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Abstract

A cover of Σ = PG(3, q) is a set of lines S such that each point of Σ is
incident with at least one line of S. A cover is minimal if no proper subset is
also a cover. We study minimal covers of Σ which are ‘large’; the main results
being constructions of sets of this kind and an upper bound on the size of
minimal covers.

1 Introduction

A cover of Σ = PG(3, q) is a set S of lines such that every point of Σ is on at least
one line of S. A cover is said to be minimal if no proper subset is also a cover.
Every cover of Σ contains at least q2 + 1 lines, and the covers with exactly this
many lines are the spreads. In [1], A. Blokhuis et. al. study covers of Σ (and of
finite generalized quadrangles) which are ‘small’. In essence, they give a structure
theorem for minimal covers S with q2 + 1 < |S| < q2 + q + 1.

In this note we study ‘large’ minimal covers. A natural first problem is to find
the maximal size of a minimal cover. We begin by finding an upper bound on the
size of these sets, proceed to give some constructions for large minimal covers, and
finally discuss some connections between this problem and others outstanding in the
literature. Along the way we describe an interesting ‘regular’ cover.

Throughout, star(P ) denotes the set of lines of Σ on a point P ∈ Σ while
pen(P, π) denotes the plane pencil of lines defined by the incident point-plane pair
(P, π).
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2 An upper bound

If S is a minimal cover of Σ, then for each line l in S there must be at least one point
on l which is on no other line of S. Therefore we can construct an injective mapping
from S to the set of points of Σ, so we have immediately |S| ≤ |Σ| = q3 + q2 + q+1.
However, by using a method used in [4] to study the size of minimal blocking sets,
it is possible to derive a better bound.

Theorem 1 If S is a minimal cover of PG(3, q) then

|S| <
√

5− 1

2
q3 +

2√
5
q2 + q +

1

2
. (1)

Proof. In fact, we will prove the dual statement–if S is a set of lines such that each
plane contains a line of S and for each line l ∈ S there exists a plane on l containing
no other line of S, then |S| satisfies (1). Let S be such a set.

Call a plane π tangent to S if π contains exactly one line of S, and secant if it
contains more than one. Suppose that there are γ tangent planes to S. Then by
assumption there are exactly n = q3 + q2 + q + 1 − γ secant planes; label them as
π1, . . . , πn and for each i put |πi

⋂
S| = xi. If |S| = t, counting incidences gives

n∑
i=1

xi = t(q + 1) − γ (2)

n∑
i=1

xi(xi − 1) = ζ, (3)

where ζ is the number of ordered pairs (l1, l2) of intersecting lines of S. Now J.
Eisfeld ([6]) has recently shown that ζ satisfies

ζ ≤ t2(q + 1)

q2 + q + 1
+ (q2 − 1)t <

t2

q
+ (q2 − 1)t. (4)

We remark that Eisfeld has in fact given a similar bound for line sets in PG(n, q)
for arbitrary n ≥ 3. The bound is sharp; the sets satisfying it are exactly the
Cameron-Liebler line classes introduced in [5]. Combining (2), (3) and (4) gives

n∑
i=1

x2
i < t(q + 1)− γ +

t2

q
+ (q2 − 1)t. (5)

Now (2) and (5), together with the inequality

1

n
(
n∑
i=1

xi)
2 ≤

n∑
i=1

x2
i (6)

(the ‘variance inequality’) gives, with θ3 = q3 + q2 + q + 1,

t2
(
θ3

q
− (q + 1)2

)
+ tθ3(q

2 + q) + γ

(
2t(q + 1) − θ3 −

t2

q
− t(q2 + q)

)
> 0. (7)
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Since t > 0, the coefficient of γ in (7) is negative. Furthermore, γ ≥ t, so we can
replace γ by t and preserve the inequality. Doing this, simplifying, and solving for
t gives

t <
1

2

(
−q3 + 2q + 1 +

√
5q6 + 8q5 + 2q3 + 4q2 + 1

)
.

Since 5q6 + 8q5 + 2q3 + 4q2 + 1 < (
√

5q3 + (4/
√

5)q2)2 for q ≥ 2, (1) is a weakening
of this last inequality, so the theorem holds. �

3 Some examples of large minimal covers

3.1 Hyperbolic quadrics

Let H1, . . . ,Hq be q hyperbolic quadrics forming a spread corresponding to a flock
of a quadratic cone (see [7]). Then the Hi are skew apart from one line l which is
contained in each of them. Denote by Ri the regulus of Hi which contains l. The
following lemma describes some of the structure of this set of quadrics.

Lemma 1 For each plane π containing l, there exists a (unique) P ∈ l such that the
lines of Ropp

i on P , together with l, form the pencil defined by P and π. Furthermore,
any plane not containing l is tangent to exactly one of the Hi (and hence meets each
of the others in a non-singular conic).

Proof. Let P ∈ l. Each of Ropp
1 , . . . ,Ropp

q has a unique line li on P . Put πi = l ∨ li
and assume that for some i 6= j, πi 6= πj. Since l ⊂ Hi and l ⊂ πj, πj is a tangent
plane to Hi and therefore contains a line of Hi, m say, apart from l. Furthermore,
m cannot be incident with P , since the two lines of Hi on P are l and li. Therefore
m intersects lj in a point off l, contradicting Hi

⋂Hj = l. Therefore the tangent
planes to Hi, i = 1, . . . , q all coincide, so the set of lines of the Ropp

i on P together
with l form a plane pencil. This proves the first assertion. As for the second, any
plane ρ not containing l hits l in a single point P ; therefore the intersections of the
Hi with ρ partition the points of ρ apart from P . Now a counting argument using
the fact that the intersection of each Hi with ρ is either two lines or a non-singular
conic (see [8]) gives the required result. �

Let P ∈ l be a fixed point; let li be the line of Ropp
i on P (i = 1, . . . , q), and let

π be the plane containing l such that pen(P, π) contains all the li. Define a set S of
lines by

S = (star(P ) \ {l1, . . . , lq−1})
⋃q−1⋃

i=1

Ri

 . (8)

Theorem 2 The set S defined by (8) is a minimal cover of Σ with 2q2−q+2 lines.

Proof. The size of S is easily calculated. Since the lines of star(P ) are a cover of
Σ and the points on li are covered by the lines of Ri, S is a cover of Σ. Now we
prove that S is minimal. The two lines of pen(P, π) in S, namely l and lq, cannot
be removed from S since each of their points, except P , is on no other line of S
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(each line of S not on P is in some Ri with i < q and is therefore skew to both l
and lq). The lemma above implies that any line m of star(P ) not contained in π
is secant to each of the Hi, and hence intersects Hq in P and one further point Q.
Since the only points of Hq which are covered by lines of S are in π, Q is covered
by no other line of S, and therefore m cannot be removed from S. Therefore no
line of star(P )

⋂
S can be removed from S. The lines of S not on P , of which there

are q(q − 1), collectively cover all the points of π not on l or lq, of which there are
q(q − 1). Therefore each of these lines intersects π in a point not covered by any
other line of S, so S is minimal. �

Note that all but two of the lines in this set have only one point which is not on
any other line of S. Note also that while S covers every point of Σ, not every plane
of Σ contains a line of S–if ρ is a plane not containing P which is tangent to Hq,
then no line of S is in ρ. Thus S misses a rather large number of planes, namely q2.

Now if in the above construction we proceed a little further, and form

T = (star(P ) \ {l1, . . . , lq})
⋃( q⋃

i=1

Ri

)
, (9)

we have a set of 2q2 + 1 lines which, while not a minimal cover of S, nevertheless
has an interesting property, as follows:

Theorem 3 Every plane contains one or q + 1 lines of T .

Proof. The plane π contains only one line, l, of T . Any other plane on L contains
q+1 lines of T , namely the pencil given by lemma 1. A plane ρ on P , not containing
l is a tangent to precisely one Hi; so there exists precisely one line of Ri in ρ, and
no line of any other Rj , j 6= i. T also contains the q lines of pen(P, ρ) which are
not in π, for q + 1 in total. Finally, any plane off P is tangent to precisely one Hi,
hence contains precisely one line of Ri, no lines of Rj for j 6= i and thus no other
lines of T . �

Beginning with a set of q+1 hyperbolic quadrics partitioning the points of space
apart from two common lines, or a regular spread decomposed (as in [2]) into q− 1
disjoint reguli and two additional lines, and proceeding as in the above construction
gives other examples of minimal covers of size approximately 2q2.

3.2 Unitals

A unital U in a projective plane PG(2, q) is a set of q3/2 +1 points with the property
that every line of PG(2, q) is on either exactly one or exactly q1/2 + 1 points of U .
Unitals exist in PG(2, q) if and only if q is a square. It is shown in [4] that unitals are
the unique largest reduced blocking sets in PG(2, q) (a blocking set in a projective
plane is a set of points containing no line, but intersecting every line; such a set is
reduced if it has a tangent line at every point). In [3] it is shown that the blocking
set hypothesis is unnecessary here; that is, that unitals are the largest sets of points
in PG(2, q) having a tangent line at each point. If S is a minimal cover of PG(3, q)
then for any plane π, the lines of S in π form a set of lines with the property that
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each contains a point on no other–the dual to the situation studied in [3]. Therefore
is is natural to try to construct large minimal covers using unitals. We proceed to
do this now. Let q be a square, l a line of PG(3, q) and P ∈ l. Let πi, i = 1, . . . , q+1
be the planes on l and for each i, let Ui be a unital in πi such that P ∈ Ui and l is
the (unique) tangent line to Ui at P . Let S be the set of tangent lines to the unitals:
each line of S lies in one of the planes πi, 1 ≤ i ≤ q + 1.

Theorem 4 S is a minimal cover of PG(3, q) with q5/2 + q3/2 + 1 lines.

Proof. Since the set of tangents to each Ui cover the points of πi, S is a cover.
Since there is only one tangent line to a unital at each of its points, each line of S
hits one point which is on no other line of S. Thus S is minimal. �

Note that each point of Σ is on one,
√
q + 1 or (q + 1)(

√
q) + 1 lines of S, and

that each line of S has exactly one point on no other lines of S. We also note that
all lines of S intersect l; by [3], S is maximal among all covers having this property,
and any cover with this property must have the structure of S for some line l. It
seems possible that in fact S is maximal amongst all minimal covers of PG(3, q),
that is, that the bound (1) of theorem 1 can be improved to q5/2 + q3/2 + 1.

4 Remarks

The relevant property of unitals used in the above proof is that the set of tangent
lines to a unital forms a dual reduced blocking set of size q3/2+1. In fact, an identical
proof shows that if there exists a reduced blocking set of size b in PG(2, q), then
there exists a minimal cover of PG(3, q) of size (q+ 1)(b− 1) + 1 (constructed using
dual reduced blocking sets of size b). Except when q is a square or very small, the
size of a largest reduced blocking set in PG(2, q) is not known. We note that using
ovals instead of unitals in the proof of theorem 4 gives, when q is even, a minimal
cover of size q2 + q + 1 which may or may not coincide with star(P ) for some P .
(If all of the ovals have the same nucleus P , the constructed set will be star(P );
otherwise it will be a set of i, 2 ≤ i ≤ q plane pencils sharing a common line.)

The problem under consideration in this paper is also linked with the problem
of finding semi-ovals in finite projective planes, where by semi-oval we mean a set
of points having precisely one tangent line at each point (see [9]). Excepting conics
and unitals, the only semi-ovals known seem to be the deleted triangles. A deleted
triangle is a set of three non-concurrent lines with the points of intersection removed,
a semi-oval of size 3q−3. Using a dual deleted triangle in the construction of theorem
4 gives a minimal cover of size (q+1)(3q− 4)+1 for all q. It can be shown that the
conics and the deleted triangles are the only semiovals in PG(2, 3).
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