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Abstract

A Subiaco hyperoval in PG(2, 2h), h ≥ 4, is known to be stabilised by a
group of collineations induced by a subgroup of the automorphism group of
the associated Subiaco generalised quadrangle. In this paper, we show that
this induced group is the full collineation stabiliser in the case h 6≡ 2 (mod 4);
a result that is already known for h ≡ 2 (mod 4). In addition, we consider a
set of 2h + 2 points in PG(2, 2h), where h ≥ 5 is odd, which is a Cherowitzo
hyperoval for h ≤ 15 and which is conjectured to form a hyperoval for all such
h. We show that a collineation fixing this set of points and one of the points
(0, 1, 0) or (0, 0, 1) must be an automorphic collineation.

1 Introduction

In the Desarguesian projective plane PG(2, q) of even order q = 2h, h ≥ 1, an oval
is a set of q+ 1 points, no three collinear, and a hyperoval is a set of q+2 points no
three of which are collinear. A hyperoval H can be written, with a suitable choice
of homogeneous coordinates for PG(2, q), as

H = D(f) = {(1, t, f(t)) : t ∈ GF(q)} ∪ {(0, 1, 0), (0, 0, 1)}

for some function f on GF(q) satisfying f(0) = 0 and f(1) = 1, see [6, 8.4.2]. (Note
that in [6] an oval is called a (q + 1)-arc and a hyperoval is called an oval.)

We are interested in calculating the stabiliser in the automorphism group of
PG(2, q) of some recently discovered hyperovals. The automorphism group of
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PG(2, q) is the group PΓL(3, q) induced by the semilinear transformations of the
underlying vector space, which we call collineations. The elements of the normal
subgroup PGL(3, q) / PΓL(3, q) determined by the linear transformations will be
called homographies. If σ : x 7→ xσ is an automorphism of GF(q) then σ in-
duces a collineation of PG(2, q), called an automorphic collineation, as follows:
(x, y, z)σ = (xσ, yσ, zσ). Let A denote the group of automorphic collineations of
PG(2, q), so that |A| = h and PΓL(3, q) = PGL(3, q)×A (where × is used to denote
the semidirect product).

If X is a set of points in PG(2, q), the stabiliser PΓL(3, q)X of X in PΓL(3, q) is
called the collineation stabiliser of X while the stabiliser PGL(3, q)X is called the
homography stabiliser of X . A set of points in PG(2, q) which is the image under
an element of PΓL(3, q) of a set of points X is said to be (projectively) equivalent
to X .

Associated with each q-clan, q = 2h, is a generalised quadrangle (GQ) of order
(q2, q) with subquadrangles of order q; associated to any of these subquadrangles
is an oval in PG(2, q) ([8, 11, 12, 19, 20]). Recently, Cherowitzo, Penttila, Pinneri
and Royle [5] constructed the class of Subiaco ovals in this way. Since an oval is
contained in a unique hyperoval, we thus have the Subiaco hyperovals D(g) and
D(fs) for s ∈ GF (q), where

a =
d2 + d5 + d1/2

d(1 + d+ d2)
,

f(t) =
d2t4 + d2(1 + d+ d2)t3 + d2(1 + d + d2)t2 + d2t

(t2 + dt+ 1)2
+ t1/2

g(t) =
d4t4 + d3(1 + d2 + d4)t3 + d3(1 + d2)t

(d2 + d5 + d1/2)(t2 + dt+ 1)2
+

d1/2

d2 + d5 + d1/2
t1/2 and

fs(t) =
f(t) + asg(t) + s1/2t1/2

1 + as+ s1/2

for d ∈ GF(q) satisfying trace(1/d) = 1 and d2 + d + 1 6= 0. (For an alternative
description of the Subiaco hyperovals, see [16].)

In the case that q ≤ 256, each Subiaco hyperoval falls into one of the previously
known classes of hyperovals [16].
(i) If q = 2, 4, 8 then a Subiaco hyperoval is a regular hyperoval see [6, 8.4]. When
q = 8 the homography stabiliser has order 504 and is isomorphic to PGL(2, 8), when
q = 4 the homography stabiliser has order 360 and is isomorphic to A6 and when
q = 2 the homography stabiliser has order 24 and is isomorphic to S4 [6, 8.4.2 Corol-
lary 6]. Since A fixes the regular hyperoval D(x2), the collineation stabilisers have
orders 1512, 720 and 24 (respectively) and are isomorphic to PΓL(2, 8), S6 and S4

(respectively).
(ii) If q = 16 then a Subiaco hyperoval is a Lunelli-Sce hyperoval [9]. The homog-
raphy stabiliser has order 36 and is isomorphic to C2

3 × C4 while the collineation
stabiliser of order 144 is isomorphic to C2 × (C2

3 × C8) (where × denotes the direct
product) [15].
(iii) If q = 32 then a Subiaco hyperoval is a Payne hyperoval [12]. The homography
stabiliser has order 2 (and is isomorphic to C2) while the collineation stabiliser of
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order 2h is isomorphic to C2h [21, 10].
(iv) If q = 64 then the two projectively distinct Subiaco hyperovals are the two
Penttila-Pinneri irregular hyperovals [17]. The homography stabiliser is either C5 of
order 5 or D10 of order 10 and the respective collineation stabilisers have order 15
and 60 and are isomorphic to C5 × C3 and C5 × C12.
(v) If q = 128 or 256 then the projectively unique Subiaco hyperoval was discov-
ered by Penttila and Royle [18], with homography stabiliser C2 in each case and
collineation stabiliser of order 14 or 16 isomorphic to C14 or C16, respectively.

We note that the order of the collineation stabiliser in case (v) was obtained with
the assistance of a computer.

In [13, 2, 16], the collineation group of the Subiaco GQ is studied in detail. The
action of this group induces an action on each of the subquadrangles of order q
and on each associated Subiaco oval. Hence there arises an induced stabiliser of
the Subiaco hyperoval, whose order can be easily determined. If q > 64 and h ≡ 2
(mod 4) then the induced stabiliser is the full collineation stabiliser of the Subiaco
hyperoval. In particular,

Theorem 1 ([16], 6.13, 5.4) (1) Suppose q > 64 and h ≡ 2 (mod 4). Up to
projective equivalence, there are exactly two Subiaco hyperovals of PG(2, q), with
collineation stabilisers of order 10h and 5h/2, isomorphic to C5×C2h and C5×Ch/2,
respectively.
(2) Suppose that q > 64 and h 6≡ 2 (mod 4). Up to projective equivalence there is
only one Subiaco oval, which is fixed by a subgroup of PΓL(3, q) of order 2h.

It is immediate from [14], Equations (39) and (43), that the subgroup in The-
orem 1 (2) contains only one non-identity homography (of order 2) and is either
cyclic of order 2h or is the direct product of a cyclic group of order 2 with a cyclic
group of order h.

In this paper we will show that if q = 2h, where q > 64 and h 6≡ 2 (mod 4), then
the subgroup in Theorem 1 (2) is cyclic and is the full collineation stabiliser of the
Subiaco hyperoval.

Cherowitzo [3, 4] has discovered six hyperovals, conjectured to belong to an
infinite family. These are D(xσ + xσ+2 + x3σ+4) in PG(2, 2h) for h = 5, 7, 9, 11, 13
or 15, and where σ ∈ AutGF(q) is such that σ2 ≡ 2 (mod q − 1). The collineation
stabiliser of the Cherowitzo hyperoval for h = 5 is the group A of automorphic
collineations of order h [10], and for h ≥ 7 the order of the collineation stabiliser is
divisible by h [3].

We show that, for σ ∈ AutGF(q) such that σ2 ≡ 2 (mod q − 1), a collineation
which fixes the set of points D(xσ + xσ+2 + x3σ+4) in PG(2, 2h) for h odd and fixes
either (0, 1, 0) or (0, 0, 1) is an automorphic collineation. Our result is independent
of whether such a set is a hyperoval.

2 Preliminaries

In [21], Thas, Payne and Gevaert calculated the collineation stabiliser of the Payne
hyperoval by finding an algebraic curve with a large intersection with the hyperoval.
They were able to prove that a collineation fixing the hyperoval must fix the curve
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(over any extension of GF(q)); then they used the projective invariance of some
geometric properties of the curve to obtain the result. We will be applying the same
basic method here, so we give a review of some properties of algebraic plane curves.
More details can be found in [6, 2.6, 10.1].

First, an algebraic plane curve of degree n in PG(2, q) is a set of points C =
V (F ) = {(x, y, z) : F (x, y, z) = 0} where F is a homogeneous polynomial of degree
n in the variables x, y, z. If F is irreducible over GF(q) then C is irreducible and if F
is irreducible over the algebraic closure of GF(q) then C is absolutely irreducible. In
the following, if P = (p1, p2, p3) then F (P ) = F (p1, p2, p3). Also, Fx, Fy, Fz denote
the partial derivatives of F with respect to x, y, z, respectively.

Further, we recall that an element g ∈ PΓL(3, q) is of the form g : X 7→ BXα,
where X = (x, y, z), B ∈ GL(3, q) and α ∈ A. The image of an algebraic curve
C = V (F ) under g is the curve gC = V (F α◦A−1), where if F (x, y, z) =

∑
aijkx

iyjzk

then F α(x, y, z) =
∑
aαijkx

iyjzk and ◦ denotes composition of functions.

Result 2 ([6], 2.6, 10.1) Let C = V (F ) be an algebraic plane curve of degree n
in PG(2, q). Further, suppose that F (x, y, z) =

∑n
i=0 F

(i)(x, y)zn−i where F (i) is a
(homogeneous) polynomial of degree i in the variables x, y. Then
(i) a point P of C is a point of multiplicity greater than one if and only if Fx(P ) =
Fy(P ) = Fz(P ) = 0, otherwise it is a point of multiplicity one, that is, it is a simple
point,
(ii) if F (0) = F (1) = . . . = F (m−1) = 0 but F (m) 6= 0 then C has a point of multiplicity
m at (0, 0, 1),
(iii) with m as in (ii), there exists k ≤ m such that the curve V (F (m)) consists of m
lines in PG(2, qk) (a line corresponding to a linear factor of F (m) with multiplicity
s is counted s times), each of which is a tangent to C at (0, 0, 1),
(iv) the multiplicity of a point P ∈ C and the number and multiplicity of the tangents
to C at a point are invariant under the action of PΓL(3, q).

Let mP (C) denote the multiplicity of the point P on the curve C. The next result
follows from Bézout’s theorem.

Result 3 ([6], 10.1 IV and VII) Let C1 = V (F1) and C2 = V (F2) be algebraic
plane curves of degree n1 and n2 in PG(2, q), respectively. Let γ denote the algebraic
closure of GF(q), so that Ĉ1 = V (F1) and Ĉ2 = V (F2) are algebraic plane curves of
degree n1 and n2 in PG(2, γ). If Ĉ1 and Ĉ2 have no common component, then∑

P∈ Ĉ1∩ Ĉ2

mP (Ĉ1)mP (Ĉ2) ≤ n1n2.

Lemma 4 Let C and C′ be algebraic curves, each containing the point (0, 0, 1) as
a simple point, each with tangent x = 0 at (0, 0, 1) and such that the intersection
multiplicity of x = 0 with C is s and the intersection multiplicity of x = 0 with C′ is
t, where s ≤ t. Then the multiplicity of the intersection of C with C′ at (0, 0, 1) is
at least s.

Proof: For the proof, we use non-homogeneous coordinates (X, Y ). The hypotheses
on the curves imply that the equations have the form:

C : XF (X, Y ) + Y sG(Y ) = 0,

C′ : XF ′(X, Y ) + Y tG′(Y ) = 0,
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for some polynomials F,G, F ′, G′. Now a point (X, Y ) lies in C ∩ C′ if and only if
the following equations are satisfied:

XF (X, Y ) + Y sG(Y ) = 0,

Y s[Y t−sG′(Y )F (X, Y )−G(Y )F ′(X, Y )] = 0,

implying that the multiplicity of intersection of C and C′ at (0, 0) is at least s. �

3 Collineations of Subiaco hyperovals

Suppose for this section that q > 64 and that h 6≡ 2 (mod 4). Recall that there is a
projectively unique Subiaco hyperoval in PG(2, q), which can be written as

H = {(1, t, f(t)) : t ∈ GF(q)} ∪ {(0, 1, 0), (0, 0, 1)}

where

f(t) =
d2t4 + d2(1 + d + d2)t3 + d2(1 + d+ d2)t2 + d2t

(t2 + dt+ 1)2
+ t1/2

and d ∈ GF(q) satisfies trace(1/d) = 1 and d2 + d + 1 6= 0.

3.1 Subiaco hyperovals and algebraic curves

In this section we find an algebraic plane curve which coincides with H as a set of
points in PG(2, q), and investigate some of its properties.

In non-homogeneous coordinates Y, Z, a point (t, f(t)) of the Subiaco hyperoval
H satisfies the equation

Z =
d2Y 4 + d2(1 + d+ d2)(Y 3 + Y 2) + d2Y

(Y 2 + dY + 1)2
+ Y 1/2

⇔ Z2 =
d4Y 8 + d4(1 + d2 + d4)(Y 6 + Y 4) + d4Y 2

(Y 2 + dY + 1)4
+ Y ;

so in homogeneous coordinates x, y, z the point (1, t, f(t)) of H satisfies

(z2 + xy)(x2 + dxy + y2)4 + d4(x2y8 + x8y2) + d4(1 + d2 + d4)(x4y6 + x6y4) = 0.

We denote this last equation by F (x, y, z) = 0, noting that F is a homogeneous
polynomial of degree 10 in the variables x, y, z, and define an algebraic curve C in
PG(2, q) by

C = V (F ) = {(x, y, z) : F (x, y, z) = 0}.

Lemma 5 The curve C and the hyperoval H coincide as sets of points in PG(2, q).

Proof: It is clear that H and C coincide on the set of points (x, y, z), x 6= 0, so
we only need to check that C and H coincide on the set of points (0, y, z). Now
F (0, y, z) = z2y8 = 0 if and only if either y = 0 or z = 0, hence H and C only
contain the points (0, 1, 0), (0, 0, 1) among the points (0, y, z). �
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In the following, let γ be the algebraic closure of GF(q) and let Ĉ = V (F ) denote
the algebraic curve of degree 10 in PG(2, γ).

Lemma 6 The curve Ĉ has a unique multiple point (0, 0, 1) of multiplicity 8 and
the two linear factors of x2 + dxy + y2 = 0 (conjugate in a quadratic extension of
GF(q)) are the equations of the tangents to Ĉ at (0, 0, 1) (each with multiplicity 4).

Proof: The multiple points of Ĉ are determined by the solutions of the following
system of equations:

F (x, y, z) = 0,
Fx(x, y, z) = y(x8 + d4x4y4 + y8) = 0,
Fy(x, y, z) = x(x8 + d4x4y4 + y8) = 0,
Fz(x, y, z) = 0.

Now x = 0⇔ y = 0 and we have found the multiple point (0, 0, 1), of multiplicity 8.
The factors of (x2 + dxy + y2)4 = 0 determine the (eight) tangents to Ĉ at (0, 0, 1).

If x 6= 0 and y 6= 0 then x2 + dxy + y2 = 0. Further,

F (x, y, z) = 0 ⇔ d4(x2y8 + x8y2) + d4(1 + d2 + d4)(x4y6 + x6y4) = 0
⇔ d2(xy4 + x4y) + d2(1 + d+ d2)(x2y3 + x3y2) = 0

⇔ d2xy
(
y3 + x3 + (1 + d+ d2)(xy2 + x2y)

)
= 0

⇔ d2xy
(
y(y2 + dxy + x2) + x(y2 + dxy + x2) + d2xy(x+ y)

)
= 0

⇔ d4x2y2(x+ y) = 0
⇔ x = y.

Substituting x = y into the equation x2 + dxy+ y2 = 0 implies that dxy = 0, which
is impossible. �

Lemma 7 The curve C is absolutely irreducible.

Proof: If one of the two tangents to C at (0, 0, 1) is a component of Ĉ, then so
is the other tangent, and in this case x2 + dxy + y2 must be a factor of F (x, y, z).
Hence x2 +dxy+y2 divides d4(x2y8 +x8y2)+d4(1+d2 +d4)(x4y6 +x6y4), so divides
y6 + x6 + (1 + d2 + d4)(x2y4 + x4y2) = x2(x4 + d2x2y2 + y4) + y2(y4 + d2x2y2 + x4) +
d4(x2y4 + x4y2), so divides d4x2y2(x2 + y2), so divides x2 + y2, so divides dxy, a
contradiction. Thus neither tangent to C at (0, 0, 1) is a component of Ĉ.

As Ĉ has a unique singular point, each irreducible factor of F over γ has mul-
tiplicity 1. Suppose that the irreducible components of Ĉ are C1, . . . , Cr, for some
r > 1, where deg(Ci) = ni and Ci has multiplicity mi at (0, 0, 1). If, for some i,
we have mi = ni then mi = ni = 1 and the component Ci is a line, which must
therefore be a tangent to Ci, and hence to C, at (0, 0, 1). This possibility has al-
ready been ruled out. Since n1 + . . . + nr = 10 and m1 + . . . + mr = 8, with
ni > mi ≥ 0 for all i, the only possibility is that r = 2 and, without loss of general-
ity, (n1, n2) = (1, 9), (2, 8), (3, 7), (4, 6) or (5, 5) and in each case mi = ni − 1.

As (0, 0, 1) is the only singular point of Ĉ, it is the unique common point of C1

and C2. In particular, (0, 0, 1) is a point of each of C1 and C2. Hence (n1, n2) is
different from (1, 9), as otherwise m1 = n1 − 1 = 0.



Collineations of Subiaco and Cherowitzo hyperovals 183

If C1 and C2 are defined over GF(q), and since any tangent to Ci at (0, 0, 1) is a
tangent to C and is therefore not a line of PG(2, q), it follows that any line of PG(2, q)
on (0, 0, 1) meets Ci in a further point of PG(2, q). Then |C1 ∪ C2| = 2(q + 1) + 1 >
q + 2 = |C|, a contradiction.

Thus C1 and C2 are not defined over GF(q), but over some extension GF(qs), for
some s > 1. Let σ be a non-identity element of the Galois group Gal(GF(qs)/GF(q)).
Then Cσ1 = C2, which implies that n1 = n2 = 5. By [6], Lemma 10.1.1, |Ci| ≤ 52, so
|C| ≤ 2(25) − 1 = 49. We have already shown that |C| = q + 2 and q > 64, so the
contradiction proves the result. �

Lemma 8 If q > 64 then PΓL(3, q)H ≤ PΓL(3, q)Ĉ.

Proof: Let θ ∈ PΓL(3, q)H. Since Hθ = H and C = H as sets of points in PG(2, q),
we know that H = Cθ. Suppose, aiming for a contradiction, that Ĉθ 6= Ĉ. Since
H ⊆ Ĉθ ∩ Ĉ, and taking account of multiplicities, we see that∑

P∈ Ĉθ∩ Ĉ

mP (Ĉθ)mP (Ĉ) ≥ q + 16.

By Result 3 and since C and Cθ are both absolutely irreducible, if Ĉθ 6= Ĉ then
q+16 ≤ 100, implying that q ≤ 64. We conclude that Ĉθ = Ĉ so that θ ∈ PΓL(3, q)Ĉ.

�

Lemma 9 Let θ ∈ PΓL(3, q)H. Then θ fixes the point (0, 0, 1) and fixes the set of
lines (in a quadratic extension of PG(2, q)) determined by the equation x2 + dxy +
y2 = 0.

Proof: First, θ ∈ PΓL(3, q)H ≤ PΓL(3, q)Ĉ, by Lemma 8. Since (0, 0, 1) is the

unique point of multiplicity greater than 1 on Ĉ, it must be fixed by θ (see Result 2).
So the pair of tangents to C at (0, 0, 1) is also fixed by θ. �

3.2 The case q = 2h where h ≡ 0 (mod 4)

In this case, we show that the known collineation group of order 2h stabilising H is
the full collineation stabiliser.

First, let PG(2, q)/(0, 0, 1) denote the quotient space of lines on (0, 0, 1), so that
PG(2, q)/(0, 0, 1) ∼= PG(1, q) in the natural way. By Lemma 9, an element θ ∈
PΓL(3, q)H acts on PG(2, q)/(0, 0, 1) ∼= PG(1, q) as an element of PΓL(2, q), fixing
setwise a pair of (conjugate) points `, ` in a quadratic extension PG(1, q2). Fur-
ther, such an action is faithful since no non-trivial element of PΓL(3, q) is a central
collineation with centre (0, 0, 1) (for otherwise, since (0, 0, 1) ∈ H, such a collineation
would be an element of PGL(3, q) fixing H, and hence a quadrangle, pointwise).
Thus PΓL(3, q)H ≤ PΓL(2, q){`,`}.

Lemma 10 ([16], proof of VI.13) PΓL(2, q){`,`} = Cq+1 × C2h. �
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As a corollary of Lemmas 9 and 10, it follows that PΓL(3, q)H is a subgroup of
Cq+1 × C2h. We will show that PΓL(3, q)H contains no non-trivial element of the
cyclic subgroup Cq+1, so that |PΓL(3, q)H| = 2h, as required.

Aiming for a contradiction, we let G = Cq+1∩PΓL(3, q)H be a non-trivial group.

Lemma 11 The group G has a unique fixed line.

Proof: First we note that G = Cq+1 ∩ PΓL(3, q)H = Cq+1 ∩ PGL(3, q)H. It is
straightforward to show that Cq+1 has a unique fixed point and a unique fixed line,
not on the fixed point (see, for example, [1, Lemma 6]), so G has at least one fixed
line.

Let p be a prime such that p divides |G| and let g ∈ G have order p. Since
1 6= g ∈ PGL(3, q), g has at most 3 fixed lines. Further, q2 + q + 1 ≡ 1 (mod p)
(for p divides |G| and hence divides q + 1 so q ≡ −1 (mod p)), implying that g has
exactly one fixed line. Thus G has at most one fixed line. �

In the following we denote the points of the Desarguesian projective plane PG(2, q)
by homogeneous triples (x, y, z) and denote the line of PG(2, q) with equation
`x+my + nz = 0 by the homogeneous triple [`,m, n].

The homography ρ : (x, y, z) 7→ (y, x, z) is an elation with centre (1, 1, 0) and
axis [1, 1, 0], fixing H. Thus ρ ∈ PΓL(3, q)H ≤ PΓL(2, q){`,`}.

Since Cq+1 /PΓL(2, q){`,`}, so ρ ∈ NPΓL(2,q){`,`}
(Cq+1). It follows that ρ permutes

the fixed lines of Cq+1, and hence fixes the unique fixed line of Cq+1 . Now the fixed
lines of ρ are [0, 0, 1] and [1, 1, c] for c ∈ GF(q), so the fixed line of Cq+1 (and hence
also the fixed line of G) must be one of these lines.

If the fixed line of G is [0, 0, 1], then G fixes (0, 0, 1) (Lemma 9) and also fixes
[0, 0, 1] ∩ H = {(0, 1, 0), (1, 0, 0)}. If a generator g of G interchanges (0, 1, 0) and
(1, 0, 0), then g induces an involution on [0, 0, 1], so g fixes a point on [0, 0, 1], hence
g and also G fixes a line through (0, 0, 1), contrary to Lemma 11. Thus g and hence
G fixes (0, 1, 0) and (1, 0, 0), and consequently G also fixes the lines [1, 0, 0] and
[0, 1, 0], contrary to Lemma 11.

Thus the fixed line of Cq+1 is [1, 1, c] for some c ∈ GF(q); since the fixed line of
Cq+1 does not contain (0, 0, 1) we have c 6= 0. Let p be a prime such that p divides
|G| and let g ∈ G have order p. The homography g fixes the pencil P of conics

Cs : (x+ y + cz)2 + s(x2 + dxy + y2) = 0, s ∈ GF(q) ∪ {∞}.

Since p divides q + 1, so is odd, and since C0 : (x + y + cz)2 = 0 and C∞ :
x2 + dxy + y2 = 0 are fixed by g, at least one more conic Cs is fixed by g. Since
at least three elements of P are fixed by g, each element of P is fixed by g. In
particular, O = C1 : c2z2 + dxy = 0 is fixed by g. We have

O =

{(
1, t,

d1/2

c
t1/2

)
: t ∈ GF(q)

}
∪ {(0, 1, 0)}.

(Note that G also fixes the nucleus (0, 0, 1) of the conic O.)

Lemma 12 If p is any prime dividing |G|, then p ∈ {3, 5, 7}.



Collineations of Subiaco and Cherowitzo hyperovals 185

Proof: Let p be a prime dividing |G| and let g ∈ G have order p. Since 〈g〉 ≤ Cq+1,
〈g〉 acts semi-regularly on PG(2, q) \ {(0, 0, 1)}, as the stabiliser in G of any of these
points is trivial. Thus any point in PG(2, q) \ {(0, 0, 1)} lies in an orbit of length p.
Now 〈g〉 fixes O and H; so fixes O ∩ H, which must therefore be a union of orbits
of 〈g〉, each of length p (as (0, 0, 1) 6∈ O). Hence p divides O ∩H.

Next we determine |O ∩H|. Certainly, (0, 1, 0) ∈ O ∩ H. Further,

(1, t, d
1/2

c
t1/2) ∈ H

⇔ d1/2

c
t1/2 =

d2(t4 + t) + d2(1 + d + d2)(t3 + t2)

(t2 + dt+ 1)2
+ t1/2

⇔ d2t4 + d2(1 + d + d2)(t3 + t2) + d2t+

(
1 +

d1/2

c

)
t1/2(t4 + d2t2 + 1) = 0

⇔ d4t8 + d4(1 + d2 + d4)(t6 + t4) + d4t2 +

(
1 +

d

c2

)
t(t8 + d4t4 + 1) = 0.

Now this is a polynomial over GF(q) in the variable t of degree at most 9, so has at
most 9 solutions in GF(q). Thus |O ∩ H| ≤ 10. Since q + 1 is odd, and p divides
q + 1, then p is odd and the result follows. �

If p = 3, then 3 divides q+1, which happens if and only if q = 2h where h is odd,
contrary to assumption. If p = 5, then 5 divides q+ 1, which happens if and only if
q = 2h where h ≡ 2 (mod 4), again contrary to assumption. Further, p = 7 implies
2h ≡ −1 ≡ 6 (mod 7), but the powers of 2 modulo 7 are {1, 2, 4}, a contradiction.

We conclude that the group G = Cq+1 ∩ PΓL(3, q)H is trivial.

Theorem 13 Let q = 2h where h ≡ 0 (mod 4) and q > 64. The collineation
stabiliser PΓL(3, q)H of the Subiaco hyperoval H = D(f) described above is a cyclic
group of order 2h. The homography stabiliser of H is a cyclic group of order 2,
generated by ρ.

Proof: The preceding arguments show that the collineation stabiliser of H is a
cyclic group of order 2h. Comparing orders with Theorem 1 (2), we see that this
group coincides with the stabiliser induced by the collineation group of the associated
generalised quadrangle and the rest of the statement follows. �

Corollary 14 The collineation stabiliser of a Subiaco hyperoval in PG(2, q), where
q = 2h, h ≡ 0 (mod 4) and q ≥ 256 is a cyclic group of order 2h. Further, its
homography stabiliser is a cyclic group of order 2.

Proof: Since there is one orbit of Subiaco hyperovals under PΓL(3, q) for these
values of q, the result follows. �

3.3 The case q = 2h where h is odd

Since h is odd, by Theorem 1 (2), we can choose d = 1 since trace(1) = 1 and
1+1+1 6= 0. In this case, the Subiaco hyperoval can be written as H = D(f) where

f(t) =
t4 + t3 + t2 + t

(t2 + t+ 1)2
+ t

1
2
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and the curve C = V (F ) is such that

F (x, y, z) = (z2 + xy)(x2 + xy + y2)4 + x2y8 + x8y2 + x4y6 + x6y4

= (x2 + y2 + z2 + xy)(x2 + xy + y2)4 + x10 + y10

= (x2 + xy + y2)5 + z2(x2 + xy + y2)4 + x10 + y10. (1)

As in Theorem 1, we already know that H is stabilised by a group of order 2h.
We will show that this is the full collineation stabiliser, first concentrating on the
homography stabiliser.

Lemma 15 Let q = 2h, where h is odd, and let H = D(f) be the Subiaco hyper-
oval as described above. Then PGL(3, q)H is a group of order 2 generated by the
homography ρ : (x, y, z) 7→ (y, x, z).

Proof: Let θ ∈ PGL(3, q)H, so θ can be written as a 3 × 3 matrix, which we also
denote by θ. By Lemma 9, θ fixes (0, 0, 1), so θ−1 is of the form

θ−1 =

a b 0
e f 0
g h 1


for some a, b, e, f, g, h ∈ GF(q). Further, over the algebraic closure γ of GF(q), θ
fixes {(x, y, z) : x2 + xy + y2 = 0}; so we have

(ax+ by)2 + (ax+ by)(ex+ fy) + (ex+ fy)2

= x2(a2 + ae+ e2) + xy(af + be) + y2(b2 + bf + f2) (2)

= α(x2 + xy + y2)

for some α ∈ GF(q), by [6, 2.6(v)]. It follows that

a2 + ae+ e2 = af + be = b2 + bf + f2 = α.

Since θ fixes H = C, if F (x, y, z) = 0 then F ((x, y, z)θ
−1

) = 0 also. Hence we
obtain, using Equation (2) for simplification at the first step and substituting for
z2(x2 + xy + y2)4 using Equation (1) at the second step:

F ((x, y, z)θ
−1

) = 0

⇒ α5(x2 + xy + y2)5 + (gx+ hy + z)2α4(x2 + xy + y2)4 + (ax+ by)10

+(ex+ fy)10 = 0

⇒ α5(x2 + xy + y2)5 + α4(x2 + xy + y2)4(g2x2 + h2y2)

+α4((x2 + xy + y2)5 + x10 + y10)

+(a5x5 + ab4xy4 + a4bx4y + b5y5 + e5x5

+ef4xy4 + e4fx4y + f5y5)2 = 0 ∀x, y ∈ GF(q)

⇒ x10(α5 + g2α4 + a10 + e10) + x9y(α5 + α4)

+x8y2(α5 + α4 + h2α4 + a8b2 + e8f2) + x6y4(α5 + g2α4 + α4)

+x5y5(α5 + α4) + x4y6(α5 + h2α4 + α4)

+x2y8(α5 + α4 + g2α4 + a2b8 + e2f8) + xy9(α5 + α4)

+y10(α5 + h2α4 + b10 + f10) = 0
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for all x, y ∈ GF(q), not both zero. Thus each coefficient in the last equation must
be zero. In particular, the coefficient of x9y is α5 + α4 = α4(α + 1) = 0, implying
that α = 0 or 1. But if α = 0 then the matrix θ is singular (since the determinant
of θ−1 is af + be = α), which is not possible. Thus α = 1, and the coefficients of
x6y4 and x4y6 imply that g = h = 0, respectively. We are left with the following
four equations, corresponding to the coefficients x10, x8y2, x2y8, y10:

a5 + e5 = 1, (3)

a4b+ e4f = 0, (4)

ab4 + ef4 = 0, (5)

b5 + f5 = 1. (6)

Multiplying Equation (5) by b we obtain: ab5 + ebf4 = 0, hence a(1+f5)+ ebf4 = 0
and so f4(af + be) + a = 0, thus a = f4. Similarly, multiplying Equation (4) by
a yields b = e4. Substituting for a in Equation (5) gives f4(b4 + e) = 0, so either
f = 0 or e = b4. If f = 0 then a = f4 = 0 and Equations (3, 6) yield b5 = e5 = 1.
Thus b = e = 1, since the greatest common divisor (2h − 1, 5) = 1 (as h is odd and
an odd power of 2 modulo 5 is never 1). In this case θ is the collineation ρ and it
is straightforward to verify that ρ fixes H. In a similar way, using Equation (4), it
follows that either e = 0 or f = a4. If e = 0 then analogous arguments show that θ
is the identity collineation.

We are left to consider the case in which e = b4 and f = a4. Since b = e4 and
a = f4, it follows that a15 = e15 = 1; hence a = e = 1, since the greatest common
divisor (15, q−1) = (24−1, 2h−1) = (4, h) = 1 as h is odd. It follows that b = f = 1
and

θ−1 =

1 1 0
1 1 0
0 0 1


which is impossible since then the determinant of θ−1 would be 0. �

Theorem 16 In PG(2, q), where q = 2h, h is odd and q > 64, let H = D(f) be
the Subiaco hyperoval described above. Then PΓL(3, q)H is a cyclic group of order
2h, generated by ρ and the automorphic collineation (x, y, z) 7→ (x2, y2, z2). The
homography stabiliser of H is a cyclic group of order 2, generated by ρ.

Proof: By Lemma 15, the homography stabiliser of H is 〈ρ〉, a cyclic group of order
2. Further, since f(t) has coefficients in GF(2), it follows thatH is fixed by the group
A of automorphic collineations, so the homography stabiliser of H has index h in
the collineation stabiliser. Thus the collineation stabiliser of H is 〈〈ρ〉, A〉 = 〈ρ〉×A.
This is a cyclic group of order 2h. �

Corollary 17 The collineation stabiliser of a Subiaco hyperoval in PG(2, q), where
q = 2h, q ≥ 32 and h is odd, is a cyclic group of order 2h. Further, its homography
stabiliser is a cyclic group of order 2.

Proof: The case q = 32 was discussed in Section 1. Suppose q ≥ 128. A Subi-
aco hyperoval is equivalent to the hyperoval H above, its collineation (respectively
homography) stabiliser is conjugate in PΓL(3, q) (respectively PGL(3, q)) to the
stabiliser of H, and the result follows. �
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4 Collineations of Cherowitzo hyperovals and sets

For this section, we suppose that q = 2h where h ≥ 5 is odd. Let σ ∈ AutGF(q) be
such that σ2 ≡ 2 (mod q − 1), and define a Cherowitzo set to be the set of points

H = {(1, t, f(t)) : t ∈ GF(q)} ∪ {(0, 1, 0), (0, 0, 1)}

where f(t) = tσ + tσ+2 + t3σ+4. For 5 ≤ h ≤ 15, a Cherowitzo set is a Cherowitzo
hyperoval [4].

In the following we write h = 2e + 1, so that σ = 2e+1. Taking account of [10],
we only need consider h ≥ 7, that is, e ≥ 3.

4.1 Cherowitzo sets and algebraic curves

In homogeneous coordinates (x, y, z), the point (1, t, f(t)) satisfies the equation
F (x, y, z) = 0, with

F (x, y, z) = x3σ+3z + x2σ+4yσ + x2σ+2yσ+2 + y3σ+4.

We define the algebraic curves C = V (F ) in PG(2, q) and Ĉ = V (F ) in PG(2, γ)
where γ is the algebraic closure of GF(q).

Lemma 18 In PG(2, q), we have C ∪ {(0, 1, 0)} = H.

Proof: First, C and H coincide on the set of points (x, y, z), x 6= 0. Further,
the line x = 0 meets C in the unique point (0, 0, 1) and meets H in the points
(0, 1, 0), (0, 0, 1). �

Lemma 19 The curve Ĉ has a unique multiple point (0, 0, 1) of multiplicity 3σ+3.
The line x = 0 is the unique tangent to Ĉ at (0, 0, 1). Further, each tangent to Ĉ
passes through the point (0, 1, 0).

Proof: The multiple points of Ĉ are the solutions of the following system of equa-
tions:

F (x, y, z) = 0,

Fx(x, y, z) = x3σ+2z = 0,

Fz(x, y, z) = x3σ+3 = 0,

noting that Fy(x, y, z) = 0. The only solution is x = y = 0, and we have found the
multiple point (0, 0, 1), of multiplicity 3σ + 3. The tangent x = 0 to Ĉ at (0, 0, 1)
has multiplicity 3σ + 3 and passes through (0, 1, 0). The tangent to Ĉ at the point
(x0, y0, z0) is the line with equation x3σ+2

0 z0x + x3σ+3
0 z = 0, which passes through

(0, 1, 0). �

Lemma 20 The curve C is absolutely irreducible.
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Proof: Since Ĉ has a unique singular point, each irreducible factor of F over γ has
multiplicity one. Suppose that Ĉ has irreducible components C1, . . . , Cr, r > 1, with
deg(Ci) = ni. Since Ĉ has order 3σ+ 4 and (0, 0, 1) is a point of multiplicity 3σ+ 3,
it follows that (0, 0, 1) has multiplicity ni for r− 1 of these irreducible components,
say C1, . . . , Cr−1 (for Ci has a point of multiplicity mi at (0, 0, 1), where ni ≥ mi,
n1+. . .+nr = 3σ + 4 and m1+. . .+mr = 3σ+3). Since Ci is irreducible, each of the
curves C1, . . . , Cr−1 is a line through (0, 0, 1), necessarily coinciding with the unique
tangent x = 0 to Ĉ at (0, 0, 1). But x = 0 is not a component of Ĉ; a contradiction.

�

4.2 Collineations of Cherowitzo sets

Lemma 21 Let θ ∈ PGL(3, q)H, q = 22e+1 with e ≥ 3. If θ fixes the point (0, 0, 1)
then θ is the identity collineation.

Proof: Suppose, aiming for a contradiction, that Ĉθ 6= Ĉ. The point (0, 0, 1) is a
point of multiplicity 3σ + 3 on each of the curves Ĉ and Ĉθ. Further, since θ fixes
H, it follows that Ĉ and Ĉθ have at least q − 1 further common points, each of
multiplicity one on each curve. Thus, by Result 3,

(3σ + 4)2 ≥
∑

P∈Ĉ∩Ĉθ
mP (Ĉθ)mP (Ĉ) ≥ (3σ + 3)2 + q − 1,

hence
22e−2 − 3.2e−1 − 1 ≤ 0,

which is impossible for e ≥ 3. Thus Ĉθ = Ĉ, and, since (0, 1, 0) is the point of
intersection of the tangents to Ĉ, it follows that (0, 1, 0) is also fixed by θ.

We can assume without loss of generality that

θ−1 =

a 0 0
b c 0
d 0 1


for some a, b, c, d ∈ GF(q) satisfying ac 6= 0. Since θ fixes C, if F (x, y, z) = 0 then
F ((x, y, z)θ

−1
) = 0. Hence,

F ((x, y, z)θ
−1

) = 0

⇒ (ax)3σ+3(dx+ z) + (ax)2σ+4(bx+ cy)σ + (ax)2σ+2(bx+ cy)σ+2

+(bx+ cy)3σ+4 = 0 and F (x, y, z) = 0

⇒ x3σ+4(a3σ+3d + a2σ+4bσ + a2σ+2bσ+2 + b3σ+4) + x3σ+2y2(a2σ+2bσc2)

+x3σy4(b3σc4) + x2σ+4yσ(a3σ+3 + a2σ+4cσ + a2σ+2b2cσ + b2σ+4cσ)

+x2σ+2yσ+2(a3σ+3 + a2σ+2cσ+2)

+x2σyσ+4(b2σcσ+4) + xσ+4y2σ(bσ+4c2σ)

+xσy2σ+4(bσc2σ+4) + x4y3σ(b4c3σ) + y3σ+4(a3σ+3 + c3σ+4) = 0,

for all x, y ∈ GF(q). It follows that each coefficient in this expression must be
zero. As ac 6= 0, considering the coefficient of x3σy4, we see that b = 0. Looking
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at the coefficient of x3σ+4 implies that d = 0. Then the coefficients of x2σ+4yσ and
x2σ+2yσ+2 together show that a = c, and the coefficient of y3σ+4 is used to show that
a = 1. Thus θ is the identity collineation. �

Lemma 22 Let θ ∈ PGL(3, q)H, q = 22e+1 with e ≥ 3. If θ fixes the point (0, 1, 0)
then θ is the identity collineation.

Proof: First, we calculate the intersection multiplicity at (1, t, f(t)) of Ĉ with the
tangent `t : (tσ + tσ+2 + t3σ+4)x+ z = 0 to Ĉ at the point (1, t, f(t)), t ∈ GF(q). A
point (x, y, z) is in the intersection of Ĉ and `t if and only if

x3σ+3(tσ + tσ+2 + t3σ+4)x+ x2σ+4yσ + x2σ+2yσ+2 + y3σ+4 = 0

⇔ tσ + tσ+2 + t3σ+4 = Y σ + Y σ+2 + Y 3σ+4, where Y = y/x

⇔ Y σ + tσ + (Y σ)1+σ + (tσ)1+σ + (Y σ)3+2σ + (tσ)3+2σ = 0

⇔ (Y + t)σ
(

1 +
σ∑
i=0

(Y σ)σ−i(tσ)i +
2σ+2∑
i=0

(Y σ)2+2σ−i(tσ)i
)

= 0.

The factor (Y + t)σ contributes σ to the intersection multiplicity at the point
(1, t, f(t)), since this is the point for which Y = t. There is a further contribu-
tion to this intersection multiplicity if and only if

1 +
σ∑
i=0

(tσ)σ−i(tσ)i +
2σ+2∑
i=0

(tσ)2+2σ−i(tσ)i = 0

⇔ 1 +
σ∑
i=0

tσ
2

+
2σ+2∑
i=0

t2σ+2σ2

= 0

⇔ 1 + t2 + t2σ+4 = 0.

Since in PG(3, q) the plane z = 0 is tangent to the Tits ovoid with equation z =
xy + xσ+2 + yσ at the point (1, 0, 0, 0) ([7, Theorem 16.4.5]), it follows that (0, 0) is
the only solution of the equation xy + xσ+2 + yσ = 0. Putting y = 1, we see that
the equation 1 + x+ xσ+2 = 0 has no solution, hence, putting x = t2, the equation
1 + t2 + t2σ+4 = 0 has no solution; so the multiplicity of the intersection of Ĉ with
the tangent `t to Ĉ at the point (1, t, f(t)), t ∈ GF(q), is exactly σ at (1, t, f(t)).

Suppose now that θ does not fix (0, 0, 1), and count the points in Ĉ∩Ĉθ, according
to their multiplicities. The points (0, 0, 1) and (0, 0, 1)θ each contribute 3σ + 4 to
the intersection, and each further point of intersection is a simple point on each
curve. By Lemma 4, in PG(2, q), such a simple point contributes at least σ to the
intersection. Thus ∑

P∈Ĉ∩Ĉθ
mP (Ĉθ)mP (Ĉ) ≥ 2(3σ + 4) + (q − 1)σ

= 23e+2 + 5.2e+1 + 8.

By Lemma 3, since C and hence also Cθ are absolutely irreducible, if Ĉθ 6= Ĉ then
23e+2 + 5.2e+1 + 8 ≤ (3σ + 4)2; implying that 23e+2 − 9.22e+2 − 19.2e+1 − 8 ≤ 0;
impossible for e ≥ 3. Thus Ĉθ = Ĉ. By Result 2, the unique multiple point (0, 0, 1)
of Ĉ is fixed by θ. This contradiction shows that (0, 0, 1) is fixed by θ, and Lemma 21
shows that θ is the identity collineation. �
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Theorem 23 Let q = 2h where h ≥ 7 is odd. LetH be the Cherowitzo set as defined
above (and hence a Cherowitzo hyperoval for h ≤ 15). A collineation which fixes H
and which fixes either (0, 1, 0) or (0, 0, 1) must be an automorphic collineation.

Proof: Lemmas 22, 21. �
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