0, then
replacing b by b − 1 in the above yields K = M . If b = 0, then h = d, G = AaC ,
and K = AaCEh = AaI = M .

If (s, t) 6= (0, 1) and (u, v) = (0, 1), then G = ACb, h = max(b, c) − c + d,
K = GEh−1, I = CEd−1, and M = AIb. If C has length c ≥ b, then h = d; if d > 0,
then

Ib = (CEd−1)b = CbEd−1 = CbEh−1

and K = M ; if d = 0, then

Ib = (CEd−1)b = (CaE)b = CbaE = CbEh−1

and K = M . If C has length c < b, then h = b− c + d > 0; if d > 0, then

Ib = (CEd−1)b = (Ed−1)b−c = Ed−1+b−c = Eh−1

and K = AEh−1 = M ; if d = 0, then

Ib = (CEd−1)b = (CaE)b = Eb−c−1 = Ed−1+b−c = Eh−1

and K = AEh−1 = M .
If (s, t) = (u, v) = (0, 1), then G = ACb−1, h = max(b−1, c)−c+d, K = GEh−1,

I = CEd−1, and M = AIb−1. If b > 0, then replacing b by b− 1 in the previous case
yields K = M . If b = 0, then h = d; if d > 0, then K = AaCEh−1 = AaI = M ; if
d = 0, then K = GaE = AaCaE = AaI = M . Thus K = M in all cases and D is
a semigroup.

Let

α = (0, ∅; 0, 0), β = (0, ∅; 0, 1),
γ = (1, ∅; 0, 1), δ = (1, ∅; 1, 0), ε = (0, e; 1, 0).



206 P. A. Grillet

It is immediate that α, β, γ, δ, and ε satisfy all the defining relations of DSp4 (α, β,
γ, δ, and ε are idempotent, and α R β L γ R δ L ε ≤ α): their images a, b, c, d, and
ad ∈ Sp4 under π : D −→ Sp4 have these properties, and the second components
(most of which are empty words) cooperate. Hence there is a homomorphism ϕ :
DSp4 −→ D such that ϕ(a) = α, ϕ(b) = β, ϕ(c) = γ, ϕ(d) = δ, and ϕ(e) = ε. We
show that ϕ is an isomorphism.

As in [3] it follows from the defining relations that every element of DSp4 can be
written in reduced form: X . [c](ac)m[a] = [c](xc)m[a], [d](bd)n[b], or
X . [c](ac)mad(bd)n[b] = [c](xc)my(bd)n[b]. To prove that ϕ is an isomorphism (and
that the reduced words are all distinct in DSp4) we evaluate ϕ at all reduced words.
First,

ϕ(ac) = (0, ∅; 0, 0)(1, ∅; 0, 1) = (0, a; 0, 1),
ϕ(ec) = (0, e; 1, 0)(1, ∅; 0, 1) = (0, e; 0, 1),

and (0, X; 0, 1)(0, Y ; 0, 1) = (0, XY ; 0, 1). By induction, ϕ(X . (ac)m) = (0, X; 0, 1).
Also ϕ(bd) = (0, ∅; 0, 1)(1, ∅; 1, 0) = (0, ∅; 1, 0) and, by induction, ϕ(bd)n = (0, ∅; n, 0).
Hence, for all m, n > 0:

ϕ(X . (ac)m) = (0, X; 0, 1),
ϕ(X . c(ac)m) = (1, ∅; 0, 1)(0, X; 0, 1) = (1, X; 0, 1),
ϕ(X . (ac)ma) = (0, X; 0, 1)(0, ∅; 0, 0) = (0, X; 0, 0),

ϕ(X . c(ac)ma) = (1, X; 0, 1)(0, ∅; 0, 0) = (1, X; 0, 0),
ϕ((bd)n) = (0, ∅; n, 0),

ϕ(d(bd)n) = (1, ∅; 1, 0)(0, 1; n, 0) = (1, ∅; n + 1, 0),
ϕ((bd)nb) = (0, ∅; n, 0)(0, ∅; 0, 1) = (0, ∅; n, 1),

ϕ(d(bd)nb) = (1, ∅; n + 1, 0)(0, ∅; 0, 1) = (1, ∅; n + 1, 1).

These equalities actually hold for all m, n ≥ 0 as long as ϕ is not applied to empty
products. If now X = Y a has length m + 1 and ends with a, then
X . [c](ac)mad(bd)n[b] = (Y . [c](ac)ma)(d(bd)n[b]) and

ϕ(X . (ac)mad(bd)n) = (0, Y ; 0, 0)(1, ∅; n + 1, 0) = (0, X; n + 1, 0),
ϕ(X . c(ac)mad(bd)n) = (1, Y ; 0, 0)(1, ∅; n + 1, 0) = (1, X; n + 1, 0),
ϕ(X . (ac)mad(bd)nb) = (0, Y ; 0, 0)(1, ∅; n + 1, 1) = (0, X; n + 1, 1),

ϕ(X . c(ac)mad(bd)nb) = (1, Y ; 0, 0)(1, ∅; n + 1, 1) = (1, X; n + 1, 1),

for all m, n ≥ 0. If on the other hand X = Y e has length m + 1 and ends with e,
then X . [c](ac)mad(bd)n[b] = (Y . [c](ac)m)e(bd)n[b]. If m > 0:

ϕ((Y . (ac)m)e) = (0, Y ; 0, 1)(0, e; 1, 0) = (0, X; 1, 0),
ϕ((Y . c(ac)m)e) = (1, Y ; 0, 1)(0, e; 1, 0) = (1, X; 1, 0),

These equalities also hold if m = 0. Hence we obtain, for all m ≥ 0, n > 0:

ϕ(X . (ac)mad(bd)n) = (0, X; 1, 0)(0, ∅; n, 0) = (0, X; n + 1, 0),
ϕ(X . (ac)mad(bd)nb) = (0, X; 1, 0)(0, ∅; n, 1) = (0, X; n + 1, 1),
ϕ(X . c(ac)mad(bd)n) = (1, X; 1, 0)(0, ∅; n, 0) = (1, X; n + 1, 0),

ϕ(X . c(ac)mad(bd)nb) = (1, X; 1, 0)(0, ∅; n, 1) = (1, X; n + 1, 1).

These equalities also hold if n = 0.
Inspection shows that every element of D is the image under ϕ of a reduced word,

and that distinct reduced words in DSp4 have distinct images under ϕ. This implies
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that the reduced words are all distinct in DSp4, and that ϕ is an isomorphism, which
completes the proof.

6. Finally we use our main result to prove the following congruence property:
that if C is a congruence on DSp4 and C 6⊆ L then DSp4/C is completely simple.
This property implies that a D-class of a semigroup which contains idempotents
e < a linked by an E-chain of length 4 must also contain a subsemigroup which is
isomorphic to DSp4/C or to (DSp4/C)op for some congruence C ⊆ L [4].

For the proof we identify our two descriptions of DSp4, so that a = (0, ∅; 0, 0),
b = (0, ∅; 0, 1), c = (1, ∅; 0, 1), d = (1, ∅; 1, 0), e = (0, e; 1, 0), and, from the previous
proof, X . (ac)m = (0, X; 0, 1), etc.

Lemma 1. Let C be a congruence on DSp4. If (bd)k C (bd)mb, then a C (bd)mb.
If a C (bd)mb, then a C ad C e.

Proof. If (0, ∅; k, 0) = (bd)k C (bd)mb = (0, ∅; m, 1), then k > 0,

(0, ∅; k, 0)(0, ∅; 0, 0) = (0, ∅; k, 0),
(0, ∅; m, 1)(0, ∅; 0, 0) = (0, ∅; m, 0),
(0, ∅; k, 0)(1, ∅; 0, 0) = (0, ∅; k − 1, 0),
(0, ∅; m, 1)(1, ∅; 0, 0) = (0, ∅; m, 0),

so that (0, ∅; k, 0) C (0, ∅; m, 0) C (0, ∅; k − 1, 0) and, by induction, a = (0, ∅; 0, 0) C
(0, ∅; k, 0) = (bd)k C (bd)mb.

In turn, a C (bd)mb implies b = ab C (bd)mb C a, c = dac C dbc = db C da = d,
ad C bd C bc = b C a, and a C ad = ade = ace C bce = e. �

Lemma 2. Let C be a congruence on DSp4. If C 6⊆ L, then a C ad C e.
Proof. Assume C 6⊆ L, so that there exists p = (r, K; l, s) and q = (t, M ; n, u) ∈

DSp4 such that p C q but not p L q. Then (l, s) 6= (n, u).
Assume s 6= u, say, s = 0 and u = 1. If y ≥ |K|, |M |, then

(0, ∅; y, 1)(r, K; l, s) = (0, ∅; k, s),
(0, ∅; y, 1)(t, M ; n, u) = (0, ∅; m, u),

and (0, ∅; k, 0) C (0, ∅; m, 1) for some k, m ≥ 0. Thus (bd)k C (bd)mb if k > 0,
a C (bd)mb if k = 0. By Lemma 1, a C ad C e.

Now assume s = u, so that, say, l < n. Then

(r, K; l, s)(s, al; 0, 0) = (r, K; 0, 0),
(t, M ; n, u)(s, al; 0, 0) = (t, M ; n− l, 0),

and (r, K; 0, 0) C (t, M ; m, 0) where m = n− l > 0. For any y ≤ |K|, |M |,
(0, ∅; y, 0)(r, K; 0, 0) = (0, Ky; 0, 0),

(0, ∅; y, 0)(t, M ; m, 0) = (0, My; m, 0),

and (0, Ky; 0, 0) C (0, My ; m, 0).
If |K| ≤ |M |, then y = |K| yields (0, ∅; 0, 0) C (0, My; m, 0). Then

a C My . (ac)kad(bd)m−1 for some k ≥ 0. Since de = d it follows that a C ae = e,
and ad C ed = e.

If |K| > |M |, then y = |M | yields (0, Ky; 0, 0) C (0, ∅; m, 0).
Then Ky . (ac)k C (bd)m for some k = |K| − |M | > 0. Since cb = c it follows that
(bd)m C (bd)mb. Again a C ad C e by Lemma 1. �
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We can now show that DSp4/C is completely simple when C 6⊆ L is a congruence
on DSp4. We see on the reduced forms of the elements that the subsemigroup
T = 〈a, b, c, d〉 of DSp4 is isomorphic to Sp4. Since a R b L c R d L ad ≤ a holds
in T , there is a homomorphism τ : DSp4 −→ T such that τx = x for x = a, b, c, d
and τe = ad. By Lemma 2, a C ad C e. Therefore τp C p for all p ∈ DSp4. Hence
every C-class intersects T , and DSp4/C is a homomorphic image of T/C. But T/C
is completely simple, since T ∼= Sp4 and a C ad shows that C is not the equality on
T . Therefore DSp4/C is completely simple.
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